1
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Yin T, Sui S, Li S, Chang J, Bai D. Nickel-catalyzed stereospecific reductive cross-coupling of vinyl chlorosilanes with axially chiral biaryl electrophiles. Chem Commun (Camb) 2024; 60:14204-14207. [PMID: 39530918 DOI: 10.1039/d4cc04293j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Enantioenriched organosilanes are important chiral molecules in materials science and organic synthesis. The synthesis of axially chiral organosilanes is particularly significant in terms of applications. Herein, we report a Ni-catalyzed reductive cross-electrophile coupling of vinyl chlorosilanes with sterically hindered chiral biaryl electrophiles for the synthesis of atropisomeric biaryl organosilanes. Various enantioenriched axially chiral vinylsilanes are accessible in high efficiency under mild conditions. The synthetic transformations and applications of new chiral silicon-containing alkene ligands are demonstrated.
Collapse
Affiliation(s)
- Tiantian Yin
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Shiyuan Sui
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Shuqi Li
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Dachang Bai
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
3
|
Yang LY, Qin Y, Zhao Z, Zhao D. Nickel-Catalyzed Reductive Protocol to Access Silacyclobutanes with Unprecedented Functional Group Tolerance. Angew Chem Int Ed Engl 2024; 63:e202407773. [PMID: 39172049 DOI: 10.1002/anie.202407773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/29/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
While significant progress has been made in the area of transition metal-catalyzed ring-opening and formal cycloaddition reactions of 1,1-disubstituted silacyclobutanes (SCBs), synthesizing these SCBs-particularly those bearing additional functional groups-continues to present synthetic challenges. In this context, we present a novel Ni-catalyzed reductive coupling reaction that combines 1-chloro-substituted silacyclobutanes with aryl or vinyl halides and pseudohalides, thereby obviating the need for organometallic reagents. This method facilitates the generation of 1,1-disubstituted silacyclobutanes with a remarkable tolerance for various functional groups. This approach serves as a complementary and more step-economical alternative to the commonly used yet moisture- and air-sensitive nucleophilic substitution reactions involving Grignard or lithium reagents. Our initial mechanistic studies indicate that this reaction is initiated by oxidative cleavage of the Si-Cl bond in 1-chlorosilacyclobutanes, which represents a distinct mechanism from the previously documented reductive coupling processes involving carbon electrophiles and chlorosilanes.
Collapse
Affiliation(s)
- Ling-Yun Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Ying Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Zhihan Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
4
|
Yuan T, Chen XY, Ji T, Yue H, Murugesan K, Rueping M. Nickel-catalyzed selective disulfide formation by reductive cross-coupling of thiosulfonates. Chem Sci 2024:d4sc02969k. [PMID: 39246351 PMCID: PMC11376093 DOI: 10.1039/d4sc02969k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Developing innovative methodologies for disulfide preparation is of importance in contemporary organic chemistry. Despite significant advancements in nickel-catalyzed reductive cross-coupling reactions for forming carbon-carbon and carbon-heteroatom bonds, the synthesis of S-S bonds remains a considerable challenge. In this context, we present a novel approach utilizing nickel catalysts for the reductive cross-coupling of thiosulfonates. This method operates under mild conditions, offering a convenient and efficient pathway to synthesize a wide range of both symmetrical and unsymmetrical disulfides from readily available, bench-stable thiosulfonates with exceptional selectivity. Notably, this approach is highly versatile, allowing for the late-stage modification of pharmaceuticals and the preparation of various targeted compounds. A comprehensive mechanistic investigation has been conducted to substantiate the proposed hypothesis.
