1
|
Echemendía R, Montgomery CA, Cuzzucoli F, Burtoloso ACB, Murphy GK. Direct trifluoroethylation of carbonyl sulfoxonium ylides using hypervalent iodine compounds. Beilstein J Org Chem 2024; 20:3182-3190. [PMID: 39669446 PMCID: PMC11635294 DOI: 10.3762/bjoc.20.263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024] Open
Abstract
A novel study on the hypervalent iodine-mediated polyfluoroalkylation of sulfoxonium ylides was developed. Sulfoxonium ylides, known for their versatility and stability, are promising substrates for numerous transformations in synthetic chemistry. This report demonstrates the successful derivatization of sulfoxonium ylides with trifluoroethyl or tetrafluoropropyl groups, and provides valuable insights into the scope and limitations of this approach. Nineteen examples have been prepared (45-92% yields), with structural diversity modified at two key sites on the sulfoxonium ylide reactants. Finally, DFT calculations provided insights about the mechanism of this transformation, which strongly suggest that an SN2 reaction is operative.
Collapse
Affiliation(s)
- Radell Echemendía
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970, São Carlos, SP, Brazil
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada
| | - Carlee A Montgomery
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada
| | - Fabio Cuzzucoli
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada
| | - Antonio C B Burtoloso
- São Carlos Institute of Chemistry, University of São Paulo, 13560-970, São Carlos, SP, Brazil
| | - Graham K Murphy
- Department of Chemistry, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada
| |
Collapse
|
2
|
Ray S, Gupta N, Singh MS. LiBr-Promoted Reaction of β-Ketodithioesters and Thioamides with Sulfoxonium Ylides to Synthesize Functionalized Thiophenes. Org Lett 2024; 26:9401-9406. [PMID: 39436378 DOI: 10.1021/acs.orglett.4c03680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
An operationally simple and highly efficient synthesis of functionalized thiophenes has been developed by LiBr promoted heteroannulation of β-ketodithioesters and thioamides with bench-stable sulfoxonium ylides in open air for the first time. This one-pot strategy involves formal Csp3-H bond insertion/intramolecular cyclization cascade, featuring readily accessible starting materials, TM and additive-free condition, broad substrate scope, high functional group compatibility, and scalability. Moreover, the carbonyl, thiomethyl, and amino groups in the resulting thiophene provide a good handle on downstream transformations.
Collapse
Affiliation(s)
- Subhasish Ray
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Nimisha Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
3
|
Jian Y, He YJ, Hu C, Li X, Liu PN. Catalyst-Free [4+1] Annulation of α-Imidoyl Sulfoxonium Ylides and Diazo Compounds Enabling the Modular Synthesis of 2-Indanones and 3(2 H)-Furanones. Org Lett 2024; 26:8492-8497. [PMID: 39331512 DOI: 10.1021/acs.orglett.4c03018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
A novel substrate-regulated [4+1] annulation of α-imidoyl sulfoxonium ylides with diazoketones under catalyst-free conditions is described. The reaction proceeds through a coupling of sulfoxonium ylides and in situ-generated ketenes to form the key reactive zwitterionic intermediates, followed by selective formation of C-C or C-O bonds to achieve five-membered ring systems. The cascade reaction permits the direct synthesis of synthetically useful 2-indanones and 3(2H)-furanones, which expands the reaction pattern of sulfoxonium ylides in annulation transformation.
Collapse
Affiliation(s)
- Yong Jian
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
- Shanghai Neutan Pharmaceutical Co., Ltd., Building 26, No.555 Huanqiao Road, Pudong New Area, Shanghai 201315, P. R. China
| | - Yu-Jie He
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chao Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xingguang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
4
|
Shen DT, Wu WR, Zou WX, Hu Q, Wei J, Bao MZ, Liu X, Zhang SS. Isocyanide-Based Multicomponent Reaction: Cascade α-Acyloxylation/Carboxamidation and [3 + 1+1] Cyclization of I (III)/S (VI)-Ylides. Org Lett 2024; 26:6263-6268. [PMID: 38995695 DOI: 10.1021/acs.orglett.4c02255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
A metal-free cascade of α-acyloxylation/carboxamidation of I(III)/S(VI)-ylides, carboxylic acids, and isonitriles via a Passerini-like multicomponent reaction is reported. Unexpectedly, [3 + 1+1] cyclization involving I(III)/S(VI)-ylides and two molecules of ethyl isocyanoacetate was observed. The strategy allows for the synthesis of unsymmetrical α,α-disubstituted ketones and functionalized pyrroles with up to 99% yield and wide substrate compatibility. Notably, the procedure has been extended to the late-stage modification of drugs and natural products, offering an elegant complement to the classic Passerini reaction.
