1
|
Tejashree GL, Dave A, Kumbhakarna N, Chowdhury A, Namboothiri INN. 1,3-Bishomocubane: a kinetic rock, a thermodynamic powerhouse and a compelling chiral synthetic scaffold. Chem Commun (Camb) 2024; 60:14142-14154. [PMID: 39404493 DOI: 10.1039/d4cc04290e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Over the last several decades, saturated polycyclic cage compounds have remained a point of interest for organic chemists because of their unique characteristics and reactivity. For the first time, a detailed analysis of the synthesis, properties and transformations of 1,3-bishomocubanes, which fall under the rare category of chiral cage compounds, is provided in this article. This review which also includes the authors' work in this area over the last decade is expected to serve as a valuable resource for chemists interested in the fascinating chemistry and properties of polycyclic cage compounds.
Collapse
Affiliation(s)
- Gangavara L Tejashree
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India.
| | - Amrish Dave
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India.
| | - Neeraj Kumbhakarna
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | - Arindrajit Chowdhury
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | | |
Collapse
|
2
|
Lal S, Rao Cheekatla S, Suresh A, Ayyagari N, Mallick L, Pallikonda G, Desai P, Ahirwar P, Chowdhury A, Kumbhakarna N, Namboothiri INN. Synthesis, Characterization and Energetic Properties of Hydroxymethyl-Bishomocubanone Derivatives. Chemistry 2024; 30:e202401265. [PMID: 38863386 DOI: 10.1002/chem.202401265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
The present work reports synthesis, characterization and theoretical insights on novel hydroxymethyl-bishomocubanone derivatives. Twelve new bishomocubanes (BHCs) were synthesized and fully characterized by various spectroscopic techniques and single crystal X-ray analysis. The densities of the title compounds were in the range of 1.30-1.59 g/cm3. Density-functional theory (DFT) based calculations at B3LYP/6-311++G(d,p) level of theory were performed on ten selected BHC based cage compounds. Propulsive and ballistic properties of newly synthesized hydroxymethyl-bishomocubanone derivatives in solid and liquid propulsion systems were calculated, and the results suggested that these compounds are superior to conventional fuel RP1 and binder HTPB. The detonation parameters revealed that these compounds are not explosive in nature and safe to use as solid propellants. Furthermore, kinetic and thermal stabilities of the title compounds were determined by HOMO-LUMO energy gap, ESP maps, impact sensitivity (h50) and bond dissociation energies (BDEs) followed by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Three compounds, a dinitroazide (Isp,vac=310.98 s), a dinitrate (Isp,vac=309.51 s), and a dinitronitrate (Isp,vac=309.20s) were found to be excellent candidates for volume limited applications.
Collapse
Affiliation(s)
- Sohan Lal
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Subba Rao Cheekatla
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Alati Suresh
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Narasimham Ayyagari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Lovely Mallick
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Gangaram Pallikonda
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Poonam Desai
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Parmanand Ahirwar
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Arindrajit Chowdhury
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Neeraj Kumbhakarna
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | | |
Collapse
|
3
|
Křížková A, Bastien G, Rončević I, Císařová I, Rybáček J, Kašička V, Kaleta J. Chlorinated Cubane-1,4-dicarboxylic Acids. J Org Chem 2024; 89:11100-11108. [PMID: 36724049 PMCID: PMC11334191 DOI: 10.1021/acs.joc.2c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Indexed: 02/02/2023]
Abstract
Herein, we report radical chlorination of cubane-1,4-dicarboxylic acid leading preferentially to one monochlorinated cubane dicarboxylate (ca. 70%) that is accompanied by four dichlorinated derivatives (ca. 20% in total). The exact positions of the chlorine atoms have been confirmed by X-ray diffraction of the corresponding single crystals. The acidity constants of all dicarboxylic acids in water were determined by capillary electrophoresis (3.17 ± 0.04 and 4.09 ± 0.05 for monochlorinated and ca. 2.71 ± 0.05 and 3.75 ± 0.05 for dichlorinated cubanes). All chlorinated derivatives as well as the parent diacid showed high thermal stability (decomposition above 250 °C) as documented by differential scanning calorimetry. The probable reaction pathways leading to individual isomers were proposed, and the energies of individual transition states and intermediates were obtained using density functional theory calculations (B3LYP-D3BJ/6-311+G(d,p)). The relative strain energies for all newly prepared derivatives as well as for hypothetical hexahalogenated (fluorinated, chlorinated, brominated, and iodinated) derivatives of cubane-1,4-dicarboxylic acids were predicted using wavefunction theory methods. The hexafluorinated derivative was identified as the most strained compound (57.5 kcal/mol), and the relative strain decreased as the size of halogen atoms increased (23.7 for hexachloro, 16.7 for hexabromo, and 4.0 kcal/mol for the hexaiodo derivative).
