1
|
Xiao G, Sun H, Jiang G, Liu Y, Song G, Kong D. Binary Catalytic Hydrogen/Deuterium Exchange of Free α-Amino Acids and Derivatives. Chemistry 2024; 30:e202402045. [PMID: 39042826 DOI: 10.1002/chem.202402045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
The increasing demand for deuterium-labeled amino acids and derivatives has heightened interest in direct hydrogen/deuterium exchange reactions of free amino acids. Existing methods, including biocatalysis and metal catalysis, typically require expensive deuterium sources or excessive use of deuterium reagents and often struggle with site selectivity. In contrast, this binary catalysis system, employing benzaldehyde and Cs2CO3 in the presence of inexpensive D2O with minimal stoichiometric quantities, facilitates efficient hydrogen/deuterium exchange at the α-position of amino acids without the need for protecting groups in the polar aprotic solvent DMSO. The process is highly compatible with most natural and non-natural α-amino acids and derivatives, even those with potentially reactive functionalities. This advancement not only addresses the cost and efficiency concerns of existing methods but also significantly broadens the applicability and precision of deuterium labeling in biochemical research.
Collapse
Affiliation(s)
- Guorong Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hong Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gege Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ying Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gaohan Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Duanyang Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
2
|
Das S, Rahaman SA, Pradhan K, Jana R. Organophotoredox-Catalyzed Synthesis of Unnatural α/β Amino Acids and Peptides via Deaminative Three-Component Coupling. Org Lett 2024; 26:6955-6960. [PMID: 39137018 DOI: 10.1021/acs.orglett.4c02152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Herein, we disclose an expedient visible-light-mediated, organophotoredox-catalyzed multicomponent synthesis of unnatural amino acids using a Katritzky salt, glyoxal derivatives, and substituted anilines. Mechanistically, an alkyl radical is generated from the Katritzky salt via a deaminative process that undergoes addition to the in situ-generated imine to furnish α-amino acids in a moderate diastereoisomeric ratio. For the first time, we have demonstrated this deaminative protocol to access substituted β-amino acids from α-amino acid-derived Katritzky salts. Furthermore, α-amino amides are also generated from the corresponding 2-oxoacetamide derivatives.
Collapse
Affiliation(s)
- Subhodeep Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Sk Abdur Rahaman
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Kangkan Pradhan
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
3
|
Manoharan K, Bieszczad B. Acyl-1,4-Dihydropyridines: Universal Acylation Reagents for Organic Synthesis. Molecules 2024; 29:3844. [PMID: 39202923 PMCID: PMC11356872 DOI: 10.3390/molecules29163844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Acyl-1,4-dihydropyridines have recently emerged as universal acylation reagents. These easy-to-make and bench-stable NADH biomimetics play the dual role of single-electron reductants and sources of acyl radicals. This review article discusses applications of acyl-1,4-dihydropyridines in organic synthesis since their introduction in 2019. Acyl-1,4-dihydropyridines, activated by photochemical, thermal or electrochemical methods, have been successfully applied as radical sources in multiple diverse organic transformations such as acyl radical addition to olefins, alkynes, imines and other acceptors, as well as in the late-stage functionalisation of natural products and APIs. Release of acyl radicals and an electron can be performed under mild conditions-in green solvents, under air and sunlight, and without the use of photocatalysts, photosensitizers or external oxidants-which makes them ideal reagents for organic chemists.
Collapse
Affiliation(s)
- Karthikeyan Manoharan
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Bartosz Bieszczad
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, City Campus, Grangegorman, D07 H6K8 Dublin, Ireland
| |
Collapse
|
4
|
Zheng J, Tang J, Jin S, Hu H, Jiang ZJ, Chen J, Bai JF, Gao Z. Site-Selective Deuteration of α-Amino Esters with 2-Hydroxynicotinaldehyde as a Catalyst. ACS OMEGA 2024; 9:26963-26972. [PMID: 38947810 PMCID: PMC11209932 DOI: 10.1021/acsomega.3c09974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/27/2024] [Accepted: 05/31/2024] [Indexed: 07/02/2024]
Abstract
An efficient method has been developed for the synthesis of α-deuterated α-amino esters via hydrogen isotope exchange of α-amino esters in D2O with 2-hydroxynicotinaldehyde as a catalyst under mild conditions. This methodology exhibits a wide range of substrate scopes, remarkable functional group tolerance, and affording the desired products in good yields with excellent deuterium incorporation. Notably, the ortho-hydroxyl group and the pyridine ring of the catalyst play a crucial role in the catalytic activity, which not only stabilizes the carbon-anion intermediates but also enhances the acidity of the amino esters' α-C-H bond.
