1
|
Guo J, Ma HR, Xiong WB, Fan L, Zhou YY, Wong HNC, Cui JF. Iridium-catalyzed enantioselective alkynylation and kinetic resolution of alkyl allylic alcohols. Chem Sci 2022; 13:13914-13921. [PMID: 36544735 PMCID: PMC9710208 DOI: 10.1039/d2sc04892b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Herein, we report an efficient kinetic resolution of alkyl allylic alcohols enabled by an iridium-catalyzed enantioselective alkynylation of alkyl allylic alcohols with potassium alkynyltrifluoroborates. A wide range of chiral 1,4-enynes bearing various functional groups and unreacted enantioenriched allylic alcohols were obtained with excellent enantioselectivities and high kinetic resolution performance (s-factor up to 922). Additionally, this method is particularly effective for preparing some useful optically pure alkyl allylic alcohols, such as the key components towards the synthesis of prostaglandins and naturally occurring matsutakeols, which are difficult to access via other asymmetric reactions. Mechanistic studies revealed that the efficient kinetic resolution might be due to the significant distinction of the η 2-coordination between the (R)- and (S)-allylic alcohols with the iridium/(phosphoramidite, olefin) complex.
Collapse
Affiliation(s)
- Jia Guo
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China
| | - Hao-Ran Ma
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China,School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen)2001 Longxiang Blvd.Shenzhen 518172China
| | - Wen-Bin Xiong
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China
| | - Luoyi Fan
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China
| | - You-Yun Zhou
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China
| | - Henry N. C. Wong
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China,School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen)2001 Longxiang Blvd.Shenzhen 518172China,Department of Chemistry, The Chinese University of Hong KongShatinNew TerritoriesHong Kong SARChina
| | - Jian-Fang Cui
- Department of Chemistry, Southern University of Science and Technology1088 Xueyuan Blvd.Shenzhen 518055China
| |
Collapse
|
2
|
Mao B, Wang JL. Asymmetric Synthesis of 3,3-Disubstituted Isoindolinones Enabled by Organocatalytic Functionalization of Tertiary Alcohols. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1720040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractAn enantioselective intramolecular heterocyclization with in situ generated 3-hydroxyisoindolinone-derived N-acyliminium ions has been successfully accomplished. In the presence of a catalytic amount of a chiral phosphoric acid, functionalized 3,3-disubstituted isoindolinones bearing N-acyl-N,O-acetal moieties were obtained with good yields and a high level of stereocontrol (up to 98:2 er). This efficient method proceeds under mild conditions and exhibits broad scope with respect to both 3-hydroxyisoindolinones and hydroxyl partners.
Collapse
|
3
|
Zou LM, Huang XY, Zheng C, Cheng YZ, You SL. Chiral Brønsted Acid-Catalyzed Intramolecular Asymmetric Allylic Alkylation of Indoles with Primary Alcohols. Org Lett 2022; 24:3544-3548. [PMID: 35533379 DOI: 10.1021/acs.orglett.2c01253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herein, chiral Brønsted acid-catalyzed intramolecular asymmetric allylic alkylation of indoles with allylic primary alcohols is described. The allyl alcohols were directly employed as the allylic precursors in this metal-free protocol, without preactivation or any additional activating reagents. This method provides the convenient synthesis of a broad range of functionalized tetrahydrocarbazoles in excellent yields (≤97%) with good enantioselectivity (≤93% ee). The optimal conditions are compatible for gram-scale reaction.