Collapse
Affiliation(s)
- Tingting Yuan
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Xiang-Yu Chen
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
- School of Chemical Science, University of Chinese Academy of Science Beijing 10049 China
| | - Tengfei Ji
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Huifeng Yue
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| | - Kathiravan Murugesan
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
5
|
Wei XX, Zhao ZZ, Pang X, Shu XZ. Aliphatic Hydrosilanes via Nickel-Catalyzed Reductive Csp 3-Si Coupling of Primary Alkyl Bromides and Chlorohydrosilanes. Org Lett 2024; 26:6125-6129. [PMID: 38994746 DOI: 10.1021/acs.orglett.4c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The reductive C-Si coupling of chlorosilanes offers efficient access to organosilanes, but its potential for constructing aliphatic ones remains largely unexplored. This manuscript presents a nickel-catalyzed Csp3-Si coupling reaction of unactivated alkyl-Br and R2Si(H)Cl. This work establishes a new approach for synthesizing highly functionalized aliphatic hydrosilanes from readily available chemical feedstocks. The reaction is easily scalable and can accommodate various functional groups, including carboxylic acids, which are usually incompatible with basic conditions.
Collapse
Affiliation(s)
- Xiao-Xue Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
6
|
Chen ZH, Zheng YQ, Huang HG, Wang KH, Gong JL, Liu WB. From Quaternary Carbon to Tertiary C(sp 3)-Si and C(sp 3)-Ge Bonds: Decyanative Coupling of Malononitriles with Chlorosilanes and Chlorogermanes Enabled by Ni/Ti Dual Catalysis. J Am Chem Soc 2024; 146:14445-14452. [PMID: 38739877 DOI: 10.1021/jacs.4c04495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Transition-metal-catalyzed C-Si/Ge cross-coupling offers promising avenues for the synthesis of organosilanes/organogermanes, yet it is fraught with long-standing challenges. A Ni/Ti-catalyzed strategy is reported here, allowing the use of disubstituted malononitriles as tertiary C(sp3) coupling partners to couple with chlorosilanes and chlorogermanes, respectively. This method enables the catalytic cleavage of the C(sp3)-CN bond of the quaternary carbon followed by the formation of C(sp3)-Si/C(sp3)-Ge bonds from ubiquitously available starting materials. The efficiency and generality are showcased by a broad scope for both of the coupling partners, therefore holding the potential to synthesize structurally diverse quaternary organosilanes and organogermanes that were difficult to access previously.
Collapse
Affiliation(s)
- Zi-Hao Chen
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Qing Zheng
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hong-Gui Huang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Ke-Hao Wang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jun-Lin Gong
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Bo Liu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
7
|
Xing D, Liu J, Cai D, Huang B, Jiang H, Huang L. Cobalt-catalyzed cross-electrophile coupling of alkynyl sulfides with unactivated chlorosilanes. Nat Commun 2024; 15:4502. [PMID: 38802390 PMCID: PMC11130142 DOI: 10.1038/s41467-024-48873-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Herein, we disclose a highly efficient cobalt-catalyzed cross-electrophile alkynylation of a broad range of unactivated chlorosilanes with alkynyl sulfides as a stable and practical alkynyl electrophiles. Strategically, employing easily synthesized alkynyl sulfides as alkynyl precursors allows access to various alkynylsilanes in good to excellent yields. Notably, this method avoids the utilization of strong bases, noble metal catalysts, high temperature and forcing reaction conditions, thus presenting apparent advantages, such as broad substrate scope (72 examples, up to 97% yield), high Csp-S chemo-selectivity and excellent functional group compatibility (Ar-X, X = Cl, Br, I, OTf, OTs). Moreover, the utilities of this method are also illustrated by downstream transformations and late-stage modification of structurally complex natural products and pharmaceuticals. Mechanistic studies elucidated that the cobalt catalyst initially reacted with alkynyl sulfides, and the activation of chlorosilanes occurred via an SN2 process instead of a radical pathway.