Collapse
Affiliation(s)
- Dan-Ting Shen
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| | - Wen-Rong Wu
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| | - Wen-Xuan Zou
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| | - Qiong Hu
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| | - Jiaohang Wei
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| | - Mei-Zhu Bao
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| | - Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, Guangdong 528458, P. R. China
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
5
|
Kumar D, Unnikrishnan U, Kuram MR. Facile access to C-substituted piperazin-2-ones and mianserin derivative enabled by chemoselective carbene insertion and cyclization cascade. Chem Commun (Camb) 2024; 60:5691-5694. [PMID: 38726600 DOI: 10.1039/d4cc00959b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The chemoselective N-H insertion of unsymmetrical diamines into carbene is a longstanding challenge. A simple copper-catalyzed strategy for synthesizing C-substituted piperazinones is described, employing easily accessible diazo compounds and 1,2-diamines. The reaction proceeded via chemo-selective carbene insertion at the comparatively less nucleophilic amine, followed by instantaneous cyclization. The protocol was further extended to access NH-free piperazinone, and the synthesis of a Mianserin derivative.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Urmila Unnikrishnan
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| | - Malleswara Rao Kuram
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
6
|
Guo H, Ding Y, Fan J, Li Z, Cheng G. Lithium Bromide-Promoted Formal C(sp 3)-H Bond Insertion Reactions of β-Carbonyl Esters with Sulfoxonium Ylides to Synthesize 1,4-Dicarbonyl Compounds. J Org Chem 2024; 89:6974-6986. [PMID: 38703123 DOI: 10.1021/acs.joc.4c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
A LiBr-promoted formal C(sp3)-H bond insertion reaction between β-carbonyl esters and sulfoxonium ylides is established. This practical reaction has a wide range of substrate scope for both β-carbonyl esters and sulfoxonium ylides to give a variety of 1,4-dicarbonyl compounds with 43-94% yields. The reaction features transition-metal-free reaction conditions and exclusive C-alkylation chemselectivity. The use of bench-stable sulfoxonium ylides overcomes previous methods that require transition metal as catalysts and unstable diazo compounds or toxic haloketones as alkylation reagents.
Collapse
Affiliation(s)
- Hailin Guo
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yuhao Ding
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jingwen Fan
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Zhiyong Li
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Guolin Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
7
|
Zahara AJ, Haines BE, Wilkerson-Hill SM. Programmed Heterocycle Synthesis Using Halomucononitriles as Pyridinimine Precursors. Org Lett 2024; 26:2976-2981. [PMID: 38557087 DOI: 10.1021/acs.orglett.4c00547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein we report a method to convert primary amines, ubiquitous motifs found in pharmaceutical libraries, to either imidazo[1,2-a]pyridines or 7-alkyl azaindoles in two steps from known compounds. Using halomucononitrile reagents, we can directly access 5-bromo-6-imino-1-alkyl-1,6-dihydropyridine-2-carbonitriles (pyridinimines) in a single step from primary amines (25-93% yield) through the cyclization of transient aminomucononitrile intermediates. We then demonstrate that these compounds can be readily converted to 7-alkylazaindoles using Sonogashira cross-coupling conditions (13 examples, up to 91% yield). Under oxidative conditions, the pyridinimines serve as directing groups for C-H functionalization reactions to afford imidazo[1,2-a]pyridines. We also studied the mechanism of the cyclization event using DFT calculations and propose that this takes place via sequential base-mediated E/Z isomerization and cyclization steps.
