1
|
Huang ZC, Ruan ZL, Xu H, Dai HX. Ring expansion of 3-hydroxyoxindoles to 4-quinolones via palladium-catalyzed C-C(acyl) bond cleavage. Chem Commun (Camb) 2024; 61:109-112. [PMID: 39611758 DOI: 10.1039/d4cc05369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
We report herein the construction of 4-quinolones via palladium-catalyzed regioselective β-acyl elimination of 3-hydroxyoxindoles and a subsequent Camps cyclization process. This protocol is highly efficient and various 4-quinolone derivatives are obtained in high yields. The construction of the core skeleton of the 4-quinolone antibiotics demonstrated the synthetic utility of this method.
Collapse
Affiliation(s)
- Zhi-Cong Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Zhi-Ling Ruan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hui Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Hui-Xiong Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
2
|
Mou Q, Han T, Tian M, Liu M. Light-Driven Photocatalyst-Free Synthesis of β, δ-Functionalized Ketones from Aldehydes. J Org Chem 2024; 89:5189-5199. [PMID: 38511413 DOI: 10.1021/acs.joc.4c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The synthesis of ketones has been a long focus of chemistry research, on account of its unique reactivity. Herein, we report a simple light-driven photocatalyst-free synthesis of β, δ-functionalized ketones from aldehydes, using inexpensive and commercially abundant feedstock chemicals. This reaction is enabled by the direct acyl radical generation via hydrogen atom transfer and the subsequent radical addition process, avoiding the need for prefunctionalized substrates and organometallic reagent.
Collapse
Affiliation(s)
- Quansheng Mou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tongyu Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Miao Tian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mingxin Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
3
|
Wang ZY, Zhang X, Chen WQ, Sun GD, Wang X, Tan L, Xu H, Dai HX. Palladium-Catalyzed Deuteration of Arylketone Oxime Ethers. Angew Chem Int Ed Engl 2024; 63:e202319773. [PMID: 38279666 DOI: 10.1002/anie.202319773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/28/2024]
Abstract
We report herein the development of palladium-catalyzed deacylative deuteration of arylketone oxime ethers. This protocol features excellent functional group tolerance, heterocyclic compatibility, and high deuterium incorporation levels. Regioselective deuteration of some biologically important drugs and natural products are showcased via Friedel-Crafts acylation and subsequent deacylative deuteration. Vicinal meta-C-H bond functionalization (including fluorination, arylation, and alkylation) and para-C-H bond deuteration of electro-rich arenes are realized by using the ketone as both directing group and leaving group, which is distinct from aryl halide in conventional dehalogenative deuteration.
Collapse
Affiliation(s)
- Zhen-Yu Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xu Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Wen-Qing Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Guo-Dong Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lin Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Xiong Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou, 310024, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Liang YF, Bilal M, Tang LY, Wang TZ, Guan YQ, Cheng Z, Zhu M, Wei J, Jiao N. Carbon-Carbon Bond Cleavage for Late-Stage Functionalization. Chem Rev 2023; 123:12313-12370. [PMID: 37942891 DOI: 10.1021/acs.chemrev.3c00219] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Late-stage functionalization (LSF) introduces functional group or structural modification at the final stage of the synthesis of natural products, drugs, and complex compounds. It is anticipated that late-stage functionalization would improve drug discovery's effectiveness and efficiency and hasten the creation of various chemical libraries. Consequently, late-stage functionalization of natural products is a productive technique to produce natural product derivatives, which significantly impacts chemical biology and drug development. Carbon-carbon bonds make up the fundamental framework of organic molecules. Compared with the carbon-carbon bond construction, the carbon-carbon bond activation can directly enable molecular editing (deletion, insertion, or modification of atoms or groups of atoms) and provide a more efficient and accurate synthetic strategy. However, the efficient and selective activation of unstrained carbon-carbon bonds is still one of the most challenging projects in organic synthesis. This review encompasses the strategies employed in recent years for carbon-carbon bond cleavage by explicitly focusing on their applicability in late-stage functionalization. This review expands the current discourse on carbon-carbon bond cleavage in late-stage functionalization reactions by providing a comprehensive overview of the selective cleavage of various types of carbon-carbon bonds. This includes C-C(sp), C-C(sp2), and C-C(sp3) single bonds; carbon-carbon double bonds; and carbon-carbon triple bonds, with a focus on catalysis by transition metals or organocatalysts. Additionally, specific topics, such as ring-opening processes involving carbon-carbon bond cleavage in three-, four-, five-, and six-membered rings, are discussed, and exemplar applications of these techniques are showcased in the context of complex bioactive molecules or drug discovery. This review aims to shed light on recent advancements in the field and propose potential avenues for future research in the realm of late-stage carbon-carbon bond functionalization.