Collapse
Affiliation(s)
- Jinfeng Zheng
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
- School
of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People’s
Republic of China
| | - Jianbo Tang
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Shenhao Jin
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
| | - Hao Hu
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
| | - Zhi-Jiang Jiang
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
| | - Jia Chen
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
| | - Jian-Fei Bai
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
| | - Zhanghua Gao
- NingboTech-Cuiying
Joint Laboratory of Stable Isotope Technology, School of Biological
and Chemical Engineering, NingboTech University, Ningbo 315100, People’s Republic of China
- Ningbo
Cuiying Chemical Technology Co. Ltd., Ningbo 315100, People’s Republic of China
| |
Collapse
|
5
|
Zhang Z, Wang J, Yu C, Tan J, Du H, Chen N. Visible-Light-Induced Acylative Pyridylation of Styrenes. Org Lett 2024. [PMID: 38809604 DOI: 10.1021/acs.orglett.4c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A visible-light-induced photocatalyst-free acylative pyridylation of styrenes with 4-acyl-1,4-dihydropyridines (DHPs) and 4-cyanopyridines has been described, featuring mild reaction conditions, a broad substrate scope, and good functional group tolerance. The reaction could also be performed under sunlight irradiation albeit with a slightly lower conversion. 4-Acyl-1,4-DHPs serve a dual role, acting as both a photoreductant to reduce the cyanopyridine to its radical anion intermediate and a radical precursor to produce the acyl radical. The mechanism was especially elucidated through the Hammett analysis, with the quadratic linear regression analysis by using radical dual parameters, σmb and σjj·. The findings from Hammett analysis further demonstrate that the rate-limiting step of the process is the single electron transfer between 4-acyl-1,4-DHPs and 4-cyanopyridines.
Collapse
Affiliation(s)
- Zhiqin Zhang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jianwei Wang
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Chenfeng Yu
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiajing Tan
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Hongguang Du
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Ning Chen
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
6
|
Sun J, Endo H, Emmanuel MA, Oderinde MS, Kawamata Y, Baran PS. Simplified Modular Access to Enantiopure 1,2-Aminoalcohols via Ni-Electrocatalytic Decarboxylative Arylation. J Am Chem Soc 2024; 146:6209-6216. [PMID: 38387466 PMCID: PMC10962872 DOI: 10.1021/jacs.3c14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Chiral aminoalcohols are omnipresent in bioactive compounds. Conventional strategies to access this motif involve multiple-step reactions to install the requisite functionalities stereoselectively using conventional polar bond analysis. This study reveals that a simple chiral oxazolidine-based carboxylic acid can be readily transformed to substituted chiral aminoalcohols with high stereochemical control by Ni-electrocatalytic decarboxylative arylation. This general, robust, and scalable coupling can be used to synthesize a variety of medicinally important compounds, avoiding protecting and functional group manipulations, thereby dramatically simplifying their preparation.
Collapse
Affiliation(s)
- Jiawei Sun
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hirofumi Endo
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Megan A. Emmanuel
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Martins S. Oderinde
- Small
Molecule Drug Discovery, Bristol Myers Squibb
Research & Early Development, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| | - Yu Kawamata
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Phil S. Baran
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
7
|
Ma C, Li X, Chen X, He X, Zhang ST, Jiang YQ, Yu B. Photocatalytic Umpolung Strategy for the Synthesis of α-Amino Phosphine Oxides and Deuterated Derivatives. Org Lett 2023; 25:8016-8021. [PMID: 37903293 DOI: 10.1021/acs.orglett.3c03193] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Direct, economical, and green synthesis of deuterated α-amino phosphine oxides remains an elusive challenge in synthetic chemistry. Herein, we report a visible-light-driven umpolung strategy for synthesizing deuterated α-amino phosphine oxides from isocyanide using 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene as the photocatalyst and D2O as the deuterium source. Moreover, the streamlined and sustainable methodology can be applied in the modification of amino acids, natural products, and drugs. The strong antiproliferative activity of the desired products indicates that the method could provide a novel privileged scaffold for antitumor drug development.