Collapse
Affiliation(s)
- Adam J Zahara
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Brandon E Haines
- Department of Chemistry, Westmont College, Santa Barbara, California 93108, United States
| | - Sidney M Wilkerson-Hill
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
8
|
Mi E, Zhou L, Tong Y, Qiu X, Zeng X, Li J, Xiong B. Copper-Mediated Cyclization of Terminal Alkynes with CF 3-Imidoyl Sulfoxonium Ylides To Construct 5-Trifluoromethylpyrroles. Org Lett 2024; 26:2249-2254. [PMID: 38451534 DOI: 10.1021/acs.orglett.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
A copper-mediated [3 + 2] cyclization of CF3-imidoyl sulfoxonium ylides and terminal alkynes has been demonstrated. This work provides a practical approach for assembling 5-trifluoromethylpyrroles with the merits of a broad substrate scope, good functional tolerance, and mild reaction conditions. Control experiments and DFT studies indicate that this reaction may involve the addition of π-bonds of terminal alkynes by copper-carbene radicals and hydrogen migration.
Collapse
Affiliation(s)
- E Mi
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Li Zhou
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Yixin Tong
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Xiaodong Qiu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Jinlong Li
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Biao Xiong
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| |
Collapse
|
9
|
Wang N, Huang Y, Zi Y, Wang M, Huang W. P(NMe 2) 3-Mediated Regioselective N-Alkylation of 2-Pyridones via Direct Deoxygenation of α-Keto Esters. J Org Chem 2024; 89:3657-3665. [PMID: 38366991 DOI: 10.1021/acs.joc.3c02819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
A practical and regioselective direct N-alkylation of 2-pyridones is enabled by use of α-keto esters in the P(NMe2)3-mediated deoxygenation process. The reaction proceeds under mild conditions to produce N-alkylated 2-pyridones with high selectivity and generality, and the protocol is shown to be applicable for the scale-up synthesis, which makes it promising for practical applications.
Collapse
Affiliation(s)
- Nan Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Yuanyuan Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| |
Collapse
|
10
|
Escolano M, Gaviña D, Alzuet-Piña G, Díaz-Oltra S, Sánchez-Roselló M, Pozo CD. Recent Strategies in the Nucleophilic Dearomatization of Pyridines, Quinolines, and Isoquinolines. Chem Rev 2024; 124:1122-1246. [PMID: 38166390 PMCID: PMC10902862 DOI: 10.1021/acs.chemrev.3c00625] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Dearomatization reactions have become fundamental chemical transformations in organic synthesis since they allow for the generation of three-dimensional complexity from two-dimensional precursors, bridging arene feedstocks with alicyclic structures. When those processes are applied to pyridines, quinolines, and isoquinolines, partially or fully saturated nitrogen heterocycles are formed, which are among the most significant structural components of pharmaceuticals and natural products. The inherent challenge of those transformations lies in the low reactivity of heteroaromatic substrates, which makes the dearomatization process thermodynamically unfavorable. Usually, connecting the dearomatization event to the irreversible formation of a strong C-C, C-H, or C-heteroatom bond compensates the energy required to disrupt the aromaticity. This aromaticity breakup normally results in a 1,2- or 1,4-functionalization of the heterocycle. Moreover, the combination of these dearomatization processes with subsequent transformations in tandem or stepwise protocols allows for multiple heterocycle functionalizations, giving access to complex molecular skeletons. The aim of this review, which covers the period from 2016 to 2022, is to update the state of the art of nucleophilic dearomatizations of pyridines, quinolines, and isoquinolines, showing the extraordinary ability of the dearomative methodology in organic synthesis and indicating their limitations and future trends.
Collapse
Affiliation(s)
- Marcos Escolano
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Daniel Gaviña
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Gloria Alzuet-Piña
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Santiago Díaz-Oltra
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - María Sánchez-Roselló
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Carlos Del Pozo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
11
|
Peng Q, Huang M, Xu G, Zhu Y, Shao Y, Tang S, Zhang X, Sun J. Asymmetric N-Alkylation of 1H-Indoles via Carbene Insertion Reaction. Angew Chem Int Ed Engl 2023; 62:e202313091. [PMID: 37819054 DOI: 10.1002/anie.202313091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
An intermolecular enantioselective N-alkylation reaction of 1H-indoles has been developed by cooperative rhodium and chiral phosphoric acid catalyzed N-H bond insertion reaction. N-Alkyl indoles with newly formed stereocenter adjacent to the indole nitrogen atom are produced in good yields (up to 95 %) with excellent enantioselectivities (up to >99 % ee). Importantly, both α-aryl and α-alkyl diazoacetates are tolerated, which is extremely rare in asymmetric X-H (X=N, O, S et al.) and C-H insertion reactions. With this method, only 0.1 mol % of rhodium catalyst and 2.5 mol % of chiral phosphoric acid are required to complete the conversion as well as achieve the high enantioselectivity. Computational studies reveal the cooperative relay of rhodium and chiral phosphoric acid, and the origin of the chemo and stereoselectivity.