Collapse
Affiliation(s)
- Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Le-Yu Tang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Yard 28, Science Park Road, Changping District, Beijing 102206, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
5
|
Kocúrik M, Bartáček J, Drabina P, Váňa J, Svoboda J, Husáková L, Finger V, Hympánová M, Sedlák M. Immobilization of Trifluoromethyl-Substituted Pyridine-Oxazoline Ligand and Its Application in Asymmetric Continuous Flow Synthesis of Benzosultams. J Org Chem 2023; 88:15189-15197. [PMID: 37823216 PMCID: PMC10629231 DOI: 10.1021/acs.joc.3c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Indexed: 10/13/2023]
Abstract
This study presents an improved synthetic route to ligand (S)-4-(tert-butyl)-2-(5-(trifluoromethyl)pyridin-2-yl)-4,5-dihydrooxazole and its application as a highly active and enantioselective catalyst in the addition of arylboronic acids to cyclic N-sulfonylketimines. Immobilization of such a ligand was achieved using a commercially available starting material and a PS-PEG TentaGel S NH2 support, resulting in a stable heterogeneous catalyst. Although the anchored catalyst exhibited a slight reduction in enantioselectivity and a 4-fold decrease in reaction rate, it displayed remarkable stability, enabling 10 consecutive reaction cycles. Furthermore, the successful transition to a continuous flow system demonstrated even higher turnover numbers compared to batch arrangements. These findings provide valuable insights into the development of efficient flow reactors for continuous synthesis of benzosultams, further advancing the field of asymmetric catalysis.
Collapse
Affiliation(s)
- Martin Kocúrik
- Institute
of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| | - Jan Bartáček
- Institute
of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| | - Pavel Drabina
- Institute
of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| | - Jiří Váňa
- Institute
of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| | - Jan Svoboda
- Institute
of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| | - Lenka Husáková
- Department
of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| | - Vladimír Finger
- Faculty
of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203,
50005, Hradec Králové, CZ 500 05, Czech Republic
- Biomedical
Research Center, University Hospital Hradec Králové, Sokolská 581, Hradec Králové, CZ 500 05, Czech Republic
| | - Michaela Hympánová
- Biomedical
Research Center, University Hospital Hradec Králové, Sokolská 581, Hradec Králové, CZ 500 05, Czech Republic
- Faculty
of Military Health Sciences, University
of Defence, Trebešská
1575, Hradec Králové, CZ 500 01, Czech Republic
| | - Miloš Sedlák
- Institute
of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice, CZ 532 10, Czech Republic
| |
Collapse
|
6
|
Wang YX, Chen LP, Cao FD, Zhao B, Li ZP, Li XF, Huang LJ. A New Pathway for the Synthesis of Ketones from Aldehydes and Sulfonylhydrazones: Is Diazo the Key Intermediate? Chemistry 2023; 29:e202301569. [PMID: 37394679 DOI: 10.1002/chem.202301569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/04/2023]
Abstract
A new pathway via a cyclic intermediate for the synthesis of ketones from aldehydes and sulfonylhydrazone derivatives under basic conditions is proposed. Several control experiments were performed along with analysis of the mass spectra and in-situ IR spectra of the reaction mixture. Inspired by the new mechanism, an efficient and scalable method for homologation of aldehydes to ketones was developed. A wide variety of target ketones were obtained in yields of 42-95 % by simply heating the 3-(trifluoromethyl)benzene sulfonylhydrazones (3-(Tfsyl)hydrazone) for 2 h at 110 °C with aldehydes and with K2 CO3 and DMSO as base and solvent, respectively.
