1
|
Zhang C, Dong L. Iridium-catalyzed tandem olefination/aza-Michael reaction: rapid access to N-N functionalized hydrazides. Org Biomol Chem 2025; 23:673-678. [PMID: 39601785 DOI: 10.1039/d4ob01631a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
An Ir-catalyzed tandem olefination/aza-Michael reaction of protected benzoylhydrazine derivatives with olefins under mild conditions has been developed. This method can be successfully applied to the construction of various structurally N-N-functionalized hydrazide derivatives bearing the α,β-unsaturated side chain in good to excellent yields. In particular, the deaminoprotected products can be used as potential precursors for the construction of N-N axially chiral compounds.
Collapse
Affiliation(s)
- Chao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Angeli C, Atienza-Sanz S, Schröder S, Hein A, Li Y, Argyrou A, Osipyan A, Terholsen H, Schmidt S. Recent Developments and Challenges in the Enzymatic Formation of Nitrogen-Nitrogen Bonds. ACS Catal 2025; 15:310-342. [PMID: 39781334 PMCID: PMC11705231 DOI: 10.1021/acscatal.4c05268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
The biological formation of nitrogen-nitrogen (N-N) bonds represents intriguing reactions that have attracted much attention in the past decade. This interest has led to an increasing number of N-N bond-containing natural products (NPs) and related enzymes that catalyze their formation (referred to in this review as NNzymes) being elucidated and studied in greater detail. While more detailed information on the biosynthesis of N-N bond-containing NPs, which has only become available in recent years, provides an unprecedented source of biosynthetic enzymes, their potential for biocatalytic applications has been minimally explored. With this review, we aim not only to provide a comprehensive overview of both characterized NNzymes and hypothetical biocatalysts with putative N-N bond forming activity, but also to highlight the potential of NNzymes from a biocatalytic perspective. We also present and compare conventional synthetic approaches to linear and cyclic hydrazines, hydrazides, diazo- and nitroso-groups, triazenes, and triazoles to allow comparison with enzymatic routes via NNzymes to these N-N bond-containing functional groups. Moreover, the biosynthetic pathways as well as the diversity and reaction mechanisms of NNzymes are presented according to the direct functional groups currently accessible to these enzymes.
Collapse
Affiliation(s)
- Charitomeni Angeli
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Sara Atienza-Sanz
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Simon Schröder
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Annika Hein
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Yongxin Li
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Alexander Argyrou
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Angelina Osipyan
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Henrik Terholsen
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Sandy Schmidt
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| |
Collapse
|
3
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
4
|
Hohenadel M, Ebel B, Oppel IM, Patureau FW. Oxidative N-N Bond Formation Versus the Curtius Rearrangement. Chemistry 2024; 30:e202402355. [PMID: 38963800 DOI: 10.1002/chem.202402355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
The oxidative formation of N-N bonds from primary amides has been recently reported and then retracted in the journal Nature Communications by Kathiravan, Nicholls, and co-authors, utilizing a hypervalent iodane reagent. Unfortunately, the authors failed to recognize the Curtius reaction taking place under the described reaction conditions. Thus, the claimed N-N coupling products were not formed. Instead, the Curtius rearrangement urea coupling products were obtained. We demonstrate this herein by means of NMR and x-ray analysis, as well as with the support of an alternative synthetic route.
Collapse
Affiliation(s)
- Melissa Hohenadel
- Institutes of Organic and Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Ben Ebel
- Institutes of Organic and Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Iris M Oppel
- Institutes of Organic and Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Frederic W Patureau
- Institutes of Organic and Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
5
|
Subramaniam SV, Singh B, Pradeep N, Peruncheralathan S. PIFA-mediated intramolecular N-arylation of 2-aminoquinoxalines to afford indolo[2,3- b]quinoxaline derivatives. Org Biomol Chem 2024; 22:5803-5808. [PMID: 38946202 DOI: 10.1039/d4ob00812j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
We present the PIFA-mediated intramolecular N-arylation of 2-aminoquinoxalines at room temperature for the first time. This method provides a wide range of indolo[2,3-b]quinoxalines in good to excellent yields within a short time. The C-H bond functionalization occurs without the need for an inert atmosphere or additives. Additionally, a double C-H bond functionalization was observed, where the first reaction forms a C-N bond (N-arylation) and the second forms a C-O bond, yielding an acetal-functionalized product. Mechanistic investigations suggest that the C-H bond functionalization proceeds through an ionic mechanism, whereas acetal functionalization follows a radical pathway. This method extends to the derivation of indoloquinoxalines, including the target compound BIQMCz.