Collapse
Affiliation(s)
- Quanxin Peng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Meirong Huang
- Shenzhen Bay Laboratory, Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Guangyang Xu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Yan Zhu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| | - Xinhao Zhang
- Shenzhen Bay Laboratory, Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, 518055, Shenzhen, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, 1 Gehu Road, 213164, Changzhou, China
| |
Collapse
|
12
|
Yang Q, Bai J, Yang H, Yao Y, Yao Y, Sun J, Sun S. [Cp*IrCl 2] 2-Catalyzed Amidocarbonation of Olefins with Sulfoxonium Ylides toward Functionalized Isoindolin-1-ones. Org Lett 2023; 25:7148-7153. [PMID: 37751295 DOI: 10.1021/acs.orglett.3c02654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
A [Cp*IrCl2]2-catalyzed amidocarbonation of olefins with sulfoxonium ylides has been developed to generate diverse biologically important isoindolin-1-ones in high efficiency under mild reaction conditions. Mechanism studies indicated that this cascade reaction was triggered by amino-iridation of the olefin unit to generate iridacycle, followed by formal migratory insertion with sulfoxonium ylides. This newly developed method features broad substrate scopes and operational simplicity.
Collapse
Affiliation(s)
- Qi Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Junxue Bai
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Han Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Yang Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Yingming Yao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Scince, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
- Department of Chemistry, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, People's Republic of China
| | - Song Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| |
Collapse
|
13
|
Chen SY, Zeng YF, Zou WX, Shen DT, Zheng YC, Song JL, Zhang SS. Divergent Synthesis of Tetrasubstituted Phenols via [3 + 3] Cycloaddition Reaction of Vinyl Sulfoxonnium Ylides with Cyclopropenones. Org Lett 2023; 25:4286-4291. [PMID: 37265108 DOI: 10.1021/acs.orglett.3c01327] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Two categories of tetrasubstituted phenols were prepared via the cycloaddition reaction of vinyl sulfoxonnium ylides with cyclopropenones in a switchable manner. Copper carbenoid was proposed as the active intermediate in the process of 2,3,4,5-tetrasubstituted phenols formation, while 2,3,5,6-tetrasubstituted phenols were generated via the direct [3 + 3] annulation of vinyl sulfoxonnium ylides with cyclopropenones under metal-free conditions. Further synthetic applications were also demonstrated.
Collapse
Affiliation(s)
- Shao-Yong Chen
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wen-Xuan Zou
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Dan-Ting Shen
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yi-Chuan Zheng
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Jia-Lin Song
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| |
Collapse
|
14
|
He C, Tang Y, Tang S, Sun J. Iridium-Catalyzed Diastereo- and Enantioselective [4 + 1] Cycloaddition of Hydroxyallyl Anilines with Sulfoxonium Ylides. Org Lett 2023. [PMID: 37319271 DOI: 10.1021/acs.orglett.3c01217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We present here an iridium-catalyzed diastereo- and enantioselective [4 + 1] cycloaddition reaction of hydroxyallyl anilines with sulfoxonium ylides under mild reaction conditions, leading to 3-vinyl indolines in moderate to good yields with excellent enantioselectivities. Control experiments disclosed a plausible reaction mechanism.
