1
|
Sedighi RE, Behzad M, Azizi N. Metallosalen modified carbon nitride a versatile and reusable catalyst for environmentally friendly aldehyde oxidation. Sci Rep 2024; 14:8498. [PMID: 38605107 PMCID: PMC11009278 DOI: 10.1038/s41598-024-58946-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
The development of environmentally friendly catalysts for organic transformations is of great importance in the field of green chemistry. Aldehyde oxidation reactions play a crucial role in various industrial processes, including the synthesis of pharmaceuticals, agrochemicals, and fine chemicals. This paper presents the synthesis and evaluation of a new metallosalen carbon nitride catalyst named Co(salen)@g-C3N4. The catalyst was prepared by doping salicylaldehyde onto carbon nitride, and subsequently, incorporating cobalt through Schiff base chemistry. The Co(salen)@g-C3N4 catalyst was characterized using various spectroscopic techniques including Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Infrared Spectroscopy (IR), and Thermogravimetric Analysis (TGA). Furthermore, after modification with salicylaldehyde, the carbon nitride component of the catalyst exhibited remarkable yields (74-98%) in oxidizing various aldehyde derivatives (20 examples) to benzoic acid. This oxidation reaction was carried out under mild conditions and resulted in short reaction times (120-300 min). Importantly, the catalyst demonstrated recyclability, as it could be reused for five consecutive runs without any loss of activity. The reusable nature of the catalyst, coupled with its excellent yields in oxidation reactions, makes it a promising and sustainable option for future applications.
Collapse
Affiliation(s)
| | - Mahdi Behzad
- Faculty of Chemistry, Semnan University, Semnan, Iran.
| | - Najmedin Azizi
- Chemistry and Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| |
Collapse
|
2
|
Sahoo SS, Kataria P, Kontham R. Concise and collective total syntheses of 2,4-disubstituted furan-derived natural products from hydroxyoxetanyl ketones. Org Biomol Chem 2024; 22:1475-1483. [PMID: 38284832 DOI: 10.1039/d3ob01924a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The furan moiety, prevalent in bioactive natural products and essential drugs, presents intriguing structural features that have spurred our exploration into streamlined chemical synthesis routes for related natural products. In this study, we demonstrate the concise total synthesis of eight 2,4-disubstituted furan-derived natural products (including methylfuroic acid, rabdoketones A and B, paleofurans A and B, tournefolin C, and shikonofurans A and B). Our methodology revolves around the utilization of hydroxyoxetanyl ketones as pivotal intermediates. The approach encompasses transformations such as selective organo-catalyzed cross-ketol addition, synthesis of hydroxymethyl-tethered furans through Bi(OTf)3 catalyzed dehydrative cycloisomerization of α-hydroxyoxetanyl ketones, and a hydrogen atom transfer (HAT)-mediated oxidation of primary alcohols into the corresponding acids. This comprehensive synthetic strategy highlights the versatility of hydroxyoxetanyl ketones as invaluable building blocks in the synthesis of furan-containing natural products.
Collapse
Affiliation(s)
- Shubhranshu Shekhar Sahoo
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Priyanka Kataria
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ravindar Kontham
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
3
|
Joshi H, Paul D, Sathyamoorthi S. Oxidations of Alcohols, Aldehydes, and Diols Using NaBr and Selectfluor. J Org Chem 2023; 88:11240-11252. [PMID: 37490704 PMCID: PMC10804234 DOI: 10.1021/acs.joc.3c01307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
We present protocols for the oxidation of alcohols and aldehydes and for the oxidative cyclization of diols which use a combination of Selectfluor and NaBr. For most substrates, the optimal solvent system is a 1:1 mixture of CH3CN/H2O, but, in select cases, biphasic 1:1 mixtures of EtOAc/H2O or CH2Cl2/H2O are superior. This procedure is operationally simple, uses inexpensive and readily available reagents, and tolerates a variety of functional groups. Mechanistic studies suggest that the active oxidant is hypobromous acid, generated by the almost instantaneous oxidation of Br- by Selectfluor in an aqueous milieu.
