1
|
Ahern BN, Weix DJ. One-Pot Chlorination and Cross-Electrophile Coupling of Alcohols with Aryl Chlorides. Org Lett 2025; 27:1164-1169. [PMID: 39853261 DOI: 10.1021/acs.orglett.4c04676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Although alkyl alcohols and aryl chlorides are the two most abundant substrate pools for cross-electrophile coupling, methods to couple them remain limited. Herein we demonstrate a simple procedure for the in situ deoxychlorination of alcohols followed by XEC with aryl chlorides. A broad substrate scope can be achieved by tuning the rate of the reaction via halide exchange. Key to success is the identification of 1-chloro-N,N,2-trimethyl-1-propenylamine as a mild, noninterfering halogenation reagent.
Collapse
Affiliation(s)
- Benjamin N Ahern
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| | - Daniel J Weix
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Meng H, Jia JS, Yang PF, Li YL, Yu Q, Shu W. Ni-catalyzed regioselective and site-divergent reductive arylalkylations of allylic amines. Chem Sci 2025:d4sc07728h. [PMID: 39926709 PMCID: PMC11799853 DOI: 10.1039/d4sc07728h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/13/2025] [Indexed: 02/11/2025] Open
Abstract
Catalytic methods by switching the least parameters for regioselective and site-divergent transformations to construct different architectures from identical and readily available starting materials are among the most ideal catalytic protocols. However, the associated challenge to precisely control both regioselectivity and site diversity renders this strategy appealing yet challenging. Herein, Ni-catalyzed cross-electrophile regioselective and site-divergent 1,2- and 1,3-arylalkylations of N-acyl allylic amines have been developed. This Ni-catalyzed reductive three-component protocol enables 1,2-arylalkylation and 1,3-arylalkylation of allylic amines with aryl halides and alkyl halides with excellent chemo-, regio- and site-selectivity, representing the first example of controlled migratory difunctionalization of alkenes under reductive conditions. A wide range of terminal and internal unactivated allylic amines, aryl halides and alkyl precursors were tolerated, providing straightforward and efficient access to diverse C(sp3)-rich branched aliphatic amines from identical starting materials.
Collapse
Affiliation(s)
- Huan Meng
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Jun-Song Jia
- College of Chemistry and Environmental Engineering, Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, Sichuan University of Science and Engineering Zigong 643000 P. R. China
| | - Peng-Fei Yang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, Sichuan University of Science and Engineering Zigong 643000 P. R. China
| | - Qiong Yu
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Wei Shu
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
3
|
Kim S, Goldfogel MJ, Ahern BN, Salgueiro DC, Guzei IA, Weix DJ. Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Triflates with Alkyl Halides: Mechanism-Informed Design of More General Conditions. J Am Chem Soc 2025; 147:2616-2625. [PMID: 39793607 PMCID: PMC11831828 DOI: 10.1021/jacs.4c14769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Aryl triflates make up a class of aryl electrophiles that are available in a single step from the corresponding phenol. Despite the known reactivity of nickel complexes for aryl C-O bond activation of phenol derivatives, nickel-catalyzed cross-electrophile coupling using aryl triflates has proven challenging. Herein, we report a method to form C(sp2)-C(sp3) bonds by coupling aryl triflates with alkyl bromides and chlorides using phenanthroline (phen) or pyridine-2,6-bis(N-cyanocarboxamidine) (PyBCamCN)-ligated nickel catalysts. The scope of the reaction is demonstrated with 38 examples (61 ± 14% average yield). Mechanistic studies provide a rationale for the conditions used and a roadmap for further applications of cross-electrophile coupling. First, the rate of alkyl radical generation is controlled by maintaining the majority of alkyl halide as the alkyl chloride, which is unreactive, and utilizing a dynamic halide exchange process to adjust the concentration of reactive alkyl bromide or iodide. Second, the challenge of using electron-rich aryl triflates appears to be due to off-cycle transmetalation to form unproductive aryl zinc reagents. The optimal PyBCamCN ligand together with LiCl avoids this deleterious transmetalation step.
Collapse
Affiliation(s)
- Seoyoung Kim
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | | | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Daniel C. Salgueiro
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
4
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Cook A, Kassymbek A, Vaezghaemi A, Barbery C, Newman SG. An S N1-Approach to Cross-Coupling: Deoxygenative Arylation Facilitated by the β-Silicon Effect. J Am Chem Soc 2024; 146:19929-19938. [PMID: 39002160 DOI: 10.1021/jacs.4c03197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
We report a dual metal-catalyzed method for the cross-coupling of unprotected alcohols by exploiting the β-Si effect. This deoxygenative Suzuki-Miyaura reaction tolerates a range of primary, secondary, and tertiary alcohol substrates along with diverse functional groups and heterocycles. Mechanistic experiments including KIE, VTNA, and Eyring analyses suggest the existence of a carbocation intermediate on the reaction pathway, consistent with a rare SN1 pathway for the activation of an electrophile in cross-coupling reactions. A novel bis-imidazolium N-heterocyclic carbene (NHC) ligand was found to be optimal for reactivity, and nickel(0)-, nickel(I)- and nickel(II)- complexes of this ligand were isolated and characterized. In contrast to more well-established shorter chain ligands, these long-chain NHCs are found to have characteristically large bite angles, which may be critical for enabling the deoxygenative arylation of aliphatic alcohols.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Aishabibi Kassymbek
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Aref Vaezghaemi
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Carlos Barbery
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
6
|
Cook A, Newman SG. Alcohols as Substrates in Transition-Metal-Catalyzed Arylation, Alkylation, and Related Reactions. Chem Rev 2024; 124:6078-6144. [PMID: 38630862 DOI: 10.1021/acs.chemrev.4c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Alcohols are abundant and attractive feedstock molecules for organic synthesis. Many methods for their functionalization require them to first be converted into a more activated derivative, while recent years have seen a vast increase in the number of complexity-building transformations that directly harness unprotected alcohols. This Review discusses how transition metal catalysis can be used toward this goal. These transformations are broadly classified into three categories. Deoxygenative functionalizations, representing derivatization of the C-O bond, enable the alcohol to act as a leaving group toward the formation of new C-C bonds. Etherifications, characterized by derivatization of the O-H bond, represent classical reactivity that has been modernized to include mild reaction conditions, diverse reaction partners, and high selectivities. Lastly, chain functionalization reactions are described, wherein the alcohol group acts as a mediator in formal C-H functionalization reactions of the alkyl backbone. Each of these three classes of transformation will be discussed in context of intermolecular arylation, alkylation, and related reactions, illustrating how catalysis can enable alcohols to be directly harnessed for organic synthesis.