Collapse
Affiliation(s)
- Chunlan He
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yaping Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
15
|
Pan S, Kundu S, Samanta R. Rh(II)-Catalyzed Synthesis of N-Aryl 2-pyridone Using 2-Oxypyridine and Diazonaphthoquinone Via 1,6-Benzoyl Migratory Rearrangement. Org Lett 2023; 25:2873-2877. [PMID: 37052408 DOI: 10.1021/acs.orglett.3c00854] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
A Rh(II)-catalyzed simple and efficient synthesis of N-arylated 2-pyridone derivatives is described using 2-oxypyridine and diazonaphthoquinone as coupling partners. The reaction proceeds through the insertion of the nitrogen atom of the 2-oxypyridine derivative into quinoid carbene and subsequent 1,6-benzoyl migratory rearrangement. The reaction is broadened with sufficient scope and has the potential to offer axially chiral N-arylated 2-pyridone derivatives under suitable asymmetric conditions.
Collapse
Affiliation(s)
- Subarna Pan
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suparna Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
16
|
Changmai S, Gogoi T, Phukon J, Das B, Gogoi S. Ru(II)-catalyzed oxidative coupling of sulfoxonium ylides with amines: efficient synthesis of α-ketoamides and indolo[2,1- a]isoquinolines. Org Biomol Chem 2023; 21:3235-3244. [PMID: 36994697 DOI: 10.1039/d3ob00187c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The first use of sulfoxonium ylides for the synthesis of α-ketoamides is described via a Ru(II)-catalyzed amidation reaction with amines. The same Ru(II)-catalyzed reaction of sulfoxonium ylides with 2-phenylindoles provided indolo[2,1-a]isoquinolines instead of α-ketoamides.
Collapse
Affiliation(s)
- Sumi Changmai
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Tribeni Gogoi
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Jyotshna Phukon
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Bipul Das
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| | - Sanjib Gogoi
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
17
|
Su J, Yan Z, Sun J. Rhodium-Catalyzed N-Arylation of 2-Pyridones Enabled by 1,6-Acyl Migratory Rearrangement of 2-Oxypyridines. Org Lett 2023; 25:1974-1977. [PMID: 36920185 DOI: 10.1021/acs.orglett.3c00519] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
An efficient rhodium-catalyzed dearomative rearrangement of 2-oxypyridines with quinone diazides has been developed for the direct synthesis of N-arylated pyridones, in which a novel 1,6-O-to-O rather than 1,4-O-to-C acyl rearrangement has been achieved under mild reaction conditions.
Collapse
Affiliation(s)
- Jiahui Su
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zichun Yan
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
18
|
Li SW, Wang G, Ye ZS. Difluorocarbene Enabled Ester Insertion/1,4-Acyl Rearrangement of 2-Acetoxylpyridines: Modular Access to gem-Difluoromethylenated 2-Pyridones. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
19
|
Phukon J, Bhorali P, Changmai S, Gogoi S. Hydroxyl-Directed Ru(II)-Catalyzed Synthesis of Fused Dihydrofurans Using 1,4-Dioxane and Sulfoxonium Ylides as Annulating Agents. Org Lett 2023; 25:215-219. [PMID: 36594667 DOI: 10.1021/acs.orglett.2c04068] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An unprecedented annulation reaction is developed for the synthesis of dihydrofuran-fused compounds. In this Ru-catalyzed hydroxyl-group-directed reaction, easily affordable sulfoxonium ylides and 1,4-dioxane were used as the annulating partners. This is the first example of the use of 1,4-dioxane as a methylene source to construct a heterocyclic scaffold. A wide range of dihydrofuran0fused coumarins and naphthalenes were synthesized using this three-component reaction.
Collapse
Affiliation(s)
- Jyotshna Phukon
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pratiksha Bhorali
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumi Changmai
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanjib Gogoi
- Applied Organic Chemistry, Chemical Sciences & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
20
|
Cui H, Ban C, Zhu F, Yuan J, Du J, Huang Y, Xiao Q, Huang C, Huang J, Zhu Q. Difluorocarbene-Triggered Acyl Rearrangement Reaction: A Strategy for the Direct Introduction of the gem-Difluoromethylene Group. Org Lett 2023; 25:99-103. [PMID: 36546836 DOI: 10.1021/acs.orglett.2c03907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A novel metal- and catalyst-free dearomative reaction of 2-oxypyridines to construct gem-difluoromethylenated N-substituted 2-pyridones has been developed. The reaction involves an attractive acyl rearrangement from O to CF2 of difluorocarbene-derived pyridinium ylides, which provides a new strategy for the direct introduction of the gem-difluoromethylene group with high efficiency and selectivity as well as broad substrate scope. Gram-scale synthesis and synthetic transformations have also been demonstrated.