Collapse
Affiliation(s)
- Harshit Joshi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Debobrata Paul
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | - Shyam Sathyamoorthi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
4
|
Wang X, Guo X, Wang X, Li C, Wang S, Li H, Gao Y, Li Y, Wang J, Xu H. Conversion of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid by a simple and metal-free catalytic system. RSC Adv 2023; 13:13819-13823. [PMID: 37181510 PMCID: PMC10170353 DOI: 10.1039/d3ra01104f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023] Open
Abstract
A simple and metal-free catalytic system composed of NaOtBu/DMF and an O2 balloon efficiently converted 5-hydroxymethylfurfural (5-HMF) to furan-2,5-dicarboxylic acid with an 80.85% yield. 5-HMF analogues and various types of alcohols were also transformed to their corresponding acids in satisfactory to excellent yield by this catalytic system.
Collapse
Affiliation(s)
- Xue Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University Harbin China
| | - Xinyuan Guo
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Xinmei Wang
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Chi Li
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Shanjun Wang
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Han Li
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Yan'an Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical, Island Resources, Hainan University Haikou 570228 China
| | - Yiying Li
- College of Basic Medicine and Life Sciences, Hainan Medical University Haikou China
| | - Jinhui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University Harbin China
- Key Laboratory of Child Cognition and Behavior Development of Hainan Province, Qiongtai Normal University Haikou China
| | - Huanjun Xu
- School of Science, Qiongtai Normal University Haikou 571127 China
- Key Laboratory of Child Cognition and Behavior Development of Hainan Province, Qiongtai Normal University Haikou China
| |
Collapse
|
5
|
Tang Y, Han Z, Zhang H, Che L, Liao G, Peng J, Lin Y, Wang Y. Characterization of Calculus bovis by principal component analysis assisted qHNMR profiling to distinguish nefarious frauds. J Pharm Biomed Anal 2023; 228:115320. [PMID: 36871364 DOI: 10.1016/j.jpba.2023.115320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
A new approach is developed for the reliable classification of Calculus bovis along with the identification of willfully contaminated C. bovis species and the quantification of unclaimed adulterants. Guided by a principal component analysis, NMR data mining achieved a near-holistic chemical characterization of three types of authenticated C. bovis, including natural C. bovis (NCB), in vitro cultured C. bovis (Ivt-CCB), and artificial C. bovis (ACB). In addition, species-specific markers used for quality evaluation and species classification were confirmed. That is, the content of taurine in NCB is near negligible, while choline and hyodeoxycholic acid are characteristic for identifying Ivt-CCB and ACB, respectively. Besides, the peak shapes and chemical shifts of H2-25 of glycocholic acid could assist in the recognition of the origins of C. bovis. Based on these discoveries, a set of commercial NCB samples, macroscopically identified as problematic species, was examined with deliberately added sugars and outliers discovered. Absolute quantification of the identified sugars was realized by qHNMR using a single, nonidentical internal calibrant (IC). This study represents the first systematic study of C. bovis metabolomics via an NMR-driven methodology, which advances the toolbox for quality control of TCM and provides a more definitive reference point for future chemical and biological studies of C. bovis as a valuable materia medica.
Collapse
Affiliation(s)
- Yu Tang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China.
| | - Zhu Han
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Han Zhang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Li Che
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361116, China.
| | - Genjie Liao
- Xiamen Traditional Chinese Medicine Co., Ltd., Xiamen 361116, China.
| | - Jun Peng
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Yu Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Yi Wang
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China.