Collapse
Affiliation(s)
- Adéla Křížková
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Guillaume Bastien
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Igor Rončević
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Ivana Císařová
- Department
of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128
40 Prague 2, Czech Republic
| | - Jiří Rybáček
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Václav Kašička
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Jiří Kaleta
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| |
Collapse
|
4
|
Tsien J, Hu C, Merchant RR, Qin T. Three-dimensional saturated C(sp 3)-rich bioisosteres for benzene. Nat Rev Chem 2024; 8:605-627. [PMID: 38982260 DOI: 10.1038/s41570-024-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 07/11/2024]
Abstract
Benzenes, the most ubiquitous structural moiety in marketed small-molecule drugs, are frequently associated with poor 'drug-like' properties, including metabolic instability, and poor aqueous solubility. In an effort to overcome these limitations, recent developments in medicinal chemistry have demonstrated the improved physicochemical profiles of C(sp3)-rich bioisosteric scaffolds relative to arenes. In the past two decades, we have witnessed an exponential increase in synthetic methods for accessing saturated bioisosteres of monosubstituted and para-substituted benzenes. However, until recent discoveries, analogous three-dimensional ortho-substituted and meta-substituted biososteres have remained underexplored, owing to their ring strain and increased s-character hybridization. This Review summarizes the emerging synthetic methodologies to access such saturated motifs and their impact on the application of bioisosteres for ortho-substituted, meta-substituted and multi-substituted benzene rings. It concludes with a perspective on the development of next-generation bioisosteres, including those within novel chemical space.
Collapse
Affiliation(s)
- Jet Tsien
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Hu
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rohan R Merchant
- Department of Discovery Chemistry, Merck & Co., Inc., South San Francisco, CA, USA
| | - Tian Qin
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Cuadros S, Paut J, Anselmi E, Dagousset G, Magnier E, Dell'Amico L. Light-Driven Synthesis and Functionalization of Bicycloalkanes, Cubanes and Related Bioisosteres. Angew Chem Int Ed Engl 2024; 63:e202317333. [PMID: 38179801 DOI: 10.1002/anie.202317333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Bicycloalkanes, cubanes and their structural analogues have emerged as bioisosteres of (hetero)arenes. To meet increasing demand, the chemical community has developed a plethora of novel synthetic methods. In this review, we assess the progress made in the field of light-driven construction and functionalization of such relevant molecules. We have focused on diverse structural targets, as well as on reaction processes giving access to: (i) [1.1.1]-bicyclopentanes (BCPs); (ii) [2.2.1]-bicyclohexanes (BCHs); (iii) [3.1.1]-bicycloheptanes (BCHeps); and (iv) cubanes; as well as other structurally related scaffolds. Finally, future perspectives dealing with the identification of novel reaction manifolds to access new functionalized bioisosteric units are discussed.
Collapse
Affiliation(s)
- Sara Cuadros
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Julien Paut
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
| | - Elsa Anselmi
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
- Université de Tours, Faculté des Sciences et Techniques, 37200, Tours, France
| | - Guillaume Dagousset
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
| | - Emmanuel Magnier
- Institut Lavoisier de Versailles, University of Paris-Saclay, 45 Avenue des Etats-Unis, 78035, Versailles, France
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
6
|
Hosaka M, Nagasawa S, Iwabuchi Y. C-H Alkylation of Cubanes via Catalytic Generation of Cubyl Radicals. Org Lett 2024; 26:658-663. [PMID: 38236029 DOI: 10.1021/acs.orglett.3c04019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A catalytic method for the C-H alkylation of cubanes is described. Some hydrogen atom transfer catalysts enable the direct abstraction of a hydrogen atom from the C-H bond of cubanes, followed by conjugate addition of the generated cubyl radicals to electron-deficient alkenes. Synthetic applications of the functionalization method developed are also described.