Collapse
Affiliation(s)
- Haitao Cui
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, Guangxi 530100, People's Republic of China
| | - Caijin Ban
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, Guangxi 530100, People's Republic of China
| | - Fengting Zhu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, Guangxi 530100, People's Republic of China
| | - Jingmei Yuan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, Guangxi 530100, People's Republic of China
| | - Juan Du
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, Guangxi 530100, People's Republic of China
| | - Yanmin Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, Guangxi 530100, People's Republic of China
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, Guangxi 530100, People's Republic of China
| | - Chusheng Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, Guangxi 530100, People's Republic of China
| | - Jun Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, Guangxi 530100, People's Republic of China
| | - Qiang Zhu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning, Guangxi 530100, People's Republic of China.,State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, People's Republic of China
| |
Collapse
|
21
|
Zhang FR, Cao F, Liu K, He YP, Luo G, Ye ZS. Bifunctional Lewis Base Catalyzed Asymmetric N-Allylic Alkylation of 2-Hydroxypyridines. Org Lett 2022; 24:8603-8608. [DOI: 10.1021/acs.orglett.2c03207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Fei-Ruo Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| | - Fanshu Cao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Kui Liu
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| | - Yi-Ping He
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Zhi-Shi Ye
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P.R. China
| |
Collapse
|
22
|
Synthesis of I (III)/S (VI) reagents and their reactivity in photochemical cycloaddition reactions with unsaturated bonds. Nat Commun 2022; 13:6588. [PMID: 36329065 PMCID: PMC9633813 DOI: 10.1038/s41467-022-34401-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
The development of novel methodologies for the introduction of the sulfoxonium group under mild conditions is appealing but remains underexplored. Herein we report the synthesis of a class of hypervalent iodine reagents with a transferrable sulfoxonium group. These compounds enable mixed iodonium-sulfoxonium ylide reactivity. These well-defined reagents are examined in visible-light-promoted cyclization reactions with a wide range of unsaturated bonds including alkenes, alkynes, nitriles, and allenes. Two distinct cyclization pathways are identified, which are controlled by the substituent of the unsaturated bond. The cycloaddition protocol features simple operation, mild reaction conditions, and excellent functional group tolerance, affording a broad range of sulfoxonium-containing cyclic structures in moderate to excellent yields. Furthermore, the sufoxonium group in the product can be transformed into diverse functional groups and structural motifs via single electron transfer and transition-metal catalysis.
Collapse
|
23
|
Echemendía R, de Oliveira KT, Burtoloso ACB. Visible-Light-Promoted Synthesis of 1,3-Dicarbonyl Sulfoxonium Ylides. Org Lett 2022; 24:6386-6390. [PMID: 36017970 DOI: 10.1021/acs.orglett.2c02346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A novel visible-light-promoted coupling of diazoketones with sulfoxonium ylides, employing a violet light-emitting diode, is described under both batch and continuous flow conditions. This transformation permits the direct synthesis of synthetically useful 1,3-dicarbonyl sulfoxonium ylides (33 examples, 21-85% yields), by means of an acylation from the in situ and selective generation of ketenes. The reaction performed under flow conditions proved to be very efficient, providing the 1,3-dicarbonyl sulfoxonium ylides with higher yields and shorter reaction times.