Collapse
Affiliation(s)
- Yue-Xing Wang
- State Key Laboratory Base for Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, P. R. China
| | - Li-Ping Chen
- State Key Laboratory Base for Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, P. R. China
| | - Feng-de Cao
- State Key Laboratory Base for Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, P. R. China
| | - Bin Zhao
- State Key Laboratory Base for Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, P. R. China
| | - Zhen-Peng Li
- State Key Laboratory Base for Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, P. R. China
| | - Xiu-Fen Li
- State Key Laboratory Base for Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, P. R. China
| | - Long-Jiang Huang
- State Key Laboratory Base for Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science and Technology, 266042, Qingdao, Shandong, P. R. China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050, Beijing, P. R. China
| |
Collapse
|
7
|
Li LJ, Wang X, Xu H, Dai HX. Construction of polysubstituted pentafulvenes via palladium-catalyzed deacetylation of enones. Chem Commun (Camb) 2023; 59:3269-3272. [PMID: 36820796 DOI: 10.1039/d2cc06644k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Herein, we report an efficient synthetic method for polysubstituted pentafulvenes via palladium-catalyzed deacetylative [2+2+1] annulation of enones with alkynes. Aryl-, alkenyl-, and alkyl-substituted α,β-enones were suitable substrates, affording the pentafulvene products in moderate to good yields. This protocol shows excellent compatibility with sensitive halides, free hydroxyl groups, and heterocycles. One-pot gram-scale synthesis and further applications in the late-stage modification of natural products demonstrate the synthetic utility of this method.
Collapse
Affiliation(s)
- Ling-Jun Li
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xing Wang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Hui Xu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Hui-Xiong Dai
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| |
Collapse
|
8
|
Fujimaki Y, Iwasawa N, Takaya J. Merging the Norrish type I reaction and transition metal catalysis: photo- and Rh-promoted borylation of C-C σ-bonds of aryl ketones. Chem Sci 2023; 14:1960-1965. [PMID: 36845921 PMCID: PMC9945184 DOI: 10.1039/d2sc06801j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
Synthesis of arylboronates via borylation of C-C σ-bonds of aryl ketones was achieved by the combined use of photoenergy and a Rh catalyst. The cooperative system enables α-cleavage of photoexcited ketones to generate aroyl radicals via the Norrish type I reaction, which are successively decarbonylated and borylated with the rhodium catalyst. This work establishes a new catalytic cycle merging the Norrish type I reaction and Rh catalysis and demonstrates the new synthetic utility of aryl ketones as aryl sources for intermolecular arylation reactions.
Collapse
Affiliation(s)
- Yuki Fujimaki
- Department of Chemistry, Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Nobuharu Iwasawa
- Department of Chemistry, Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Jun Takaya
- Department of Chemistry, Tokyo Institute of Technology O-okayama, Meguro-ku Tokyo 152-8551 Japan
| |
Collapse
|
9
|
Yang Z, Liu C, Lei J, Zhou Y, Gao X, Li Y. Rh(III)-catalyzed C-H/C-C bond annulation of enaminones with iodonium ylides to form isocoumarins. Chem Commun (Camb) 2022; 58:13483-13486. [PMID: 36383089 DOI: 10.1039/d2cc05899e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A straightforward approach to synthesise isocoumarins via Rh(III)-catalyzed C-H/C-C bond activation/annulation cascade of enaminones and iodonium ylides has been explored. The established protocol is characterized by an exceedingly simple reaction system, high regioselectivity and good functional group tolerance. Moreover, this strategy may provide a new route to cleavage of the C(sp2)-C(O) bond of unstrained ketones.