Collapse
Affiliation(s)
- Chunhua Ma
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiaofeng Li
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xiya Chen
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xing He
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shu-Ting Zhang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yu-Qin Jiang
- Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Engineering Research Centre of Chiral Hydroxyl Pharmaceutical, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Bing Yu
- Green Catalysis Centre, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Wang GQ, Wang T, Zhang Y, Zhou YX, Yang D, Han P, Jing LH. Photoredox Metal-Free Synthesis of Unnatural β-Silyl-α-Amino Acids via Hydrosilylation. Chem Asian J 2023:e202300805. [PMID: 37906443 DOI: 10.1002/asia.202300805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
An efficient, practical and metal-free methodology for the synthesis of β-silyl-α-amino acid motifs via photoredox and hydrogen atom transfer (HAT) process is described. This protocol enables the direct hydrosilylation of dehydroalanine derivatives and tolerates a wide array of functional groups and synthetic handles, leading to valuable β-silyl-α-amino acids with moderate to good yields.
Collapse
Affiliation(s)
- Guo-Qin Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Ting Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Yue Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Yuan-Xia Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Dan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| |
Collapse
|
9
|
Shan X, Wang X, Chen E, Liu J, Lu K, Zhao X. Visible-Light-Promoted Trifluoromethylthiolation and Trifluoromethylselenolation of 1,4-Dihydropyridines. J Org Chem 2023; 88:319-328. [PMID: 36573495 DOI: 10.1021/acs.joc.2c02348] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We report a metal-free trifluoromethylthiolation and trifluoromethylselenolation of 1,4-dihydropyridines with S-(trifluoromethyl) 4-methylbenzenesulfonothioate and Se-(trifluoromethyl) 4-methylbenzenesulfonoselenoate under visible light irradiation. This transformation was tolerated with a wide range of functional groups and provided an alternative and green strategy for the synthesis of trifluoromethylthioesters and trifluoromethylselenoesters.
Collapse
Affiliation(s)
- Xiwen Shan
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China
| | - Xiaoxing Wang
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China
| | - Enxue Chen
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China
| | - Juyan Liu
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xia Zhao
- College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
10
|
Photoinduced cyclization of aryl ynones with 4-alkyl-DHPs for the divergent synthesis of indenones, thioflavones and spiro[5.5]trienones. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
11
|
Oroz P, Navo CD, Avenoza A, Busto JH, Corzana F, Jiménez-Osés G, Peregrina JM. Towards Enantiomerically Pure Unnatural α-Amino Acids via Photoredox Catalytic 1,4-Additions to a Chiral Dehydroalanine. J Org Chem 2022; 87:14308-14318. [PMID: 36179039 PMCID: PMC9639051 DOI: 10.1021/acs.joc.2c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chemo- and diastereoselective 1,4-conjugate additions of anionic and radical C-nucleophiles to a chiral bicyclic dehydroalanine (Dha) are described. Of particular importance, radical carbon photolysis by a catalytic photoredox process using a simple method with a metal-free photocatalyst provides exceptional yields and selectivities at room temperature. Moreover, these 1,4-conjugate additions offer an excellent starting point for synthesizing enantiomerically pure carbon-β-substituted unnatural α-amino acids (UAAs), which could have a high potential for applications in chemical biology.