Collapse
Affiliation(s)
- Donghui Xing
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Jinlin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Dingxin Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Bin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
8
|
Xu CH, Xiong ZQ, Qin JH, Xu XH, Li JH. Nickel-Catalyzed Reductive Cross-Coupling of Propargylic Acetates with Chloro(vinyl)silanes: Access to Silylallenes. J Org Chem 2024; 89:2885-2894. [PMID: 38355424 DOI: 10.1021/acs.joc.3c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Because of their various reactivities, propargyl acetates are refined chemical intermediates that are extensively applied in pharmaceutical synthesis. Currently, reactions between propargyl acetates and chlorosilanes may be the most effective method for synthesizing silylallenes. Nevertheless, owing to the adaptability and selectivity of substrates, transition metal catalysis is difficult to achieve. Herein, nickel-catalyzed reductive cross-coupling reactions between propargyl acetates and substituted vinyl chlorosilanes for the synthesis of tetrasubstituted silylallenes are described. Therein, metallic zinc is a crucial reductant that effectively enables two electrophilic reagents to selectively construct C(sp2)-Si bonds. Additionally, a Ni-catalyzed reductive mechanism involving a radical process is proposed on the basis of deuteration-labeled experiments.
Collapse
Affiliation(s)
- Chong-Hui Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin-Hua Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 475004, Henan, China
| |
Collapse
|
9
|
Teng S, Zhang Z, Li B, Li L, Tan MCL, Jia Z, Loh TP. Thiol-Specific Silicon-Containing Conjugating Reagent: β-Silyl Alkynyl Carbonyl Compounds. Angew Chem Int Ed Engl 2023; 62:e202311906. [PMID: 37721855 DOI: 10.1002/anie.202311906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/20/2023]
Abstract
Site-specific modification of thiol-containing biomolecules has been recognized as a versatile and powerful strategy for probing our biological systems and discovering novel therapeutics. The addition of lipophilic silicon moiety opens up new avenues for multi-disciplinary research with broad applications in both the medicinal and material sciences. However, adhering to the strict biocompatibility requirements, and achieving the introduction of labile silicon handle and high chemo-selectivity have been formidable. In this paper, we report silicon-based conjugating reagents including β-trialkylsilyl and silyl ether-tethered alkynones that selectively react with thiols under physiological conditions. The pH-neutral, metal-free and additive-free reaction yields stable products with broad substrate compatibility and full retention of silicon handles in most cases. Besides simple aliphatic and aromatic thiols, this approach is applicable in the labeling of thiols present in proteins, sugars and payloads, thereby expanding the toolbox of thiol conjugation.
Collapse
Affiliation(s)
- Shenghan Teng
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Zhenguo Zhang
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Bohan Li
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Lanyang Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Melinda Chor Li Tan
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Zhenhua Jia
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
| | - Teck-Peng Loh
- Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry Chemical Engineering & Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
10
|
Xu CH, Xiong ZQ, Qin JH, Xu XH, Li JH. Cobalt-Promoted Electroreductive Cross-Coupling of Prop-2-yn-1-yl Acetates with Chloro(vinyl)silanes. Org Lett 2023; 25:7263-7267. [PMID: 37756013 DOI: 10.1021/acs.orglett.3c02989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
An electroreductive cross-coupling of prop-2-yn-1-yl acetates with chloro(vinyl)silanes for producing tetrasubstituted silylallenes is developed. The method enables the formation of a new C─Si bond through the cathodic reduction formation of the silyl radical, radical addition across the C≡C bond, the alkenyl anion intermediate formation, and deacetoxylation and represents a mild, practical route to the synthesis of silylallenes. Mechanistic studies reveal that CoCl2 acts as the mediator to promote the formation of the alkenyl anion intermediate via electron transfer.