Collapse
Affiliation(s)
- Subhashini V Subramaniam
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, India.
| | - Badal Singh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, India.
| | - Natarajan Pradeep
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, India.
| | - Saravanan Peruncheralathan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, an OCC of Homi Bhabha National Institute, Khurda - 752050, India.
| |
Collapse
|
6
|
Li L, Zhou Y, Xi Z, Guo Z, Duan JC, Yu ZX, Gao H. Desulfurdioxidative N-N Coupling of N-Arylhydroxylamines and N-Sulfinylanilines: Reaction Development and Mechanism. Angew Chem Int Ed Engl 2024; 63:e202406478. [PMID: 38637953 DOI: 10.1002/anie.202406478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
A highly efficient and chemoselective approach for the divergent assembling of unsymmetrical hydrazines through an unprecedented intermolecular desulfurdioxidative N-N coupling is developed. This metal free protocol employs readily accessible N-arylhydroxylamines and N-sulfinylanilines to provide highly valuable hydrazine products with good reaction yields and excellent functional group tolerance under simple conditions. Computational studies suggest that the in situ generated O-sulfenylated arylhydroxylamine intermediate undergoes a retro-[2π+2σ] cycloaddition via a stepwise diradical mechanism to form the N-N bond and release SO2.
Collapse
Affiliation(s)
- Linwei Li
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| | - Yi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Zhenguo Xi
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| | - Zhaoquan Guo
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| | - Ji-Cheng Duan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering, Shandong University, 27 South Shanda Road, Ji'nan, 250100, Shandong, China
| |
Collapse
|
7
|
Kathiravan S, Dhillon P, Zhang T, Nicholls IA. Metal free cross-dehydrogenative N-N coupling of primary amides with Lewis basic amines. Nat Commun 2024; 15:2643. [PMID: 38531886 PMCID: PMC10966042 DOI: 10.1038/s41467-024-46890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Hydrazides, N-N containing structural motifs, are important due to their presence in a wide variety of biologically significant compounds. While the homo N-N coupling of two NH moieties to form the hydrazide N-N bond is well developed, the cross-dehydrogenative hetero N-N coupling remains very unevolved. Here we present an efficient intermolecular N-N cross-coupling of a series of primary benzamides with broad range of Lewis basic primary and secondary amines using PhI(OAc)2 as both a terminal oxidant and a cross-coupling mediator, without the need for metal catalysts, high temperatures, and inert atmospheres, and with substantial potential for use in the late-stage functionalization of drugs.
Collapse
Affiliation(s)
- Subban Kathiravan
- Bioorganic & Biophysical Chemistry Laboratory, Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar, SE-39182, Sweden.
- Attana AB, Greta Arwidssons väg 21, 11419, Stockholm, Sweden.
| | - Prakriti Dhillon
- Bioorganic & Biophysical Chemistry Laboratory, Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Tianshu Zhang
- Bioorganic & Biophysical Chemistry Laboratory, Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Ian A Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar, SE-39182, Sweden.
| |
Collapse
|
8
|
Li Q, Chen J, Luo Y, Xia Y. Photoredox-Catalyzed Hydroacylation of Azobenzenes with Carboxylic Acids. Org Lett 2024; 26:1517-1521. [PMID: 38346172 DOI: 10.1021/acs.orglett.4c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Acyl hydrazides are widely found in bioactive compounds and have important applications as versatile synthetic intermediates. In the current report, a photoredox-catalyzed hydroacylation of azobenzenes was disclosed with carboxylic acids as the acylation reagent, affording a variety of N,N'-disubstituted hydrazides. The process possesses the advantages of mild reaction conditions, broad substrate scope, and high efficiency. Preliminary mechanistic investigation indicated that the addition of an acyl radical to the azo compound should be involved.