Collapse
Affiliation(s)
- Paula Oroz
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Claudio D. Navo
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain
| | - Alberto Avenoza
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Jesús H. Busto
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Francisco Corzana
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Gonzalo Jiménez-Osés
- Center
for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building
800, 48160 Derio, Spain,Ikerbasque, Basque
Foundation for Science, 48013 Bilbao, Spain
| | - Jesús M. Peregrina
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain,
| |
Collapse
|
12
|
Luo Y, Wei Q, Yang L, Zhou Y, Cao W, Su Z, Liu X, Feng X. Enantioselective Radical Hydroacylation of α,β-Unsaturated Carbonyl Compounds with Aldehydes by Triplet Excited Anthraquinone. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04047] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yao Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qi Wei
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Liangkun Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
13
|
Navo CD, Oroz P, Mazo N, Blanco M, Peregrina JM, Jiménez-Osés G. Stereoselective α-Deuteration of Serine, Cysteine, Selenocysteine, and 2,3-Diaminopropanoic Acid Derivatives. Org Lett 2022; 24:6810-6815. [PMID: 36082943 DOI: 10.1021/acs.orglett.2c02715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Efficient methodologies for synthesizing enantiopure α-deuterated derivatives of serine, cysteine, selenocysteine, and 2,3-diaminopropanoic acid have been developed. H/D exchange was achieved by deprotonation of a chiral bicyclic serine equivalent followed by selective deuteration. Additionally, diastereoselective additions of thiols, selenols, and amines to a chiral bicyclic dehydroalanine in deuterated alcohols allowed site-selective deuteration at the Cα atom of cysteine, selenocysteine, and 2,3-diaminopropanoic acid derivatives. A deuterated analogue of carbocysteine, a drug for the treatment of bronchiectasis, was synthesized.
Collapse
Affiliation(s)
- Claudio D Navo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Paula Oroz
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Nuria Mazo
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Marina Blanco
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Jesús M Peregrina
- Departamento de Química, Centro de Investigación en Síntesis Química, Universidad de La Rioja, 26006 Logroño, La Rioja, Spain
| | - Gonzalo Jiménez-Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain.,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
14
|
Liu X, Shi F, Jin C, Liu B, Lei M, Tan J. Stereospecific synthesis of monofluoroalkenes and their deuterated analogues via Ag-catalyzed decarboxylation. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Matsuo BT, Oliveira PHR, Pissinati EF, Vega KB, de Jesus IS, Correia JTM, Paixao M. Photoinduced carbamoylation reactions: unlocking new reactivities towards amide synthesis. Chem Commun (Camb) 2022; 58:8322-8339. [PMID: 35843219 DOI: 10.1039/d2cc02585j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The preparation of amide-containing compounds is among the most interesting and challenging topics for the synthetic community. Such relevance is given by their reactive aspects explored in the context of organic synthesis and by the direct application of these compounds as pharmaceuticals and useful materials, and their key roles in biological structures. A simple and straightforward strategy for the amide moiety installation is the use of carbamoyl radicals - this nucleophilic one-electron intermediate is prone to undergo a series of transformations, providing a range of structurally relevant derivatives. In this review, we summarize the latest advances in the field from the perspective of photoinduced protocols. To this end, their synthetic applications are organized accordingly to the nature of the radical precursor (formamides through HAT, 4-substituted-1,4-dihydropyridines, oxamic acids, and N-hydroxyphthalimido esters), the mechanistic aspects also being highlighted. The discussion also includes a recent approach proceeding via photolytic C-S cleavage of dithiocarbamate-carbamoyl intermediates. By exploring fundamental concepts, this material aims to offer an understanding of the topic, which will encourage and facilitate the design of new synthetic strategies applying the carbamoyl radical.
Collapse
Affiliation(s)
- Bianca T Matsuo
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil. .,Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104-6323, USA
| | - Pedro H R Oliveira
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Emanuele F Pissinati
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Kimberly B Vega
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Iva S de Jesus
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Jose Tiago M Correia
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| | - Márcio Paixao
- Department of Chemistry, Federal University of São Carlos, Rodovia Washington Luís, km 235 - SP-310 - São Carlos, São Paulo, 13565-905, Brazil.
| |
Collapse
|
16
|
|
17
|
Guo Y, Huang PF, Liu Y, He BH. Visible-light-induced acylation/cyclization of active alkenes: facile access to acylated isoquinolinones. Org Biomol Chem 2022; 20:3767-3778. [PMID: 35438126 DOI: 10.1039/d2ob00528j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen heterocycles, especially polycyclic compounds, are significant skeletons in valuable molecules. Herein, we developed an efficient and practical visible-light-induced acylation/cyclization of active alkenes with acyl oxime derivatives for constructing acylated indolo/benzimidazo-[2,1,a]isoquinolin-6(5H) ones. This reaction was compatible with various functional groups and a series of fused indole/imidazole skeletons were prepared in up to 95% yield at room temperature.