Collapse
Affiliation(s)
- Chong-Hui Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin-Hua Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
11
|
Qi L, Pan QQ, Wei XX, Pang X, Liu Z, Shu XZ. Nickel-Catalyzed Reductive [4 + 1] Sila-Cycloaddition of 1,3-Dienes with Dichlorosilanes. J Am Chem Soc 2023. [PMID: 37285283 DOI: 10.1021/jacs.3c04209] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transition-metal-catalyzed sila-cycloaddition has been a promising tool for accessing silacarbocycle derivatives, but the approach has been limited to a selection of well-defined sila-synthons. Herein, we demonstrate the potential of chlorosilanes, which are industrial feedstock chemicals, for this type of reaction under reductive nickel catalysis. This work extends the scope of reductive coupling from carbocycle to silacarbocycle synthesis and from single C-Si bond formation to sila-cycloaddition reactions. The reaction proceeds under mild conditions and shows good substrate scope and functionality tolerance, and it offers new access to silacyclopent-3-enes and spiro silacarbocycles. The optical properties of several spiro dithienosiloles as well as structural variations of the products are demonstrated.
Collapse
Affiliation(s)
- Liangliang Qi
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qiu-Quan Pan
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiao-Xue Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
12
|
Transition-Metal-Catalyzed Cross-Coupling of Chlorosilanes. SYNTHESIS-STUTTGART 2023. [DOI: 10.1055/s-0042-1751398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
AbstractChlorosilanes are the most accessible feedstock chemical in the organosilicon world. Cross-coupling involving chlorosilanes by transition metal catalysis offers a promising way for the production of organosilanes, which play essential roles in many important research areas, including agriculture, medicinal chemistry, and material science. This chemistry is firstly realized by coupling chlorosilanes with organometallic species and then extended to the silyl-Heck reaction with alkenes. Very recently, the cross-electrophile coupling of chlorosilanes has also been established. In this review, we summarize the progress of this chemistry.1 Introduction2 Cross-Coupling of Chlorosilanes with Organometallic Reagents3 The Silyl-Heck Reaction of Chlorosilanes and Alkenes4 Reductive Cross-Coupling of Chlorosilanes with Electrophiles5 Summary and Outlook
Collapse
|
13
|
Miura H, Doi M, Yasui Y, Masaki Y, Nishio H, Shishido T. Diverse Alkyl-Silyl Cross-Coupling via Homolysis of Unactivated C(sp 3)-O Bonds with the Cooperation of Gold Nanoparticles and Amphoteric Zirconium Oxides. J Am Chem Soc 2023; 145:4613-4625. [PMID: 36802588 DOI: 10.1021/jacs.2c12311] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Since C(sp3)-O bonds are a ubiquitous chemical motif in both natural and artificial organic molecules, the universal transformation of C(sp3)-O bonds will be a key technology for achieving carbon neutrality. We report herein that gold nanoparticles supported on amphoteric metal oxides, namely, ZrO2, efficiently generated alkyl radicals via homolysis of unactivated C(sp3)-O bonds, which consequently promoted C(sp3)-Si bond formation to give diverse organosilicon compounds. A wide array of esters and ethers, which are either commercially available or easily synthesized from alcohols participated in the heterogeneous gold-catalyzed silylation by disilanes to give diverse alkyl-, allyl-, benzyl-, and allenyl silanes in high yields. In addition, this novel reaction technology for C(sp3)-O bond transformation could be applied to the upcycling of polyesters, i.e., the degradation of polyesters and the synthesis of organosilanes were realized concurrently by the unique catalysis of supported gold nanoparticles. Mechanistic studies corroborated the notion that the generation of alkyl radicals is involved in C(sp3)-Si coupling and the cooperation of gold and an acid-base pair on ZrO2 is responsible for the homolysis of stable C(sp3)-O bonds. The high reusability and air tolerance of the heterogeneous gold catalysts as well as a simple, scalable, and green reaction system enabled the practical synthesis of diverse organosilicon compounds.