Collapse
Affiliation(s)
- Masaki Hosaka
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Shota Nagasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
7
|
Donnier-Valentin L, Kassamba S, Legros J, Fressigné C, Vuluga D, Brown RCD, Linclau B, De Paolis M. Photoinduced Formation of Cubyl Aryl Thioethers and Synthesis of Monocubyl Analogue of Dapsone. Org Lett 2023. [PMID: 37991751 DOI: 10.1021/acs.orglett.3c03372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
1,4-Disubstituted cubyl aryl thioethers were generated from the corresponding iodocubanes and aryl thiolates upon UV irradiation in dimethyl sulfoxide at room temperature. This simple procedure was found to be compatible with a variety of substituted aryl thiolates. This finding paved the way to a synthesis of the monocubyl analogue of dapsone, a key molecule in the treatment of leprosy, also known as Hansen's disease, and of acne.
Collapse
Affiliation(s)
| | - Seydou Kassamba
- Normandie Univ, UNIROUEN, COBRA, INSA Rouen, CNRS, 76000 Rouen, France
| | - Julien Legros
- Normandie Univ, UNIROUEN, COBRA, INSA Rouen, CNRS, 76000 Rouen, France
| | | | - Daniela Vuluga
- INSA Rouen, PBS, UMR 6270, CNRS, 76801 Saint-Etienne-du-Rouvray, France
| | - Richard C D Brown
- Department of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Bruno Linclau
- Department of Organic and Molecular Chemistry, Ghent University, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Michaël De Paolis
- Normandie Univ, UNIROUEN, COBRA, INSA Rouen, CNRS, 76000 Rouen, France
| |
Collapse
|
8
|
Reinhold M, Steinebach J, Golz C, Walker JCL. Synthesis of polysubstituted bicyclo[2.1.1]hexanes enabling access to new chemical space. Chem Sci 2023; 14:9885-9891. [PMID: 37736652 PMCID: PMC10510755 DOI: 10.1039/d3sc03083k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
Saturated bridged-bicyclic compounds are currently under intense investigation as building blocks for pharmaceutical drug design. However, the most common methods for their preparation only provide access to bridgehead-substituted structures. The synthesis of bridge-functionalised species is highly challenging but would open up many new opportunities for molecular design. We describe a photocatalytic cycloaddition reaction that provides unified access to bicyclo[2.1.1]hexanes with 11 distinct substitution patterns. Bridge-substituted structures that represent ortho-, meta-, and polysubstituted benzene bioisosteres, as well as those that enable the investigation of chemical space inaccessible to aromatic motifs can all be prepared using this operationally simple protocol. Proof-of-concept examples of the application of the method to the synthesis of saturated analogues of biorelevant trisubstituted benzenes are also presented.
Collapse
Affiliation(s)
- Marius Reinhold
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Justin Steinebach
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| | - Johannes C L Walker
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstr. 2 37077 Göttingen Germany
| |
Collapse
|
9
|
Paul S, Adelfinsky D, Salome C, Fessard T, Brown MK. 2,5-disubstituted bicyclo[2.1.1]hexanes as rigidified cyclopentane variants. Chem Sci 2023; 14:8070-8075. [PMID: 37538817 PMCID: PMC10395266 DOI: 10.1039/d3sc02695g] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Identification of rigid counterparts for common flexible scaffolds is crucial to the advancement of medicinal chemistry. Here we showcase a new class of building blocks, 2,5-disubstituted bicyclo[2.1.1]hexanes that can act as rigidified cis-, or trans-1,3-disubstituted cyclopentanes, common motifs in drugs. The scalable synthesis of these structures was enabled through the use of C-H functionalization logic and cycloaddition reactions.