Collapse
Affiliation(s)
- Yang Guo
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Bin-Hong He
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| |
Collapse
|
18
|
Peng X, Xu K, Zhang Q, Liu L, Tan J. Dehydroalanine modification sees the light: a photochemical conjugate addition strategy. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Chen P, Fan JH, Yu WQ, Xiong BQ, Liu Y, Tang KW, Xie J. Alkylation/Ipso-cyclization of Active Alkynes Leading to 3-Alkylated Aza- and Oxa-spiro[4,5]-trienones. J Org Chem 2022; 87:5643-5659. [PMID: 35416658 DOI: 10.1021/acs.joc.1c03118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A method for the preparation of 3-alkylated spiro[4.5]trienones via alkylation/ipso-cyclization of activated alkynes with 4-alkyl-DHPs under transition-metal-free conditions is proposed. This alkylation successively undergoes the generation of alkyl radicals, addition of alkyl radicals to the alkynes, and intramolecular ipso-cyclization. The mechanism studies suggest that the alkylation/ipso-cyclization involves a radical process. This ipso-cyclization procedure shows a series of advantages, such as accessibility, mild conditions, high efficiency, greater safety, and an environmentally friendly method.
Collapse
Affiliation(s)
- Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Wen-Qin Yu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jun Xie
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| |
Collapse
|
20
|
Murugesan K, Donabauer K, Narobe R, Derdau V, Bauer A, König B. Photoredox-Catalyzed Site-Selective Generation of Carbanions from C(sp 3)–H Bonds in Amines. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kathiravan Murugesan
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| | - Karsten Donabauer
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| | - Rok Narobe
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| | - Volker Derdau
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, Frankfurt am Main 65926, Germany
| | - Armin Bauer
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, Frankfurt am Main 65926, Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg 93053, Germany
| |
Collapse
|
21
|
Wang S, Zhou Q, Zhang X, Wang P. Site‐Selective Itaconation of Complex Peptides by Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University No. 800, Dongchuan Rd Shanghai 200240 China
| | - QingQing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University No. 800, Dongchuan Rd Shanghai 200240 China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University No. 800, Dongchuan Rd Shanghai 200240 China
| |
Collapse
|
22
|
Wang S, Zhou Q, Zhang X, Wang P. Site-Selective Itaconation of Complex Peptides by Photoredox Catalysis. Angew Chem Int Ed Engl 2022; 61:e202111388. [PMID: 34845804 DOI: 10.1002/anie.202111388] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 12/20/2022]
Abstract
Site-selective peptide functionalization provides a straightforward and cost-effective access to diversify peptides for biological studies. Among many existing non-invasive peptide conjugations methodologies, photoredox catalysis has emerged as one of the powerful approaches for site-specific manipulation on native peptides. Herein, we report a highly N-termini-specific method to rapidly access itaconated peptides and their derivatives through a combination of transamination and photoredox conditions. This strategy exploits the facile reactivity of peptidyl-dihydropyridine in the complex peptide settings, complementing existing approaches for bioconjugations with excellent selectivity under mild conditions. Distinct from conventional methods, this method utilizes the highly reactive carbamoyl radical derived from a peptidyl-dihydropyridine. In addition, this itaconated peptide can be further functionalized as a Michael acceptor to access the corresponding peptide-protein conjugate.
Collapse
Affiliation(s)
- Siyao Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, China
| | - QingQing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Ping Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai, 200240, China
| |
Collapse
|
23
|
Yu WQ, Fan JH, Chen P, Xiong B, Xie J, Tang K, Liu Y. Transition-Metal-Free Alkylation Strategy: A Facile Access of Alkylated Oxindoles via Alkyl Transfer. Org Biomol Chem 2022; 20:1958-1968. [DOI: 10.1039/d2ob00019a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient transition-metal-free alkylation/cyclization of activated alkenes using Hantzsch ester derivatives as effective alkyl reagents was described. A wide variety of valuable oxindoles were constructed in a single step with...
Collapse
|