Collapse
Affiliation(s)
- Radell Echemendía
- Institute of Chemistry of São Carlos, University of São Paulo, CEP, 13560-970 São Carlos, SP, Brazil
| | - Kleber T de Oliveira
- Department of Chemistry, Federal University of São Carlos, Campus São Carlos, 13565-905 São Carlos, SP, Brazil
| | - Antonio C B Burtoloso
- Institute of Chemistry of São Carlos, University of São Paulo, CEP, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
24
|
Chen G, Cai X, Zhang X, Fan X. Condition-Dependent Selective Synthesis of Indolo[1,2- c]quinazolines and Indolo[3,2- c]quinolines from 2-(1 H-Indol-2-yl)anilines and Sulfoxonium Ylides. J Org Chem 2022; 87:9815-9828. [PMID: 35839292 DOI: 10.1021/acs.joc.2c00858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper, a selective synthesis of indolo[1,2-c]quinazolines and indolo[3,2-c]quinolines through the cascade reactions of 2-(1H-indol-2-yl)anilines with sulfoxonium ylides is presented. The formation of products involves the generation of a carbene species from sulfoxonium ylide and its N-H bond insertion reaction with 2-(1H-indol-2-yl)aniline followed by deoxygenative imine formation, intramolecular N- or C- nucleophilic addition and deoxygenative aromatization. This switchable synthesis was condition-dependent. In the presence of K2CO3 in CH3CN, the reaction mainly furnished indolo[1,2-c]quinazolines. In the presence of HOAc in dioxane, it selectively afforded indolo[3,2-c]quinolines. In addition, direct C-H/N-H functionalization of the products obtained provides a convenient and direct access to polycyclic heteroaromatic compounds. These novel protocols have advantages such as readily accessible substrates, easily tunable selectivity, good compatibility with diverse functional groups, and the use of air as a cost-free and sustainable oxidant.
Collapse
Affiliation(s)
- Guang Chen
- School of Environment, School of Chemistry and Chemical Engineering, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinyuan Cai
- School of Environment, School of Chemistry and Chemical Engineering, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- School of Environment, School of Chemistry and Chemical Engineering, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- School of Environment, School of Chemistry and Chemical Engineering, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
25
|
Bhorali P, Sultana S, Gogoi S. Recent Advances in Metal‐Catalyzed C−H Bond Functionalization Reactions of Sulfoxonium Ylides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pratiksha Bhorali
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sabera Sultana
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
| | - Sanjib Gogoi
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
26
|
Jardim GAM, de Carvalho RL, Nunes MP, Machado LA, Almeida LD, Bahou KA, Bower JF, da Silva Júnior EN. Looking deep into C-H functionalization: the synthesis and application of cyclopentadienyl and related metal catalysts. Chem Commun (Camb) 2022; 58:3101-3121. [PMID: 35195128 DOI: 10.1039/d1cc07040a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Metal catalyzed C-H functionalization offers a versatile platform for methodology development and a wide variety of reactions now exist for the chemo- and site-selective functionalization of organic molecules. Cyclopentadienyl-metal (CpM) complexes of transition metals and their correlative analogues have found widespread application in this area, and herein we highlight several key applications of commonly used transition-metal Cp-type catalysts. In addition, an understanding of transition metal Cp-type catalyst synthesis is important, particularly where modifications to the catalyst structure are required for different applications, and a summary of this aspect is given.
Collapse
Affiliation(s)
- Guilherme A M Jardim
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil. .,Centre for Excellence for Research in Sustainable Chemistry (CERSusChem), Department of Chemistry, Federal University of São Carlos, UFSCar, 13565-905, Brazil
| | - Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Mateus P Nunes
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Luana A Machado
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil. .,Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Leandro D Almeida
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| | - Karim A Bahou
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - John F Bower
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais - UFMG, Belo Horizonte, 31270-901, MG, Brazil.
| |
Collapse
|
27
|
Su J, Li Q, Shao Y, Sun J. Catalytic Transformations of 2-Pyridones by Rhodium-Mediated Carbene Transfer. Org Lett 2022; 24:1637-1641. [PMID: 35191701 DOI: 10.1021/acs.orglett.2c00151] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An enantioselective cyclopropanation reaction of N-substituted 2-pyridones with diazo compounds has been realized by using a chiral rhodium complex as the catalyst, and the corresponding chiral cyclopropanes could be formed in good yields with high enantioselectivities. Moreover, using acceptor-acceptor dimethyl 2-diazomalonate as the carbene precursor, a novel 1,4-rearrangement of a Boc group from N to C has also been discovered under rhodium catalysis.
Collapse
Affiliation(s)
- Jiahui Su
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Qiongya Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
28
|
Pan M, Tong Y, Qiu X, Zeng X, Xiong B. One-pot synthesis of 3-trifluoromethylbenzo[ b][1,4]oxazines from CF 3-imidoyl sulfoxonium ylides with 2-bromophenols. Chem Commun (Camb) 2022; 58:12443-12446. [DOI: 10.1039/d2cc04863a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A one-pot two-step fashion for the synthesis of 3-trifluoromethyl-1,4-benzoxazines from CF3-imidoyl sulfoxonium ylides and 2-bromophenols via lithium-bromide-promoted O–H insertion of sulfoxonium ylides and annulation has been demonstrated.