Collapse
Affiliation(s)
- Shashwati Paul
- Department of Chemistry, Indiana University 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Daniel Adelfinsky
- Department of Chemistry, Indiana University 800 E. Kirkwood Ave Bloomington IN 47405 USA
| | - Christophe Salome
- SpiroChem AG Rosental Area, WRO-1047-3, Mattenstrasse 22 4058 Basel Switzerland
| | - Thomas Fessard
- SpiroChem AG Rosental Area, WRO-1047-3, Mattenstrasse 22 4058 Basel Switzerland
| | - M Kevin Brown
- Department of Chemistry, Indiana University 800 E. Kirkwood Ave Bloomington IN 47405 USA
| |
Collapse
|
10
|
Wiesenfeldt MP, Rossi-Ashton JA, Perry IB, Diesel J, Garry OL, Bartels F, Coote SC, Ma X, Yeung CS, Bennett DJ, MacMillan DWC. General access to cubanes as benzene bioisosteres. Nature 2023; 618:513-518. [PMID: 37015289 PMCID: PMC10680098 DOI: 10.1038/s41586-023-06021-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/27/2023] [Indexed: 04/06/2023]
Abstract
The replacement of benzene rings with sp3-hybridized bioisosteres in drug candidates generally improves pharmacokinetic properties while retaining biological activity1-5. Rigid, strained frameworks such as bicyclo[1.1.1]pentane and cubane are particularly well suited as the ring strain imparts high bond strength and thus metabolic stability on their C-H bonds. Cubane is the ideal bioisostere as it provides the closest geometric match to benzene6,7. At present, however, all cubanes in drug design, like almost all benzene bioisosteres, act solely as substitutes for mono- or para-substituted benzene rings1-7. This is owing to the difficulty of accessing 1,3- and 1,2-disubstituted cubane precursors. The adoption of cubane in drug design has been further hindered by the poor compatibility of cross-coupling reactions with the cubane scaffold, owing to a competing metal-catalysed valence isomerization8-11. Here we report expedient routes to 1,3- and 1,2-disubstituted cubane building blocks using a convenient cyclobutadiene precursor and a photolytic C-H carboxylation reaction, respectively. Moreover, we leverage the slow oxidative addition and rapid reductive elimination of copper to develop C-N, C-C(sp3), C-C(sp2) and C-CF3 cross-coupling protocols12,13. Our research enables facile elaboration of all cubane isomers into drug candidates, thus enabling ideal bioisosteric replacement of ortho-, meta- and para-substituted benzenes.
Collapse
Affiliation(s)
| | | | - Ian B Perry
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | - Johannes Diesel
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | - Olivia L Garry
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | - Florian Bartels
- Merck Center for Catalysis at Princeton University, Princeton, NJ, USA
| | | | - Xiaoshen Ma
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - Charles S Yeung
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | - David J Bennett
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, MA, USA
| | | |
Collapse
|
11
|
Nagasawa S, Hosaka M, Iwabuchi Y. ortho-C-H Acetoxylation of Cubane Enabling Access to Cubane Analogues of Pharmaceutically Relevant Scaffolds. Org Lett 2021; 23:8717-8721. [PMID: 34672601 DOI: 10.1021/acs.orglett.1c03144] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel method of introducing an oxygen functionality into a cubane core was developed using a transition-metal-catalyzed directed acetoxylation methodology via C-H activation. The obtained compounds were derivatized into cubane analogues of pharmaceutically relevant structural motifs, namely, acetylsalicylic acid and coumarin motifs, which could potentially act as bioisosteres of these scaffolds.
Collapse
Affiliation(s)
- Shota Nagasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Masaki Hosaka
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
12
|
Subbaiah MAM, Meanwell NA. Bioisosteres of the Phenyl Ring: Recent Strategic Applications in Lead Optimization and Drug Design. J Med Chem 2021; 64:14046-14128. [PMID: 34591488 DOI: 10.1021/acs.jmedchem.1c01215] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The benzene moiety is the most prevalent ring system in marketed drugs, underscoring its historic popularity in drug design either as a pharmacophore or as a scaffold that projects pharmacophoric elements. However, introspective analyses of medicinal chemistry practices at the beginning of the 21st century highlighted the indiscriminate deployment of phenyl rings as an important contributor to the poor physicochemical properties of advanced molecules, which limited their prospects of being developed into effective drugs. This Perspective deliberates on the design and applications of bioisosteric replacements for a phenyl ring that have provided practical solutions to a range of developability problems frequently encountered in lead optimization campaigns. While the effect of phenyl ring replacements on compound properties is contextual in nature, bioisosteric substitution can lead to enhanced potency, solubility, and metabolic stability while reducing lipophilicity, plasma protein binding, phospholipidosis potential, and inhibition of cytochrome P450 enzymes and the hERG channel.
Collapse
Affiliation(s)
- Murugaiah A M Subbaiah
- Department of Medicinal Chemistry, Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Bommasandra IV Phase, Jigani Link Road, Bangalore, Karnataka 560099, India
| | - Nicholas A Meanwell
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| |
Collapse
|