Collapse
Affiliation(s)
- Zi Yang
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Chaoshui Liu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, P. R. China
| | - Jieni Lei
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Yi Zhou
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Xiaohui Gao
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| | - Yaqian Li
- Academician Workstation, Changsha Medical University, Changsha 410219, P. R. China.
| |
Collapse
|
10
|
Wang X, Wang ZY, Zhang X, Xu H, Dai HX. Construction of C(sp 2)-Si Bonds via Ligand-Promoted C-C Bonds Cleavage of Unstrained Ketones. Org Lett 2022; 24:7344-7349. [PMID: 36178792 DOI: 10.1021/acs.orglett.2c02841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report an efficient palladium-catalyzed silylation of aryl and alkenyl ketones via C-C bond cleavage and C-Si bond formation. This protocol features high efficiency and broad substrate scope. Further applications in the late-stage diversification of biologically important molecules demonstrate the synthetic utility of this method.
Collapse
Affiliation(s)
- Xing Wang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhen-Yu Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xu Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hui Xu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui-Xiong Dai
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| |
Collapse
|
11
|
Wang X, Li LJ, Wang ZY, Xu H, Dai HX. Homologation of aryl ketones to long-chain ketones and aldehydes via C-C bond cleavage. iScience 2022; 25:104505. [PMID: 35720269 PMCID: PMC9204744 DOI: 10.1016/j.isci.2022.104505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/26/2022] [Accepted: 05/27/2022] [Indexed: 10/29/2022] Open
Abstract
Transition metal-catalyzed C-C bond cleavage is a powerful tool for the reconstruction of a molecular skeleton. We report herein the multi-carbon homologation of aryl ketones to long-chain ketones and aldehydes via ligand-promoted Ar-C(O) bond cleavage and subsequent cross coupling with alkenols. Various (hetero)aryl ketones are compatible in the reaction, affording the corresponding products wtih good to excellent yields with high regioselectivity. Further applications in the late-stage diversification of biologically important molecules demonstrate the synthetic utility of this protocol. Mechanistic studies indicate that the ligand plays an important role in both C-C bond cleavage and the asymmetric migration-insertion process.
Collapse
Affiliation(s)
- Xing Wang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ling-Jun Li
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhen-Yu Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hui Xu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui-Xiong Dai
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| |
Collapse
|
12
|
Liu T, Shen X, Liu Z, Zhang F, Liu JJ. An electron-deficient MOF as an efficient electron-transfer catalyst for selective oxidative carbon-carbon coupling of 2,6-di- tert-butylphenol. Dalton Trans 2022; 51:8234-8239. [PMID: 35575225 DOI: 10.1039/d2dt00869f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Naphthalene diimides (NDIs), a type of electron-deficient dye molecule with high quadrupole moment and excellent redox activity, have been utilized in various fields, such as energy transfer, chemical sensing, anion transport, and photo-/electrochromic materials. In this study, an electron-deficient metal-organic framework with one-dimensional channels, Eu2(BBNDI)3(DMF)2 (MOF 1) (H2BBNDI = N,N'-bis(3-benzoic acid)naphthalene diimide), was successfully constructed based on the naphthalene diimide derivative. Because of the generation of NDI radicals by electron transfer between components, this material exhibits fast-responsive reversible photochromic properties. Moreover, it shows high efficiency and selective oxidation of 2,6-di-tert-butylphenol to its quinone derivative, aldehyde, and dimeric or trimeric phenol derivative by controlling the reaction conditions.
Collapse
Affiliation(s)
- Teng Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Xianfu Shen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Zhengfen Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Feng Zhang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| | - Jian-Jun Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China.
| |
Collapse
|
13
|
Liu YW, Li LJ, Xu H, Dai HX. Palladium-Catalyzed Alkynylation of Enones with Alkynylsilanes via C-C Bond Activation. J Org Chem 2022; 87:6807-6811. [PMID: 35507767 DOI: 10.1021/acs.joc.2c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein the synthesis of 1,3-enynes via palladium-catalyzed cross-coupling between enone derivatives and alkynylsilanes. The employment of an appropriate pyridine-oxazoline ligand is the key to the C-C cleavage and the high E/Z stereoselectivity. This protocol features broad substrate scope and wide functional-group tolerance, affording the desired products in moderate-to-good yields. Late-stage diversification of natural product β-ionone further demonstrated the synthetic utility of this protocol.
