1
|
Fang X, Hu X, Li QX, Ni SF, Ruan Z. Paired Electro-Synthesis of Remote Amino Alcohols with/in H 2O. Angew Chem Int Ed Engl 2024:e202418277. [PMID: 39535322 DOI: 10.1002/anie.202418277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/16/2024]
Abstract
Amino alcohols, particularly remote amino alcohols and peptide alcohols, are valuable due to their functional diversity in biologically active compounds. However, traditional synthesis methods face significant challenges, making electrochemistry an attractive alternative. We have developed a mild and biocompatible sequential paired electrolysis strategy, leveraging copper-electrocatalysis to synthesize diverse remote amino alcohols, including unnatural peptide alcohols. Both experimental results and density functional theory (DFT) calculations demonstrated that water serves as both the hydroxyl source and the solvent, facilitating the generation of CuH with Cu(I) at the cathode, which in turn reduces the aldehyde intermediates formed during the reaction.
Collapse
Affiliation(s)
- Xinyue Fang
- Guangzhou Municipal, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Xinwei Hu
- Guangzhou Municipal, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Quan-Xin Li
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, 515063, Guangdong, P. R. China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong, Shantou University, Shantou, 515063, Guangdong, P. R. China
| | - Zhixiong Ruan
- Guangzhou Municipal, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
2
|
Mondal S, Mandal S, Mondal S, Midya SP, Ghosh P. Photocatalytic decarboxylation of free carboxylic acids and their functionalization. Chem Commun (Camb) 2024; 60:9645-9658. [PMID: 39120531 DOI: 10.1039/d4cc03189j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Visible light mediated decarboxylative functionalization of carboxylic acids and their derivatives has recently emerged as a novel and powerful toolkit for small molecule activation in diverse carbon-carbon and carbon-hetero bond forming reactions. Naturally abundant highly functionalized bench-stable carboxylic acid analogs have been employed as promising alternatives to non-trivial organometallic reagents for mild and eco-benign synthetic transformation with traceless CO2 by-products. In this highlight article, we focus on the development of various photodecarboxylative functionalization strategies along with intra/inter-molecular cyclization via concerted single electron transfer (SET) or energy transfer (ET) pathways. Moreover, widely explored carboxylic acids are systematically classified here into four categories; i.e., α-keto, aliphatic, α,β-unsaturated, and aromatic analogs for a concise overview to the readership. The association of decarboxylative radical species with coupling partners to construct C-C and C-N/O/S/P/X bonds for each analogous acid has been presented in brief.
Collapse
Affiliation(s)
- Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Subham Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Soumya Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Siba P Midya
- Department of Chemistry, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
3
|
Laskar R, Dutta S, Spies JC, Mukherjee P, Rentería-Gómez Á, Thielemann RE, Daniliuc CG, Gutierrez O, Glorius F. γ-Amino Alcohols via Energy Transfer Enabled Brook Rearrangement. J Am Chem Soc 2024; 146:10899-10907. [PMID: 38569596 PMCID: PMC11027157 DOI: 10.1021/jacs.4c01667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
In the long-standing quest to synthesize fundamental building blocks with key functional group motifs, photochemistry in the recent past has comprehensively established its attractiveness. Amino alcohols are not only functionally diverse but are ubiquitous in the biologically active realm of compounds. We developed bench-stable bifunctional reagents that could then access the sparsely reported γ-amino alcohols directly from feedstock alkenes through energy transfer (EnT) photocatalysis. A designed 1,3-linkage across alkenes is made possible by the intervention of a radical Brook rearrangement that takes place downstream to the EnT-mediated homolysis of our reagent(s). A combination of experimental mechanistic investigations and detailed computational studies (DFT) indicates a radical chain propagated reaction pathway.
Collapse
Affiliation(s)
- Ranjini Laskar
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Subhabrata Dutta
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Jan C. Spies
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Poulami Mukherjee
- Department
of Chemistry, Texas A&M University, 77843 College Station, Texas, United States
| | - Ángel Rentería-Gómez
- Department
of Chemistry, Texas A&M University, 77843 College Station, Texas, United States
| | - Rebecca E. Thielemann
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| | - Osvaldo Gutierrez
- Department
of Chemistry, Texas A&M University, 77843 College Station, Texas, United States
| | - Frank Glorius
- Organisch-Chemisches
Institut, University of Münster, Corrensstrasse 36, 48149 Münster, Germany
| |
Collapse
|
4
|
Wang A, Yin YY, Rukhsana, Wang LQ, Jin JH, Shen YM. Visible-Light-Mediated Three-Component Decarboxylative Coupling Reactions to Synthesize 1,4-Diol Monoethers. J Org Chem 2023; 88:13871-13882. [PMID: 37683099 DOI: 10.1021/acs.joc.3c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
An efficient approach for 1,2-difunctionalization of aromatic olefins and the synthesis of functionalized 1,4-diols monoethers has been established via a photoinduced three-component reaction of an α-alkoxycarboxylic acid, an aromatic olefin, and an aldehyde. The reaction proceeds by photoinduced oxidative decarboxylation of the carboxylic acid followed by the addition of the α-alkoxyalkyl radical to the olefin, one-electron reduction of the addition radical, and the nucleophilic attack of the resulting carbanion to the aldehyde. Besides the convenient one-pot protocol of the three-component reaction, this method offers several other advantages, including good functional group tolerance for the three substrates, gentle reaction conditions, and ease of scaling up. The reaction mechanism has been investigated through free radical trapping experiment and isotope labeling experiments.