Collapse
Affiliation(s)
- Lei-Ming Zou
- School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xian-Yun Huang
- School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yuan-Zheng Cheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
4
|
Ke M, Qiao B, Yu Y, Li X, Xiao X, Li SJ, Lan Y, Chen F. Palladium-Catalyzed Asymmetric [3 + 2] Annulation of Vinylethylene Carbonates with Alkenes Installed on Cyclic N-Sulfonyl Imines: Highly Enantio- and Diastereoselective Construction of Chiral Tetrahydrofuran Scaffolds Bearing Three Vicinal and Quaternary Stereocenters. J Org Chem 2022; 87:5166-5177. [PMID: 35377155 DOI: 10.1021/acs.joc.1c03157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A multisubstituted tetrahydrofuran building block bearing three vicinal chiral carbon centers widely exists in a broad spectrum of bioactive natural products, and the development of efficient and convenient methods to establish this skeleton remains a challenging task. Herein, we have developed an efficient method for the construction of significant tetrahydrofuran scaffolds bearing three vicinal and α-quaternary chiral carbon stereocenters through Pd-catalyzed asymmetric [3 + 2] annulation of vinylethylene carbonates with alkenes installed on cyclic N-sulfonyl imines. A series of multisubstituted tetrahydrofuran derivatives are obtained in high efficiencies with excellent enantioselectivities and diastereoselectivities. Density functional theory (DFT) studies are accomplished to rationalize the stereocontrol of the annulation process and disclose that methanol could be applied to stabilize the reactive zwitterionic π-allylpalladium via the H-bond interaction.
Collapse
Affiliation(s)
- Miaolin Ke
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bolin Qiao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yuyan Yu
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xinzhi Li
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shi-Jun Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yu Lan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Fener Chen
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
5
|
Ding B, Xue Q, Cheng HG, Zhou Q, Jia S. Recent Advances in Catalytic Nonenzymatic Kinetic Resolution of Tertiary Alcohols. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1712-0912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractThe kinetic resolution (KR) of racemates is one of the most widely used approaches to access enantiomerically pure compounds. Over the past two decades, catalytic nonenzymatic KR has gained popularity in the field of asymmetric synthesis due to the rapid development of chiral catalysts and ligands in asymmetric catalysis. Chiral tertiary alcohols are prevalent in a variety of natural products, pharmaceuticals, and biologically active chiral compounds. The catalytic nonenzymatic KR of racemic tertiary alcohols is a straightforward strategy to access enantioenriched tertiary alcohols. This short review describes recent advances in catalytic nonenzymatic KR of tertiary alcohols, including organocatalysis and metal catalysis.1 Introduction2 Organocatalysis2.1 Peptide Catalyst2.2 Chiral Phosphoric Acid Catalyst2.3 Chiral Lewis Base Catalyst2.4 Chiral Quaternary Ammonium Salt Catalyst3 Metal Catalysis3.1 Mixed La-Li Heterobimetallic Catalyst3.2 Rh Catalyst3.3 Hf Catalyst3.4 Pd Catalyst3.5 Cu Catalyst3.6 Ag Catalyst4 Conclusion and Outlook
Collapse
Affiliation(s)
- Bo Ding
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University
| | - Qilin Xue
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University
| | - Hong-Gang Cheng
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University
| | - Qianghui Zhou
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University
- The Institute for Advanced Studies, Wuhan University
| | - Shihu Jia
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University
| |
Collapse
|
6
|
Smith SM, Greenhalgh MD, Feoktistova T, Walden DM, Taylor JE, Cordes DB, Slawin AMZ, Cheong PH, Smith AD. Scope, Limitations and Mechanistic Analysis of the HyperBTM‐Catalyzed Acylative Kinetic Resolution of Tertiary Heterocyclic Alcohols**. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Samuel M. Smith
- EaStCHEM School of Chemistry University of St Andrews North Haugh, St Andrews, Fife KY16 9ST UK
| | - Mark D. Greenhalgh
- EaStCHEM School of Chemistry University of St Andrews North Haugh, St Andrews, Fife KY16 9ST UK