Collapse
Affiliation(s)
- Hiroki Miura
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.,Research Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.,Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Masafumi Doi
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yuki Yasui
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yosuke Masaki
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Hidenori Nishio
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.,Research Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.,Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
| |
Collapse
|
14
|
Pang X, Shu XZ. Nickel-Catalyzed Reductive Coupling of Chlorosilanes. Chemistry 2023; 29:e202203362. [PMID: 36426828 DOI: 10.1002/chem.202203362] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Organosilanes play essential roles in many important research areas. The use of readily available chlorosilanes to catalytically access these compounds is synthetically appealing but remains a long-standing challenge. Nickel-catalyzed reductive cross-coupling reaction has recently emerged as a promising protocol to arrive at this goal. This strategy allows the chlorosilanes to be coupled with various carbon electrophiles under mild conditions. These reactions afford organosilanes with improved molecular diversity, structural complexity, and functional group compatibility. This Concept article summarizes the recent advance on nickel-catalyzed reductive C-Si couplings of chlorosilanes.
Collapse
Affiliation(s)
- Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) and, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) and, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
15
|
Pan QQ, Qi L, Pang X, Shu XZ. Nickel-Catalyzed Cross-Electrophile 1,2-Silyl-Arylation of 1,3-Dienes with Chlorosilanes and Aryl Bromides. Angew Chem Int Ed Engl 2023; 62:e202215703. [PMID: 36428246 DOI: 10.1002/anie.202215703] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/28/2022]
Abstract
Catalytic, three-component, cross-electrophile reactions have recently emerged as a promising tool for molecular diversification, but studies have focused mainly on the alkyl-carbonations of alkenes. Herein, the scope of this method has been extended to conjugated dienes and silicon chemistry through silylative difunctionalization of 1,3-dienes with chlorosilanes and aryl bromides. The reaction proceeds under mild conditions to afford 1,2-linear-silylated products, a selectivity that is different to those obtained from conventional methods via an intermediary of H(C)-η3 -π-allylmetal species. Preliminary mechanistic studies reveal that chlorosilane reacts with 1,3-diene first and then couples with aryl bromide.
Collapse
Affiliation(s)
- Qiu-Quan Pan
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, 730000, Lanzhou, China
| | - Liangliang Qi
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, 730000, Lanzhou, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, 730000, Lanzhou, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, 730000, Lanzhou, China
| |
Collapse
|
16
|
Sun J, Zhou Y, Gu R, Li X, Liu A, Zhang X. Regioselective Ni-Catalyzed reductive alkylsilylation of acrylonitrile with unactivated alkyl bromides and chlorosilanes. Nat Commun 2022; 13:7093. [PMID: 36402772 PMCID: PMC9675790 DOI: 10.1038/s41467-022-34901-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Transition-metal catalyzed carbosilylation of alkenes using carbon electrophiles and silylmetal (-B, -Zn) reagents as the nucleophiles offers a powerful strategy for synthesizing organosilicones, by incorporating carbon and silyl groups across on C-C double bonds in one step. However, to the best of our knowledge, the study of silylative alkenes difunctionalization based on carbon and silyl electrophiles remains underdeveloped. Herein, we present an example of silylative alkylation of activated olefins with unactivated alkyl bromides and chlorosilanes as electrophiles under nickel catalysis. The main feature of this protocol is employing more easily accessible substrates including primary, secondary and tertiary alkyl bromides, as well as various chlorosilanes without using pre-generated organometallics. A wide range of alkylsilanes with diverse structures can be efficiently assembled in a single step, highlighting the good functionality tolerance of this approach. Furthermore, successful functionalization of bioactive molecules and synthetic applications using this method demonstrate its practicability.