Collapse
Affiliation(s)
- Qiao Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jianhui Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yanshu Luo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
9
|
Chen Y, Lu Z, He W, Zhu H, Lu W, Shi J, Sheng J, Xie W. Rhodium-catalyzed annulation of hydrazines with vinylene carbonate to synthesize unsubstituted 1-aminoindole derivatives. RSC Adv 2024; 14:4804-4809. [PMID: 38323018 PMCID: PMC10844929 DOI: 10.1039/d3ra07466h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024] Open
Abstract
Herein, we describe rhodium-catalysed C-H bond activation for [3 + 2] annulation using hydrazide and vinylene carbonate, providing an efficient method for synthesising unsubstituted 1-aminoindole compounds. Characterised by high yields, mild reaction conditions, and no need for external oxidants, this transformation demonstrates excellent regioselectivity and a wide tolerance for various functional groups.
Collapse
Affiliation(s)
- Yichun Chen
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Ziqi Lu
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Wenfen He
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Huanyi Zhu
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Weilong Lu
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Junjun Shi
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Jie Sheng
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Wucheng Xie
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| |
Collapse
|
10
|
Jiang YS, Li SS, Luo XL, Chen LN, Chen DN, Xia PJ. Photoinduced Difunctionalization of Diazenes Enabled by N-N Radical Coupling. Org Lett 2023; 25:6671-6676. [PMID: 37642680 DOI: 10.1021/acs.orglett.3c02533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In this study, a metal-free difunctionalization strategy for diazenes was developed using a range of bifunctionalization reagents. This strategy involves a unique N(sp3)-N(sp2) radical coupling between the hydrazine radical and the imine radical. More than 30 triazane core motifs were constructed by installing imines and various functional groups, including alkyl, phenyl, cyanoalkyl, and sulfonyl groups, on both ends of the nitrogen-nitrogen bond of diazenes in an efficient manner.
Collapse
Affiliation(s)
- Yu-Shi Jiang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| | - Shan-Shan Li
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| | - Xue-Ling Luo
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| | - Li-Ning Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| | - Dan-Na Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| | - Peng-Ju Xia
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, Guangxi 541004, People's Republic of China
| |
Collapse
|
11
|
Wang K, Du X, Zhang P, Wei Z, Cao XT. Metal-free C-3 selective C(sp 2)-C(sp 3) heteroarylation of anilines with imidazo[1,2- a]pyridine derivatives via cross-dehydrogenative coupling. RSC Adv 2023; 13:21685-21689. [PMID: 37476046 PMCID: PMC10355276 DOI: 10.1039/d3ra03852a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/09/2023] [Indexed: 07/22/2023] Open
Abstract
A general and straightforward method for the regioselective construction of C-3 heteroaryl-containing imidazo[1,2-a]pyridines via cross-dehydrogenative coupling under transition-metal-free conditions has been reported, utilizing N,N-dimethylaniline as the methylenation source and furnishing the C(sp2)-C(sp3) functionalized products in good to excellent yields. Mechanism studies indicate that a radical pathway is responsible for this transformation.
Collapse
Affiliation(s)
- Kai Wang
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Xiaoxue Du
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University Hangzhou 311121 China
| | - Zhenjiang Wei
- Department of Pharmaceutical Engineering, Shandong Medicine Technician College Taian 271016 China
| | - Xian-Ting Cao
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University Jining 272067 China
| |
Collapse
|
12
|
Barbor JP, Nair VN, Sharp KR, Lohrey TD, Dibrell SE, Shah TK, Walsh MJ, Reisman SE, Stoltz BM. Development of a Nickel-Catalyzed N-N Coupling for the Synthesis of Hydrazides. J Am Chem Soc 2023. [PMID: 37413695 PMCID: PMC10360072 DOI: 10.1021/jacs.3c04834] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
A nickel-catalyzed N-N cross-coupling for the synthesis of hydrazides is reported. O-Benzoylated hydroxamates were efficiently coupled with a broad range of aryl and aliphatic amines via nickel catalysis to form hydrazides in an up to 81% yield. Experimental evidence implicates the intermediacy of electrophilic Ni-stabilized acyl nitrenoids and the formation of a Ni(I) catalyst via silane-mediated reduction. This report constitutes the first example of an intermolecular N-N coupling compatible with secondary aliphatic amines.
