1
|
Song H, Wang Q, Wang X, Pan Y, Li J, Duan XH, Hu M. Synthesis of α,α-Difluoromethylene Amines from Thioamides Using Silver Fluoride. J Org Chem 2024; 89:14341-14347. [PMID: 39292538 DOI: 10.1021/acs.joc.4c01752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
We developed a mild, rapid process employing AgF and thioamides to produce α,α-difluoromethylene amines efficiently. This method exhibited remarkable tolerance toward various functional groups present in N-sulfonylthioamides, thereby broadening the scope of difluoromethylene sulfonamides through a straightforward approach. Additionally, we applied this approach to synthesize various perfluoroalkyl amines, establishing practical synthetic routes for exploring these compounds in pharmaceutical chemistry and materials science.
Collapse
Affiliation(s)
- Haixia Song
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qin Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoying Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yu Pan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jing Li
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingyou Hu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Zhu Z, Tang J, Kyriazakos S, Knieb A, Xu Y, Zhang C, Prakash GKS. Mono- and Difluoromethylation of 3(2 H)-Pyridazinones. Org Lett 2024. [PMID: 39264299 DOI: 10.1021/acs.orglett.4c03002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A method for direct N-monofluoromethylation of pyridazinones with S-monofluoromethyl-S-phenyl-2,3,4,5-tetramethylphenylsulfonium triflate is disclosed. A method for the N- and O-difluoromethylated pyridazinones with TMSCF2Br as the only promising difluorocarbene precursor is also reported. Substrates with various relevant functional groups, including analogues of Lynparza, are tolerated under both methods.
Collapse
Affiliation(s)
- Ziyue Zhu
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Jiaqi Tang
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Samantha Kyriazakos
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Alexander Knieb
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Yijie Xu
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Chao Zhang
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
3
|
Zivkovic F, Wycich G, Liu L, Schoenebeck F. Access to N-Difluoromethyl Amides, (Thio)Carbamates, Ureas, and Formamides. J Am Chem Soc 2024; 146:1276-1281. [PMID: 38180777 PMCID: PMC10913043 DOI: 10.1021/jacs.3c13711] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
The first efficient access to N-difluoromethyl amides, carbamates, thiocarbamates, ureas, formamides, and their derivatives is reported herein. The synthetic strategy relies on the initial synthesis and straightforward derivatization of N-CF2H carbamoyl fluorides, which were prepared through a desulfurization-fluorination of thioformamides (─NH─C(H)═S) coupled with carbonylation. The newly made N-CF2H carbonyl compounds proved to be highly robust and compatible with numerous chemical transformations and downstream derivatizations, underscoring the potential of this novel motif as a building block in complex functional molecules.
Collapse
Affiliation(s)
- Filip
G. Zivkovic
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Gina Wycich
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Linhao Liu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
4
|
Zhu J, Xu M, Gong B, Lin A, Gao S. ( Z)-Selective Synthesis of Bromofluoroalkenes via the TMSCF 2Br-Mediated Tandem Reaction with para-Quinone Methides. Org Lett 2023; 25:3271-3275. [PMID: 37104568 DOI: 10.1021/acs.orglett.3c01007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
We report herein a tandem reaction of para-quinone methides with TMSCF2Br to construct bromofluoroalkenes in a Z-selective manner. While TMSCF2Br has been documented as the precursor of difluoro carbene, it exhibits another possibility in this transformation, a formal bromofluoro carbene surrogate. The alkenyl bromide unit of the products could directly engage in a variety of transformations.
Collapse
Affiliation(s)
- Jie Zhu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Menghua Xu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Baihui Gong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shang Gao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
5
|
Liu A, Ni C, Xie Q, Hu J. Transition-Metal-Free Controllable Single and Double Difluoromethylene Formal Insertions into C-H Bonds of Aldehydes with TMSCF 2 Br. Angew Chem Int Ed Engl 2023; 62:e202217088. [PMID: 36517973 DOI: 10.1002/anie.202217088] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
We have developed a new strategy for controllable single and double difluoromethylene (CF2 ) formal insertions into C-H bonds of aldehydes with nearly full selectivity under transition-metal-free conditions. The key to the success of controllable CF2 insertions lies in the well-defined formation of 2,2-difluoroenolsilyl ether and 2,2,3,3-tetrafluorocyclopropanolsilyl ether intermediates using difluorocarbene reagent TMSCF2 Br (TMS=trimethylsilyl). These two intermediates can react with various electrophiles including proton sources and various halogenation reagents, allowing for the access to diverse arrays of ketones containing difluoromethylene (CF2 ) and tetrafluoroethylene (CF2 CF2 ) units. The first synthesis of relatively stable 2,2,3,3-tetrafluorocyclopropanolsilyl ethers has been achieved, which offers a new platform to explore other unknown chemical space.