Collapse
Affiliation(s)
- Jinwei Sun
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Yongze Zhou
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Rui Gu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Xin Li
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Ao Liu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Xuan Zhang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China.
| |
Collapse
|
17
|
Abstract
Transition-metal-catalyzed reductive coupling of electrophiles has emerged as a powerful tool for the construction of molecules. While major achievements have been made in the field of cross-couplings between organic halides and pseudohalides, an increasing number of reports demonstrates reactions involving more readily available, low-cost, and stable, but unreactive electrophiles. This account summarizes the recent results in our laboratory focusing on this topic. These findings typically include deoxygenative C-C coupling of alcohols, reductive alkylation of alkenyl acetates, reductive C-Si coupling of chlorosilanes, and reductive C-Ge coupling of chlorogermanes.The reductive deoxygenative coupling of alcohols with electrophiles is synthetically appealing, but the potential of this chemistry remains to be disclosed. Our initial study focused on the reaction of allylic alcohols and aryl bromides by the combination of nickel and Lewis acid catalysis. This method offers a selectivity that is opposite to that of the classic Tsuji-Trost reactions. Further investigation on the reaction of benzylic alcohols led to the foundation of a dynamic kinetic cross-coupling strategy with applications in the nickel-catalyzed reductive arylation of benzylic alcohols and cobalt-catalyzed enantiospecific reductive alkenylation of allylic alcohols. The titanium catalysis was later established to produce carbon radicals directly from unactivated tertiary alcohols via C-OH cleavage. The development of their coupling reactions with carbon fragments delivers new methods for the construction of all-carbon quaternary centers. These reactions have shown high selectivity for the functionalization of tertiary alcohols, leaving primary and secondary alcohols intact. Alkenyl acetates are inexpensive, stable, and environmentally friendly and are considered the most attractive alkenyl reagents. The development of reductive alkylation of alkenyl acetates with benzyl ammoniums and alkyl bromides offers mild approaches for the conversion of ketones into aliphatic alkenes.Extensive studies in this field have enabled us to extend the cross-electrophile coupling from carbon to silicon and germanium chemistry. These reactions harness the ready availability of chlorosilanes and chlorogermanes but suffer from the challenge of their low reactivity toward transition metals. Under reductive nickel catalysis, a broad range of alkenyl and aryl electrophiles couple well with vinyl- and hydrochlorosilanes. The use of alkyl halides as coupling partners led to the formation of functionalized alkylsilanes. The C-Ge coupling seems less substrate-dependent, and various common chlorogermanes couple well with aryl, alkenyl, and alkyl electrophiles. In general, functionalities such as Grignard-sensitive groups (e.g., acid, amide, alcohol, ketone, and ester), acid-sensitive groups (e.g., ketal and THP protection), alkyl fluoride and chloride, aryl bromide, alkyl tosylate and mesylate, silyl ether, and amine are tolerated. These methods provide new access to organosilicon and organogermanium compounds, some of which are challenging to obtain otherwise.
Collapse
Affiliation(s)
- Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou730000, China
| | - Pei-Feng Su
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou730000, China
| |
Collapse
|
18
|
Zhao ZZ, Pang X, Wei XX, Liu XY, Shu XZ. Nickel-Catalyzed Reductive C(sp 2 )-Si Coupling of Chlorohydrosilanes via Si-Cl Cleavage. Angew Chem Int Ed Engl 2022; 61:e202200215. [PMID: 35263015 DOI: 10.1002/anie.202200215] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 02/06/2023]
Abstract
We report here a new method for the synthesis of organohydrosilanes from phenols and ketones. This method is established through reductive C-Si coupling of chlorohydrosilanes via unconventional Si-Cl cleavage. The reaction offers access to aryl- and alkenylhydrosilanes with a scope that is complementary to those of the established methods. Electron-rich, electron-poor, and ortho-/meta-/para-substituted (hetero)aryl electrophiles, as well as cyclic and acyclic alkenyl electrophiles, were coupled successfully. Functionalities, including Grignard-sensitive groups (e.g., primary amine, amide, phenol, ketone, ester, and free indole), acid-sensitive groups (e.g., ketal and THP protection), alkyl-Cl, pyridine, furan, thiophene, Ar-Bpin, and Ar-SiMe3 , were tolerated. Gram-scale reaction, incorporation of -Si(H)R2 into complex biologically active molecules, and derivatization of formed organohydrosilanes are demonstrated.