| |
Collapse
|
6
|
Jeong D, Kim H, Cho J. Oxidation of Aldehydes into Carboxylic Acids by a Mononuclear Manganese(III) Iodosylbenzene Complex through Electrophilic C-H Bond Activation. J Am Chem Soc 2023; 145:888-897. [PMID: 36598425 DOI: 10.1021/jacs.2c09274] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The oxidation of aldehyde is one of the fundamental reactions in the biological system. Various synthetic procedures and catalysts have been developed to convert aldehydes into corresponding carboxylic acids efficiently under ambient conditions. In this work, we report the oxidation of aldehydes by a mononuclear manganese(III) iodosylbenzene complex, [MnIII(TBDAP)(OIPh)(OH)]2+ (1), with kinetic and mechanistic studies in detail. The reaction of 1 with aldehydes resulted in the formation of corresponding carboxylic acids via a pre-equilibrium state. Hammett plot and reaction rates of 1 with 1°-, 2°-, and 3°-aldehydes revealed the electrophilicity of 1 in the aldehyde oxidation. A kinetic isotope effect experiment and reactivity of 1 toward cyclohexanecarboxaldehyde (CCA) analogues indicate that the reaction of 1 with aldehyde occurs through the rate-determining C-H bond activation at the formyl group. The reaction rate of 1 with CCA is correlated to the bond dissociation energy of the formyl group plotting a linear correlation with other aliphatic C-H bonds. Density functional theory calculations found that 1 electrostatically interacts with CCA at the pre-equilibrium state in which the C-H bond activation of the formyl group is performed as the most feasible pathway. Surprisingly, the rate-determining step is characterized as hydride transfer from CCA to 1, affording an (oxo)methylium intermediate. At the fundamental level, it is revealed that the hydride transfer is composed of H atom abstraction followed by a fast electron transfer. Catalytic reactions of aldehydes by 1 are also presented with a broad substrate scope. This novel mechanistic study gives better insights into the metal oxygen chemistry and would be prominently valuable for development of transition metal catalysts.
Collapse
Affiliation(s)
- Donghyun Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Hyokyung Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea.,Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan44919, Republic of Korea
| |
Collapse
|
7
|
Chowdhury B, Mehebub Rahaman S, Ghosh A, Mahali K, Sar P, Saha B. Synergistic reinforcement of CPC/TX-100 mixed micellar microenvironment for diperiodatocuprate(III) (DPC) oxidation of 1-propanol and 1,3-propanediol. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Qiu J, Boskin D, Oleson D, Wu W, Anderson M. Plasmon-enhanced electrochemical oxidation of 4-(hydroxymethyl)benzoic acid. J Chem Phys 2022; 157:081101. [DOI: 10.1063/5.0106914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plasmon-mediated electrocatalysis based on plasmonic gold nanoparticles (Au NPs) has emerged as a promising approach to facilitate electrochemical reactions with the introduction of light to excite the plasmonic electrodes. We have investigated the electrochemical oxidation of 4-(hydroxymethyl)benzoic acid (4-HMBA) on gold (Au), nickel (Ni), and platinum (Pt) metal working electrodes in alkaline electrolytes. Au has the lowest onset potential for catalyzing the electrooxidation of 4-HMBA among the three metals in base whereas Pt does not catalyze the electrooxidation of 4-HMBA under alkaline conditions, although it is conventionally a good electrocatalyst for alcohol oxidation. Both 4-carboxybenzaldehyde and terephthalic acid are detected as the products of electrochemical oxidation of 4-HMBA on the Au working electrode by high-performance liquid chromatography (HPLC). The electrodeposited Au NPs on indium tin oxide (ITO)-coated glass is further utilized as the working electrode for the 4-HMBA electrooxidation. With its broad absorption in the visible and near-infrared (NIR) range, we show that the Au NPs on the ITO electrode could enhance the electrochemical oxidation of 4-HMBA under green and red LED light illuminations (505 nm and 625 nm). A possible reaction mechanism is proposed for the electrochemical oxidation of 4-HMBA on Au working electrodes in an alkaline electrolyte.
Collapse
Affiliation(s)
- Jingjing Qiu
- Chemistry and Biochemistry, San Francisco State University, United States of America
| | - Daniel Boskin
- San Francisco State University, United States of America
| | - Dallas Oleson
- San Francisco State University, United States of America
| | - Weiming Wu
- San Francisco State University, United States of America
| | - Marc Anderson
- San Francisco State University, United States of America
| |
Collapse
|
9
|
Sasaki Y, Yokoo K, Mori K. Catalytic Magnesium-Oppenauer Oxidation of Alcohols. CHEM LETT 2022. [DOI: 10.1246/cl.220022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuta Sasaki
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588
| | - Kazuma Yokoo
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588
| | - Keiji Mori
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588
| |
Collapse
|