Collapse
Affiliation(s)
- Yu-Wen Liu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling-Jun Li
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Xu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui-Xiong Dai
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| |
Collapse
|
14
|
|
15
|
Hong CM, Zou FF, Zhuang X, Luo Z, Liu ZQ, Ren LQ, Li QH, Liu TL. 2-Pyridinylmethyl borrowing: base-promoted C-alkylation of (pyridin-2-yl)-methyl alcohols with ketones via cleavage of unstrained C(sp3)–C(sp3) bonds. Org Chem Front 2022. [DOI: 10.1039/d1qo01446c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
2-Pyridinylmethyl Borrowing: Transition-metal-free 2-pyridinylmethyl borrowing C-alkylation of alcohols access to ketones is developed. This unstrained C(sp3)–C(sp3) bonds cleavage of unactivated alcohols avoids the use of transition metals.
Collapse
Affiliation(s)
- Chuan-Ming Hong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fei-Fei Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xin Zhuang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhen Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zheng-Qiang Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Li-Qing Ren
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
16
|
Li H, Wang ML, Liu YW, Li LJ, Xu H, Dai HX. Enones as Alkenyl Reagents via Ligand-Promoted C–C Bond Activation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hanyuan Li
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Mei-Ling Wang
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yu-Wen Liu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Ling-Jun Li
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui-Xiong Dai
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
17
|
Khan D, Parveen I, Shaily, Sharma S. Design, Synthesis and Characterization of Aurone Based α,β‐unsaturated Carbonyl‐Amino Ligands and their Application in Microwave Assisted Suzuki, Heck and Buchwald Reactions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Danish Khan
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247 667 Uttarakhand India
| | - Iram Parveen
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247 667 Uttarakhand India
| | - Shaily
- Department of Chemistry D. B. S. (P.G.) College Dehradun 248001 Uttarakhand India
| | - Saurabh Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247 667 Uttarakhand India
| |
Collapse
|
18
|
Wang ZY, Ma B, Xu H, Wang X, Zhang X, Dai HX. Arylketones as Aryl Donors in Palladium-Catalyzed Suzuki-Miyaura Couplings. Org Lett 2021; 23:8291-8295. [PMID: 34670091 DOI: 10.1021/acs.orglett.1c03048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herein, we report the arylation, alkylation, and alkenylation of aryl ketones via a palladium-catalyzed Suzuki-Miyaura cross-coupling reaction. The use of the pyridine-oxazoline ligand is the key to the cleavage of the unstrained C-C bond. The late-stage arylation of aryl ketones derived from drugs and natural products demonstrated the synthetic utility of this protocol.
Collapse
Affiliation(s)
- Zhen-Yu Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Biao Ma
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Xing Wang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China
| | - Xu Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hui-Xiong Dai
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.,Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
19
|
Guo ZQ, Xu H, Wang X, Wang ZY, Ma B, Dai HX. C3-Arylation of indoles with aryl ketones via C-C/C-H activations. Chem Commun (Camb) 2021; 57:9716-9719. [PMID: 34473138 DOI: 10.1039/d1cc03954g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C3-Arylation of indoles with aryl ketones is accomplished via palladium-catalyzed ligand-promoted Ar-C(O) cleavage and subsequent C-H arylation of indole. Various (hetero)aryl ketones are compatible in this reaction, affording the corresponding 3-arylindoles in moderate to good yields. Further introduction of an indole moiety into the natural products desoxyestrone and evodiamine demonstrate the synthetic utility of this protocol.
Collapse
Affiliation(s)
- Zi-Qiong Guo
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China.
| | - Hui Xu
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xing Wang
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Yu Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Biao Ma
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China.
| | - Hui-Xiong Dai
- Chinese Academy of Sciences Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, University of Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|