Collapse
Affiliation(s)
- An Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Qiqiang Xie
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
6
|
Lu D, Chen S, Tang N, Yin SF, Kambe N, Qiu R. Copper-Catalyzed Cyclization of 2-Alkynylanilines to Give 2-Haloalkoxy-3-alkyl(aryl)quinolines. Org Lett 2023; 25:676-681. [PMID: 36682056 DOI: 10.1021/acs.orglett.2c04314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Herein we describe a method to produce 2-haloalkoxy-3-substituted quinolines via the cyclization of 2-alkynylanilines with TMSCF3 and THF. This synthetic method uses inexpensive and easy-to-handle TMSCF3 and employs a commercially available CuI catalyst to transform a broad range of 2-alkynylanilines into versatile 2-difluoromethoxy-3-substituted quinolines and 2-iodoalkoxy-3-substituted quinolines with excellent chemoselectivity.
Collapse
Affiliation(s)
- Dong Lu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Songhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Niu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Nobuaki Kambe
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China.,Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
7
|
Li SW, Wang G, Ye ZS. Difluorocarbene Enabled Ester Insertion/1,4-Acyl Rearrangement of 2-Acetoxylpyridines: Modular Access to gem-Difluoromethylenated 2-Pyridones. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
8
|
Newton JJ, Engüdar G, Brooke AJ, Nodwell MB, Horngren-Rhodes H, Martin RE, Schaffer P, Britton R, Friesen CM. Rapid 18 F- and 19 F-Difluoromethylation through Desulfurative Fluorination of Transient N-, O-, and C-Linked Dithioles. Chemistry 2023; 29:e202202862. [PMID: 36318597 DOI: 10.1002/chem.202202862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 12/14/2022]
Abstract
The difluoromethyl group plays an important role in modern medicinal and agrochemistry. While several difluoromethylation reagents have been reported, these typically rely on difluoromethyl carbenes or anions, or target specific processes. Here, we describe a conceptually unique and general process for O-H, N-H and C-H difluoromethylation that involves the formation of a transient dithiole followed by facile desulfurative fluorination using silver(I) fluoride. We also introduce the 5,6-dimethoxy-1,3-benzodithiole (DMBDT) function, which undergoes sufficiently rapid desulfurative fluorination to additionally support 18 F-difluoromethylation. This new process is compatible with the wide range of functional groups typically encountered in medicinal chemistry campaigns, and the use of Ag18 F is demonstrated in the production of 18 F-labeled derivatives of testosterone, perphenazine, and melatonin, 58.0±2.2, 20.4±0.3 and 32.2±3.6 MBq μmol-1 , respectively. We expect that the DMBDT group and this 18 F/19 F-difluoromethylation process will inspire and support new efforts in medicinal chemistry, agrochemistry and radiotracer production.
Collapse
Affiliation(s)
- Josiah J Newton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.,Neufeld Science Centre, Department of Chemistry, Trinity Western University, 22500 University Drive, Langley, British Columbia, V2Y 1Y1, Canada
| | - Gökçe Engüdar
- Life Sciences Division, TRIUMF Vancouver, British Columbia, V6T 2A3(Canada), Department of Radiology, 775 Laurel Street, 11th floor, Vancouver, BC V5Z 1M9, Canada
| | - Alan J Brooke
- Neufeld Science Centre, Department of Chemistry, Trinity Western University, 22500 University Drive, Langley, British Columbia, V2Y 1Y1, Canada
| | - Matthew B Nodwell
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Holly Horngren-Rhodes
- Neufeld Science Centre, Department of Chemistry, Trinity Western University, 22500 University Drive, Langley, British Columbia, V2Y 1Y1, Canada
| | - Rainer E Martin
- Medicinal Chemistry, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Paul Schaffer
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada.,Life Sciences Division, TRIUMF Vancouver, British Columbia, V6T 2A3(Canada), Department of Radiology, 775 Laurel Street, 11th floor, Vancouver, BC V5Z 1M9, Canada
| | - Robert Britton
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, V5A 1S6, Canada
| | - Chadron M Friesen
- Neufeld Science Centre, Department of Chemistry, Trinity Western University, 22500 University Drive, Langley, British Columbia, V2Y 1Y1, Canada
| |
Collapse
|
9
|
Zhu Z, Xu Y, Krishnamurti V, Koch CJ, Ispizua-Rodriguez X, Barrett C, Prakash GS. Synthesis of difluoromethylated formimidamides from primary aryl amines using TMSCF2Br as a dual C1 synthon. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Barrett C, Krishnamurti V, Ispizua-Rodriguez X, Zhu Z, Koch CJ, Surya Prakash GK. gem-Halofluorocyclopropanes via [2 + 1] Cycloadditions of In Situ Generated CFX Carbene with Alkenes. Org Lett 2022; 24:5417-5421. [PMID: 35838585 DOI: 10.1021/acs.orglett.2c02126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient and operationally simple synthesis of gem-bromofluorocyclopropanes under mild conditions has been developed. The method employs ethyl dibromofluoroacetate (EDBFA) as an accessible and inexpensive source of the bromofluorocarbene (:CFBr) intermediate. The protocol provides the bromofluorocyclopropane products in excellent yields, including examples synthesized in multigram scales. The chlorinated ester, ethyl dichlorofluoroacetate (EDCFA), is also utilized to make the analogous gem-chlorofluorocyclopropanes.