Collapse
Affiliation(s)
- Jay P Barbor
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Vaishnavi N Nair
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kimberly R Sharp
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Trevor D Lohrey
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Sara E Dibrell
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Tejas K Shah
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Martin J Walsh
- Corteva Agriscience, 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Sarah E Reisman
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Brian M Stoltz
- The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
13
|
Panjacharam P, Ulabala V, Jayakumar J, Rajasekhara Reddy S. Emerging trends in the sustainable synthesis of N-N bond bearing organic scaffolds. Org Biomol Chem 2023; 21:2632-2652. [PMID: 36883312 DOI: 10.1039/d3ob00300k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
N-N bond bearing organic frameworks such as azos, hydrazines, indazoles, triazoles and their structural moieties have piqued the interest of organic chemists due to the intrinsic nitrogen electronegativity. Recent methodologies with atom efficacy and a greener approach have overcome the synthetic obstacles of N-N bond construction from N-H. As a result, a wide range of amine oxidation methods have been reported early on. This review's vision emphasizes the emerging methods of N-N bond formation, particularly photo, electro, organo and transition metal free chemical methods.
Collapse
Affiliation(s)
| | - Vijayasree Ulabala
- Department of Chemistry, Rajiv Gandhi University of Knowledge Technology (RGUKT), Nuzvid 521202, India.
| | | | | |
Collapse
|
14
|
Zhu LL, Tian L, Sun K, Li Y, Liu G, Cai B, Zhang H, Wang Y. N 2-Selective β-Thioalkylation of Benzotriazoles with Alkenes. J Org Chem 2022; 87:12963-12974. [PMID: 36137279 DOI: 10.1021/acs.joc.2c01519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, N2-selective β-thioalkylation of benzotriazoles with unactivated alkenes and styrenes is reported. The N2-selective β-thioalkylation of benzotriazoles is highly stereospecific and works under simple and mild conditions, exhibiting excellent functional group tolerance. The high N2-selectivity is a consequence of the combination of hydrogen bonding and Lewis acid/base activation, which reverses the N2-position to be favored for alkylation.
Collapse
Affiliation(s)
- Li-Li Zhu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou 466001, China
| | - Lifang Tian
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kunhui Sun
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yiwen Li
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou 466001, China
| | - Guanglu Liu
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou 466001, China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou 466001, China
| | - Hui Zhang
- School of Chemistry and Chemical Engineering, Zhoukou Normal University, Wenchang Road, Zhoukou 466001, China
| | - Yahui Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
15
|
Raji Reddy C, Ganesh V, Punna N. Domino Aza-Annulations of Enynyl-/(Alkynyl)aryl-acetonitriles to Access Nitrogen-Enriched Heterocycles. J Org Chem 2022; 87:11547-11557. [PMID: 35998892 DOI: 10.1021/acs.joc.2c01136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unprecedented domino aza-annulations of (E)-2-en-4-ynyl-acetonitriles (generated from the Morita-Baylis-Hillman acetates of propiolaldehydes for the first time) with sodium azide under metal- and oxidant-free conditions for the assembly of triazolo-pyridines are accomplished. The developed strategy offers broad substrate scope, extending to (2-alkynyl)aryl and indolyl-acetonitriles to provide the corresponding triazolo-fused isoquinolines and β-carbolines, respectively, in good yields. Additionally, the synthetic utility of the products is demonstrated via denitrogenative coupling of fused triazoles with different nucleophiles.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Veeramalla Ganesh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagender Punna
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Zhu K, Cao M, Zhao G, Zhao J, Li P. Visible Light-Promoted Diazoacetates and Nitriles Generating Nitrilium Ions Trapped by Benzotriazoles and Carboxylic Acids. Org Lett 2022; 24:5855-5859. [PMID: 35916596 DOI: 10.1021/acs.orglett.2c02426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A visible light-promoted generation of nitrilium ions from diazoacetates and nitriles has been developed. The reaction utilized visible light transformation of diazoacetates to the free carbene that could be trapped by nitriles to generate nitrilium ions, followed by nucleophilic attack on the benzotriazoles and carboxylic acids. This protocol provides an efficient and practical approach to N-imidoylbenzotriazoles and diacylglycine esters in good to excellent yields.