Collapse
Affiliation(s)
- Ai Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yu-Yun Yin
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P.R. China
| | - Rukhsana
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Le-Quan Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Jia-Hui Jin
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yong-Miao Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P.R. China
| |
Collapse
|
5
|
Venditto NJ, Boerth JA. Photoredox-Catalyzed Multicomponent Synthesis of Functionalized γ-Amino Butyric Acids via Reductive Radical Polar Crossover. Org Lett 2023; 25:3429-3434. [PMID: 37163325 DOI: 10.1021/acs.orglett.3c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Multicomponent radical polar crossover (RPC) reactions are useful for leveraging both radical and polar bond-forming steps to rapidly build molecular complexity in a single transformation. However, multicomponent RPC reactions that utilize carbonyl π-bond electrophiles are underrepresented in the literature. Herein, we describe a mild, photoredox-catalyzed decarboxylative multicomponent RPC reaction that couples carboxylic acids, Michael acceptors, and carbonyl electrophiles for the formation of diversely functionalized γ-amino butyric acid derivatives. This transformation also facilitates the synthesis of complex and biologically relevant γ-lactam compounds.
Collapse
Affiliation(s)
- Nicholas J Venditto
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Jeffrey A Boerth
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| |
Collapse
|
6
|
Lin Z, Zhai DH, Sun YM, Zheng HX, Li Q, Wang YL, Wen JH, Zhao CQ. Tandem addition of nucleophilic and electrophilic reagents to vinyl phosphinates: the stereoselective formation of organophosphorus compounds with congested tertiary carbons. RSC Adv 2023; 13:14060-14064. [PMID: 37179997 PMCID: PMC10167796 DOI: 10.1039/d3ra02409a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Carbon anions formed via the addition of Grignard reagents to SP-vinyl phosphinates were modified with electrophilic reagents to afford organophosphorus compounds with diverse carbon skeletons. The electrophiles included acids, aldehydes, epoxy groups, chalcogens and alkyl halides. When alkyl halides were used, bis-alkylated products were afforded. Substitution reactions or polymerization occurred when the reaction was applied to vinyl phosphine oxides.
Collapse
Affiliation(s)
- Zhu Lin
- College of Chemistry and Chemical Engineering, Liaocheng University No. 1, Hunan Road Liaocheng Shandong 252059 China
| | - De-Hua Zhai
- College of Chemistry and Chemical Engineering, Liaocheng University No. 1, Hunan Road Liaocheng Shandong 252059 China
| | - Yong-Ming Sun
- College of Chemistry and Chemical Engineering, Liaocheng University No. 1, Hunan Road Liaocheng Shandong 252059 China
| | - Hong-Xing Zheng
- College of Chemistry and Chemical Engineering, Liaocheng University No. 1, Hunan Road Liaocheng Shandong 252059 China
| | - Qiang Li
- College of Chemistry and Chemical Engineering, Liaocheng University No. 1, Hunan Road Liaocheng Shandong 252059 China
| | - Yan-Lan Wang
- College of Chemistry and Chemical Engineering, Liaocheng University No. 1, Hunan Road Liaocheng Shandong 252059 China
| | - Jing-Hong Wen
- College of Chemistry and Chemical Engineering, Liaocheng University No. 1, Hunan Road Liaocheng Shandong 252059 China
| | - Chang-Qiu Zhao
- College of Chemistry and Chemical Engineering, Liaocheng University No. 1, Hunan Road Liaocheng Shandong 252059 China
| |
Collapse
|
7
|
Yin YY, Liu XR, Jin JH, Li ZM, Shen YM, Zhou J, Peng X. Visible-light induced three-component reaction for α-aminobutyronitrile synthesis by C-C bond formation using quantum dots as photocatalysts. Org Biomol Chem 2023; 21:359-364. [PMID: 36503936 DOI: 10.1039/d2ob01797k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We describe a three-component reaction of malononitrile, benzaldehyde and N,N-dimethylaniline using aluminium doped CdSeS/CdZnSeS(Al)/ZnS quantum dots (QDs) as visible light catalysts to synthesize α-aminobutyrilitriles at room temperature and under mild conditions. The reactions exhibit high functional group tolerance, and the well dispersed quantum dot catalysts are highly efficient with a turnover number (TON) greater than 1.1 × 103 and can be recycled at least three times without significant loss of catalytic activity.