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Taisiia Feoktistova
- Department of Chemistry Oregon State University 153 Gilbert Hall Corvallis OR 97331 USA
| | - Daniel M. Walden
- Department of Chemistry Oregon State University 153 Gilbert Hall Corvallis OR 97331 USA
| | - James E. Taylor
- EaStCHEM School of Chemistry University of St Andrews North Haugh, St Andrews, Fife KY16 9ST UK
- Department of Chemistry University of Bath Claverton Down, Bath BA2 7AY UK
| | - David B. Cordes
- EaStCHEM School of Chemistry University of St Andrews North Haugh, St Andrews, Fife KY16 9ST UK
| | - Alexandra M. Z. Slawin
- EaStCHEM School of Chemistry University of St Andrews North Haugh, St Andrews, Fife KY16 9ST UK
| | - Paul Ha‐Yeon Cheong
- Department of Chemistry Oregon State University 153 Gilbert Hall Corvallis OR 97331 USA
| | - Andrew D. Smith
- EaStCHEM School of Chemistry University of St Andrews North Haugh, St Andrews, Fife KY16 9ST UK
| |
Collapse
|
7
|
Chen Y, Liu W, Yang X. Recent Advances in Kinetic Resolution of Tertiary Alcohols. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Kayal S, Kikuchi J, Shinagawa N, Umemiya S, Terada M. Kinetic Resolution of Racemic Tertiary Allylic Alcohols through S N2’ Reaction Using a Chiral Bisphosphoric Acid/Silver(I) Salt Co-catalyst System. Chem Sci 2022; 13:9607-9613. [PMID: 36091917 PMCID: PMC9400685 DOI: 10.1039/d2sc03052g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
A highly efficient kinetic resolution (KR) of racemic tertiary allylic alcohols was achieved through an intramolecular allylic substitution reaction using a co-catalyst system composed of chiral bisphosphoric acid and silver carbonate. This reaction afforded enantioenriched diene monoepoxides along with the recovery of tertiary allylic alcohols in a highly enantioselective manner, realizing an extremely high s-factor in most cases. The present method provides a new access to enantioenriched tertiary allylic alcohols, multifunctional compounds that are applicable for further synthetic manipulations. A highly efficient KR of racemic tertiary allylic alcohols was developed through the intramolecular SN2′ reaction using the chiral bisphosphoric acid/silver carbonate co-catalyst system, affording cis-epoxides and recovered alcohols in a high s-factor.![]()
Collapse
Affiliation(s)
- Satavisha Kayal
- Department of Chemistry, Graduate School of Science, Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Jun Kikuchi
- Department of Chemistry, Graduate School of Science, Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Naoya Shinagawa
- Department of Chemistry, Graduate School of Science, Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Shigenobu Umemiya
- Department of Chemistry, Graduate School of Science, Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University Aramaki, Aoba-ku Sendai 980-8578 Japan
| |
Collapse
|
9
|
Soleymani Movahed F, Foo SW, Mori S, Ogawa S, Saito S. Phosphorus-Based Organocatalysis for the Dehydrative Cyclization of N-(2-Hydroxyethyl)amides into 2-Oxazolines. J Org Chem 2021; 87:243-257. [PMID: 34882422 DOI: 10.1021/acs.joc.1c02318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A metal-free, biomimetic catalytic protocol for the cyclization of N-(2-hydroxyethyl)amides to the corresponding 2-oxazolines (4,5-dihydrooxazoles), promoted by the 1,3,5,2,4,6-triazatriphosphorine (TAP)-derived organocatalyst tris(o-phenylenedioxy)cyclotriphosphazene (TAP-1) has been developed. This approach requires less precatalyst compared to the reported relevant systems, with respect to the phosphorus atom (the maximum turnover number (TON) ∼ 30), and exhibits a broader substrate scope and higher functional-group tolerance, providing the functionalized 2-oxazolines with retention of the configuration at the C(4) stereogenic center of the 2-oxazolines. Widely accessible β-amino alcohols can be used in this approach, and the cyclization of N-(2-hydroxyethyl)amides provides the desired 2-oxazolines in up to 99% yield. The mechanism of the reaction was studied by monitoring the reaction using spectral and analytical methods, whereby an 18O-labeling experiment furnished valuable insights. The initial step involves a stoichiometric reaction between the substrate and TAP-1, which leads to the in situ generation of the catalyst, a catechol cyclic phosphate, as well as to a pyrocatechol phosphate and two possible active intermediates. The dehydrative cyclization was also successfully conducted on the gram scale.