Collapse
Affiliation(s)
- Keyong Zhu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Mengting Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Guanzhen Zhao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Jingjing Zhao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Pan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
17
|
Patel G, Maurya RK, Tyagi S, Kant R, Yadav PP. PIDA‐Mediated Intramolecular N‐N Bond Formation to Access 2‐Aminoindazoles and 2,2′‐Biindazoles**. ChemistrySelect 2022. [DOI: 10.1002/slct.202201112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Girija Patel
- Medicinal and Process Chemistry CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific & Innovative Research Ghaziabad 201002 India
| | - Rahul K. Maurya
- Medicinal and Process Chemistry CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Shaifali Tyagi
- Medicinal and Process Chemistry CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific & Innovative Research Ghaziabad 201002 India
| | - Ruchir Kant
- Molecular and Structural Biology CSIR-Central Drug Research Institute Lucknow 226031 India
| | - Prem P. Yadav
- Medicinal and Process Chemistry CSIR-Central Drug Research Institute Lucknow 226031 India
- Academy of Scientific & Innovative Research Ghaziabad 201002 India
| |
Collapse
|
18
|
Cao X, Zheng Z, Liu J, Hu Y, Yu H, Cai S, Wang G. H
2
O
2
‐Mediated Synthesis of 1,2,4‐Thiadiazole Derivatives in Ethanol at Room Temperature. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xian‐Ting Cao
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| | - Zuo‐Ling Zheng
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| | - Jie Liu
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| | - Yu‐He Hu
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| | - Hao‐Yun Yu
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| | - Shasha Cai
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| | - Guannan Wang
- College of Medical Engineering& the Key Laboratory for Medical Functional Nanomaterials Jining Medical University Jining 272067 People's Republic of China
| |
Collapse
|
19
|
Patel BK, Dahiya A, Sahoo AK, Chakraborty N, Das B. Updates on hypervalent-iodine reagents in metal-free organic synthesis. Org Biomol Chem 2022; 20:2005-2027. [DOI: 10.1039/d1ob02233d] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypervalent iodine (HVI) chemistry is a rapidly growing subdomain of contemporary organic chemistry because of its enormous synthetic applications. The high nucleofugality of the phenyliodonio group (I+Ph) and their radical...
Collapse
|
20
|
Zhao W, Xu J, Yang F, Zeng X. Advances on the Synthesis of N—N Bonds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202111019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Tabey A, Vemuri PY, Patureau FW. Cross-dehydrogenative N-N couplings. Chem Sci 2021; 12:14343-14352. [PMID: 34880984 PMCID: PMC8580018 DOI: 10.1039/d1sc03851f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/10/2021] [Indexed: 11/21/2022] Open
Abstract
The relatively high electronegativity of nitrogen makes N-N bond forming cross-coupling reactions particularly difficult, especially in an intermolecular fashion. The challenge increases even further when considering the case of dehydrogenative N-N coupling reactions, which are advantageous in terms of step and atom economy, but introduce the problem of the oxidant in order to become thermodynamically feasible. Indeed, the oxidizing system must be designed to activate the target N-H bonds, while at the same time avoid undesired N-N homocoupling as well as C-N and C-C coupled side products. Thus, preciously few intermolecular hetero N-N cross-dehydrogenative couplings exist, in spite of the central importance of N-N bonds in organic chemistry. This review aims at analyzing these few rare cases and provides a perspective for future developments.
Collapse
Affiliation(s)
- Alexis Tabey
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Pooja Y Vemuri
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| |
Collapse
|
22
|
Ou Y, Yang T, Tang N, Yin SF, Kambe N, Qiu R. Photo-Induced N-N Coupling of o-Nitrobenzyl Alcohols and Indolines To Give N-Aryl-1-amino Indoles. Org Lett 2021; 23:6417-6422. [PMID: 34355914 DOI: 10.1021/acs.orglett.1c02227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel method to synthesize N-aryl-1-amino indoles was established by the photoinduced N-N coupling reaction. This protocol is by treatment of o-nitrobenzyl alcohols and indolines in the presence of TEAI and acetic acid with a 24 W ultraviolet (UV) light-emitting diode (LED) (385-405 nm) irradiation. The products bearing an aldehyde group can be further transformed to fluorescent probes based on Rhodamine 6G derivative 11, which shows a high specificity and sensitivity for Fe3+.
Collapse
Affiliation(s)
- Yifeng Ou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Tianbao Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Niu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Nobuaki Kambe
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.,The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| |
Collapse
|
23
|
Song F, Zhu S, Wang H, Chen G. Iridium-Catalyzed Intermolecular N—N Coupling for Hydrazide Synthesis Using N-Benzoyloxycarbamates as Acyl Nitrene Precursor. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202105044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|