Collapse
Affiliation(s)
- Mingshi Pan
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Yixin Tong
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Xiaodong Qiu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Xiaobao Zeng
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| | - Biao Xiong
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province, 226001, China
| |
Collapse
|
29
|
Cui H, Xu G, Zhu J, Sun J. Rhodium-Catalyzed Dearomative Rearrangement of 2-Oxypyridines with Cyclopropenes: Access to N-Alkylated 2-Pyridones. Org Chem Front 2022. [DOI: 10.1039/d1qo01937f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rhodium-catalyzed dearomative O-to-N rearrangement reaction of 2-oxypyridines has been developed by using cyclopropenes as the carbene precursors. This protocol features broad substrate scope and mild reaction conditions, providing a...
Collapse
|
30
|
Zhang J, Zhang C, Zheng Z, Zhou P, Liu W. Research Progress of Sulfoxonium Ylides in the Construction of Five/Six-Membered Nitrogen-Containing Heterocycles. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Leveille AN, Echemendía R, Mattson AE, Burtoloso ACB. Enantioselective Indole Insertion Reactions of α-Carbonyl Sulfoxonium Ylides. Org Lett 2021; 23:9446-9450. [PMID: 34854689 DOI: 10.1021/acs.orglett.1c03627] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first example of organocatalytic enantioselective C-H insertion reactions of indoles and sulfoxonium ylides is reported. Under the influence of phosphoric acid catalysis, levels of enantiocontrol in the range of 20-93% ee and moderate yields (up to 50%) were achieved for 29 examples in formal C-H insertion reactions of free indoles and α-carbonyl sulfoxonium ylides. No nitrogen protection on the indole is necessary.
Collapse
Affiliation(s)
- Alexandria N Leveille
- Department Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Radell Echemendía
- Institute of Chemistry of São Carlos, University of São Paulo, CEP 13560-970 São Carlos, São Paulo, Brazil
| | - Anita E Mattson
- Department Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Antonio C B Burtoloso
- Institute of Chemistry of São Carlos, University of São Paulo, CEP 13560-970 São Carlos, São Paulo, Brazil
| |
Collapse
|
32
|
Shivers GN, Pigge FC. A Mild and Highly Diastereoselective Preparation of N-Alkenyl-2-Pyridones via 2-Halopyridinium Salts and Aldehydes. J Org Chem 2021; 86:13134-13142. [PMID: 34464531 PMCID: PMC8453634 DOI: 10.1021/acs.joc.1c01566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
An experimentally
simple one-pot preparation of N-alkenyl-2-pyridones
is reported. The reaction features mild conditions
using readily available 2-halopyridinium salts and aldehydes. N-Alkenyl-2-pyridone formation proceeds with high diastereoselectivity,
and a wide range of aldehyde reaction partners is tolerated. Pyridone
products are also amenable to further manipulation, including conversion
to N-alkyl pyridones and polycyclic ring systems.
Collapse
Affiliation(s)
- Grant N Shivers
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - F Christopher Pigge
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
33
|
Zhang X, Zhang Y, Liang C, Jiang J. Copper-catalyzed P-H insertion reactions of sulfoxonium ylides. Org Biomol Chem 2021; 19:5767-5771. [PMID: 34137421 DOI: 10.1039/d1ob00948f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A copper-catalyzed P-H insertion reaction between sulfoxonium ylides and H-phosphorus oxides has been demonstrated, furnishing α-phosphonyl carboxylate derivatives in 41-93% yields. This methodology utilizing bench-stable and thermodynamically stable sulfoxonium ylides as carbene precursors in the presence of the inexpensive and readily available copper catalyst shows advantages such as mild reaction conditions, good functional group compatibility, and easy scale-up, which make this protocol attractive for large-scale chemical processing and processing at the industrial scale.
Collapse
Affiliation(s)
- Xinzhi Zhang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.
| | - Yangyang Zhang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.
| | - Cuijian Liang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.
| | - Jun Jiang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China. and Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|