Collapse
Affiliation(s)
- Yu-Yun Yin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| | - Xiao-Rui Liu
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| | - Jia-Hui Jin
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| | - Zhi-Ming Li
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China.
| | - Yong-Miao Shen
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, PR China. .,Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310027, PR China
| | - Jianhai Zhou
- Najing Technology Corporation Ltd, 428 Qiuyi Road Building No. 3, Binjiang District, Hangzhou, Zhejiang, 310052, People's Republic of China.
| | - Xiaogang Peng
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310027, PR China
| |
Collapse
|
8
|
Sun W, Zou J, Xu X, Wang J, Liu M, Liu X. Photo‐Catalyzed Redox‐Neutral 1,2‐Dialkylation of Alkenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wen‐Hui Sun
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Jian‐Yu Zou
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Xiao‐Jing Xu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Jin‐Lin Wang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Mei‐Ling Liu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Xue‐Yuan Liu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
9
|
Wang Y, Liu R, Zhou P, Wu J, Li W, Wang C, Li H, Li D, Yang J. Visible Light‐Driven Base‐Promoted Radical Cascade Difluoroalkylization‐cyclization‐iodination of 1,6‐Enynes with Ethyl Difluoroiodoacetate. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan Wang
- Ningxia University School of chemistry and chemical Engineering 539 West Helan Mountains road, Xixia District, Yinchuan 750000 Yinchuan CHINA
| | - Ruyan Liu
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Pengsheng Zhou
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Jianglong Wu
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Wenshuang Li
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Chenyu Wang
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Hao Li
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Dianjun Li
- Ningxia University State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Jinhui Yang
- Ningxia University State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering China, Ning Xia, Yinchuan, Xixia District Ningxia University B 750021 Yinchuan CHINA
| |
Collapse
|
10
|
Lai H, Xu J, Lin J, Su B, Zha D. Chemo-selective control of Ritter-type reaction by coordinatively unsaturated inorganic salt hydrates. Org Chem Front 2022. [DOI: 10.1039/d1qo01832a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We used a readily available water source, MgSO4·2H2O, to realize the control of the chemo-selectivity of the Ritter-type reaction efficiently.
Collapse
Affiliation(s)
- Huifang Lai
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China
| | - Jiexin Xu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China
| | - Jin Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China
| | - Biling Su
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China
| | - Daijun Zha
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350004, Fujian Province, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, China
| |
Collapse
|
11
|
Hu J, Zhu Z, Xie Z, Le Z. Recent Advances in Visible-Light-Induced Decarboxylative Coupling Reactions of α-Amino Acid Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Zhou ZZ, Song XR, Du S, Xia KJ, Tian WF, Xiao Q, Liang YM. Photoredox/nickel dual-catalyzed regioselective alkylation of propargylic carbonates for trisubstituted allenes. Chem Commun (Camb) 2021; 57:9390-9393. [PMID: 34528958 DOI: 10.1039/d1cc03303d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, a highly regioselective alkylation of propargylic carbonates for trisubstituted allenes with alkyl 1,4-dihydropyridine derivatives (1,4-DHPs) is developed via a photoredox/nickel dual-catalyzed process, which represents the first direct approach to access alkylated allene products without alkyl organometallic reagents. This method features a broad substrate scope and mild conditions. A hypothetical mechanism with an alkyl radical and an allenyl Ni(III) species is proposed. Benzylation products were also obtained to be the complement building blocks for the potential synthesis of pharmaceuticals.
Collapse
Affiliation(s)
- Zhao-Zhao Zhou
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330000, P. R. China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Xian-Rong Song
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Sha Du
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Ke-Jian Xia
- College of Chemistry and Food Science, Nanchang Normal University, Nanchang, 330000, P. R. China.
| | - Wan-Fa Tian
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Qiang Xiao
- Institute of Organic Chemistry, Jiangxi Science & Technology Normal University, Key Laboratory of Organic Chemistry, Nanchang, 330000, Jiangxi Province, P. R. China.
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China.
| |
Collapse
|
13
|
Bryden MA, Zysman-Colman E. Organic thermally activated delayed fluorescence (TADF) compounds used in photocatalysis. Chem Soc Rev 2021; 50:7587-7680. [PMID: 34002736 DOI: 10.1039/d1cs00198a] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organic compounds that show Thermally Activated Delayed Fluorescence (TADF) have become wildly popular as next-generation emitters in organic light emitting diodes (OLEDs). Since 2016, a subset of these have found increasing use as photocatalysts. This review comprehensively highlights their potential by documenting the diversity of the reactions where an organic TADF photocatalyst can be used in lieu of a noble metal complex photocatalyst. Beyond the small number of TADF photocatalysts that have been used to date, the analysis conducted within this review reveals the wider potential of organic donor-acceptor TADF compounds as photocatalysts. A discussion of the benefits of compounds showing TADF for photocatalysis is presented, which paints a picture of a very promising future for organic photocatalyst development.
Collapse
Affiliation(s)
- Megan Amy Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK.
| |
Collapse
|