Collapse
Affiliation(s)
| | - Siong Wan Foo
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Shogo Mori
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Saeko Ogawa
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Susumu Saito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan.,Research Center for Materials Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
10
|
Sun D, Zhang H, Gao J, Guan X, Qin X, Jiang G, Zhang G, Zheng L, Zhang S. Asymmetric Synthesis of Spiro[3,2'-morpholine-oxindoles] Derivatives via the [5 + 1] Annulation Reaction. J Org Chem 2021; 86:16815-16823. [PMID: 34761939 DOI: 10.1021/acs.joc.1c02037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficacious method in which BINOL-type chiral imidodiphosphoric acid catalyzed the asymmetric [5 + 1] annulation reaction of 2-pyrrolylphenol with 1-methylindoline-2,3-dione was established. The strategy tolerated a broad substrate scope, and 30 examples were obtained. A range of enantioenriched spiro[3,2'-morpholine-oxindole] derivatives which incorporate a tertiary stereocenter, with moderate to excellent yields (up to 96%) and enantioselectivities (up to 99%) under mild conditions, was delivered.
Collapse
|
11
|
Pham QH, Tague AJ, Richardson C, Hyland CJT, Pyne SG. The Pd-catalysed asymmetric allylic alkylation reactions of sulfamidate imines. Chem Sci 2021; 12:12695-12703. [PMID: 34703555 PMCID: PMC8494038 DOI: 10.1039/d1sc03268b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022] Open
Abstract
The Pd-catalysed asymmetric allylic alkylation (Pd-AAA) of prochiral enamide anions derived from 5H-oxathiazole 2,2-dioxides has been developed. Various 4,5-disubstituted and 4-substituted cyclic sulfamidate imines have participated in the transformation with a range of allyl carbonates-as well as 2-vinyl oxirane, 2-vinyl-N-tosylaziridine, and 2-vinyl-1,1-cyclopropane dicarboxylate-to furnish the desired C-allylated products in moderate to high yields, with high regioselectivites and generally high enantioselectivities. Conversion between N- and C-allyl products was observed, with the N-allylated products converting to the C-allylated products over time. The resulting high-value allylated heterocyclic products all bear a tetrasubstituted stereogenic centre and can be reduced to an allylated chiral sulfamidate or an amino alcohol.
Collapse
Affiliation(s)
- Quoc Hoang Pham
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong Wollongong New South Wales 2522 Australia
| | - Andrew J Tague
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong Wollongong New South Wales 2522 Australia
| | - Christopher Richardson
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong Wollongong New South Wales 2522 Australia
| | - Christopher J T Hyland
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong Wollongong New South Wales 2522 Australia
| | - Stephen G Pyne
- School of Chemistry and Molecular Bioscience, Molecular Horizons Research Institute, University of Wollongong Wollongong New South Wales 2522 Australia
| |
Collapse
|
12
|
Tang M, Gu H, He S, Rajkumar S, Yang X. Asymmetric Enamide–Imine Tautomerism in the Kinetic Resolution of Tertiary Alcohols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mengyao Tang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Institute of Organic Chemistry Shanghai 200032 China
| | - Huanchao Gu
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Shunlong He
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Subramani Rajkumar
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Xiaoyu Yang
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 China
| |
Collapse
|
13
|
Tang M, Gu H, He S, Rajkumar S, Yang X. Asymmetric Enamide-Imine Tautomerism in the Kinetic Resolution of Tertiary Alcohols. Angew Chem Int Ed Engl 2021; 60:21334-21339. [PMID: 34312956 DOI: 10.1002/anie.202106151] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Indexed: 12/23/2022]
Abstract
An efficient protocol for kinetic resolution of tertiary alcohols has been developed through an unprecedented asymmetric enamide-imine tautomerism process enabled by chiral phosphoric acid catalysis. A broad range of racemic 2-arylsulfonamido tertiary allyl alcohols could be kinetically resolved with excellent kinetic resolution performances (with s-factor up to >200). This method is particularly effective for a series of 1,1-dialkyl substituted allyl alcohols, which produced chiral tertiary alcohols that would be difficult to access via other asymmetric methods. Facile and versatile transformations of the chiral α-hydroxy imine and enamide products, especially the efficient stereodivergent synthesis of all four stereoisomers of β-amino tertiary alcohols using one enantiomer of the catalyst, demonstrated the value of this kinetic resolution method.
Collapse
Affiliation(s)
- Mengyao Tang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Shanghai Institute of Organic Chemistry, Shanghai, 200032, China
| | - Huanchao Gu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shunlong He
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Subramani Rajkumar
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|