Collapse
Affiliation(s)
- Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xiao-Xue Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| |
Collapse
|
19
|
Zhao Z, Pang X, Wei X, Liu X, Shu X. Nickel‐Catalyzed Reductive C(sp
2
)−Si Coupling of Chlorohydrosilanes via Si−Cl Cleavage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen‐Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xiao‐Xue Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xue‐Yuan Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xing‐Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| |
Collapse
|
20
|
Qi L, Pang X, Yin K, Pan QQ, Wei XX, Shu XZ. Mn-mediated reductive C(sp3)–Si coupling of activated secondary alkyl bromides with chlorosilanes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Guo P, Pang X, Wang K, Su PF, Pan QQ, Han GY, Shen Q, Zhao ZZ, Zhang W, Shu XZ. Nickel-Catalyzed Reductive Csp 3-Ge Coupling of Alkyl Bromides with Chlorogermanes. Org Lett 2022; 24:1802-1806. [PMID: 35209712 DOI: 10.1021/acs.orglett.2c00207] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reductive cross-coupling provides facile access to organogermanes, but it remains largely unexplored. Herein we report a nickel-catalyzed reductive Csp3-Ge coupling of alkyl bromides with chlorogermanes. This work has established a new method for producing alkylgermanes. The reaction proceeds under very mild conditions and tolerates various functionalities including ether, alcohol, alkene, nitrile, amine, ester, phosphonates, amides, ketone, and aldehyde. The application of this method to the modification of bioactive molecules is demonstrated.
Collapse
Affiliation(s)
- Peng Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China.,School of Life Science, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Ke Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Pei-Feng Su
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qiu-Quan Pan
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Guan-Yu Han
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qian Shen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Wenhua Zhang
- School of Life Science, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
22
|
Wang HH, Wang XD, Yin GF, Zeng YF, Chen J, Wang Z. Recent Advances in Transition-Metal-Catalyzed C–H Alkylation with Three-Membered Rings. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Hui-Hong Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
| | - Xiao-Dong Wang
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, People’s Republic of China
| | - Gao-Feng Yin
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, People’s Republic of China
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, People’s Republic of China
| | - Jinjin Chen
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, People’s Republic of China
| | - Zhen Wang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, People’s Republic of China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, People’s Republic of China
- School of Pharmacy, Lanzhou University, No. 199 West Donggang Road, Lanzhou 730000, People’s Republic of China
| |
Collapse
|
23
|
Zhou XH, Fang XJ, Ling FY, Xu Z, Hong LQ, Ye F, Xu LW. Catalytic C(sp)–Si cross-coupling silylation of alkynyl bromides with hydrosilanes by palladium catalysis. Org Chem Front 2022. [DOI: 10.1039/d2qo01253g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented and convenient Si–C(sp) bond-forming cross-coupling of alkynyl bromides with hydrosilanes has been established for the facile synthesis of alkynylsilanes in good yields and with excellent chemoselectivity.
Collapse
Affiliation(s)
- Xiao-Hua Zhou
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Xiao-Jun Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Fang-Ying Ling
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Li-Quan Hong
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
- Deqing Third People's Hospital and The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, 310015, China
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute (SRI), Lanzhou Institute of Chemical Physics (LICP), University of the Chinese Academy of Sciences (UCAS), Lanzhou 730000, P. R. China
| |
Collapse
|
24
|
Song KL, Wu B, Gan WE, Zeng Y, Zhang YJ, Cao J, Xu LW. Stereo-divergent synthesis of silyl-enynes via palladium-catalyzed coupling of alkynes and iodosilanes. Org Chem Front 2022. [DOI: 10.1039/d2qo00622g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a palladium-catalyzed coupling reaction of alkynes and silicon electrophiles, affording stereodefined silyl-enynes. Either E- or Z-enynes can be formed in high yields and in a highly stereoselective manner...
Collapse
|