Collapse
Affiliation(s)
- Colby Barrett
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Vinayak Krishnamurti
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Xanath Ispizua-Rodriguez
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Ziyue Zhu
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Christopher J Koch
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
11
|
Liu R, Hu J. Synthesis of Aryl Perfluorocyclopropyl Ethers via [2 + 1] Cyclopropanation Using TMSCF 2Br Reagent. Org Lett 2022; 24:3589-3593. [PMID: 35467891 DOI: 10.1021/acs.orglett.2c00958] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aryl perfluorocyclopropyl ethers have been synthesized for the first time by [2 + 1] cyclopropanation between aryl trifluorovinyl ethers and a commercially available TMSCF2Br reagent. This cycloaddition reaction between two fluorine-containing reactants proceeds smoothly in toluene at 120 °C in the presence of a catalytic amount of n-Bu4NBr, and the reaction tolerates a variety of functional groups. A wide range of aryl trifluorovinyl ethers, easily accessible from phenols, were successfully transformed to aryl perfluorocyclopropyl ethers.
Collapse
Affiliation(s)
- Ran Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
12
|
Liu A, Ni C, Xie Q, Hu J. TMSCF
2
Br‐Enabled Fluorination–Aminocarbonylation of Aldehydes: Modular Access to α‐Fluoroamides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- An Liu
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Qiqiang Xie
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Ling-Ling Road Shanghai 200032 China
| |
Collapse
|
13
|
Liu A, Ni C, Xie Q, Hu J. TMSCF 2 Br-Enabled Fluorination-Aminocarbonylation of Aldehydes: Modular Access to α-Fluoroamides. Angew Chem Int Ed Engl 2021; 61:e202115467. [PMID: 34919312 DOI: 10.1002/anie.202115467] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 01/03/2023]
Abstract
A protocol for the modular assembly of the α-fluoroamide motif has been developed, which provides a practical method for the efficient synthesis of structurally diverse α-fluoroamides from easily available aldehydes and tertiary amines through a three-component fluorination-aminocarbonylation process. The key to the success of this process is taking advantage of the multiple roles of the unique difluorocarbene reagent TMSCF2 Br (TMS=trimethylsilyl). The mechanism of the process involves the 1,2-fluorine and oxygen migrations of the in situ formed TMS-protected α-aminodifluoromethyl carbinol intermediates, which represents a new type of deoxyfluorination reaction.
Collapse
Affiliation(s)
- An Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Qiqiang Xie
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, China
| |
Collapse
|
14
|
Zhang R, Li Q, Xie Q, Ni C, Hu J. Difluorocarbene-Induced Ring-Opening Difluoromethylation-Halogenation of Cyclic (Thio)Ethers with TMSCF 2 X (X=Br, Cl)*. Chemistry 2021; 27:17773-17779. [PMID: 34648215 DOI: 10.1002/chem.202103428] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Indexed: 01/14/2023]
Abstract
The ring-opening difluoromethylation-halogenation of cyclic (thio)ethers is reported through a simple strategy relying on carbon-chalcogen bond activation with difluorocarbene. The reaction proceeds through in situ protonation of the previously little-known difluoromethylene oxonium or sulfonium ylide intermediate followed by ring-opening with halide ion to afford halogenated acyclic difluoromethyl (thio)ethers that can then be employed for further elaboration. TMSCF2 X (X=Br, Cl) are unique reagents to achieve this synthetic purpose, which serve as both the difluorocarbene source and the halide ion source.
Collapse
Affiliation(s)
- Rongyi Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, P. R. China
| | - Qigang Li
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, P. R. China
| | - Qiqiang Xie
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, P. R. China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, P. R. China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai, 200032, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, P. R. China
| |
Collapse
|