Collapse
Affiliation(s)
- Adam Cook
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
7
|
Zhang LL, Gao YZ, Cai SH, Yu H, Shen SJ, Ping Q, Yang ZP. Ni-catalyzed enantioconvergent deoxygenative reductive cross-coupling of unactivated alkyl alcohols and aryl bromides. Nat Commun 2024; 15:2733. [PMID: 38548758 PMCID: PMC10979021 DOI: 10.1038/s41467-024-46713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/07/2024] [Indexed: 04/01/2024] Open
Abstract
Transition metal-catalyzed enantioconvergent cross-coupling of an alkyl precursor presents a promising method for producing enantioenriched C(sp3) molecules. Because alkyl alcohol is a ubiquitous and abundant family of feedstock in nature, the direct reductive coupling of alkyl alcohol and aryl halide enables efficient access to valuable compounds. Although several strategies have been developed to overcome the high bond dissociation energy of the C - O bond, the asymmetric pattern remains unknown. In this report, we describe the realization of an enantioconvergent deoxygenative reductive cross-coupling of unactivated alkyl alcohol (β-hydroxy ketone) and aryl bromide in the presence of an NHC activating agent. The approach can accommodate substituents of various sizes and functional groups, and its synthetic potency is demonstrated through a gram scale reaction and derivatizations into other compound families. Finally, we apply our convergent method to the efficient asymmetric synthesis of four β-aryl ketones that are natural products or bioactive compounds.
Collapse
Affiliation(s)
- Li-Li Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yu-Zhong Gao
- Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030031, People's Republic of China
| | - Sheng-Han Cai
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Hui Yu
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Shou-Jie Shen
- Key Laboratory of Magnetic Molecules, Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan, 030031, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Ze-Peng Yang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
8
|
Lin L, Tresp DS, Spasyuk DM, Lalancette RA, Prokopchuk DE. Accessing Ni(0) to Ni(IV) via nickel-carbon-phosphorus bond reorganization. Chem Commun (Camb) 2024; 60:674-677. [PMID: 38050452 DOI: 10.1039/d3cc04687g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Two-electron oxidation of a NiIIPh(PCP) pincer complex initiates phosphine ligand insertion, generating an η6-arylphosphonium moiety coordinated to NiII. The reaction is fully reversible under reducing conditions. X-ray crystallography, NMR/EPR spectroscopy, electrochemistry, and DFT calculations support the proposed Ni-C-P bond reorganization mechanisms, which access oxidation states from Ni0 to NiIV.
Collapse
Affiliation(s)
- Lirong Lin
- Department of Chemistry, Rutgers University - Newark, Newark, New Jersey 07102, USA.
| | - David S Tresp
- Department of Chemistry, Rutgers University - Newark, Newark, New Jersey 07102, USA.
| | - Denis M Spasyuk
- Canadian Light Source, Saskatoon, Saskatchewan, S7N2V3, Canada
| | - Roger A Lalancette
- Department of Chemistry, Rutgers University - Newark, Newark, New Jersey 07102, USA.
| | - Demyan E Prokopchuk
- Department of Chemistry, Rutgers University - Newark, Newark, New Jersey 07102, USA.
| |
Collapse
|
9
|
Adamek J, Kuźnik A, Październiok-Holewa A, Grymel M, Kozicka D, Mierzwa D, Erfurt K. 1-Hydroxyalkylphosphonium Salts-Synthesis and Properties. Molecules 2023; 29:18. [PMID: 38202601 PMCID: PMC10780258 DOI: 10.3390/molecules29010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
An efficient and convenient method for the synthesis of 1-hydroxyalkylphosphonium salts is described. Reactions were carried out at room temperature, in a short time, and without chromatography for product isolation. The properties of the obtained phosphonium salts were examined and discussed. In this paper, primary attention was paid to the stability of phosphonium salts, depending on the structure of the aldehydes used as substrates in their preparation. Other conditions such as the type of solvent, temperature, and molar ratio of the substrates were also investigated. Finally, the high reactivity of 1-hydroxyalkylphosphonium salts was demonstrated in reactions with amide-type substrates and (hetero)aromatic compounds. The developed step-by-step procedure (with the isolation of 1-hydroxyphosphonium salts) was compared to the one-pot protocol (in situ formation of such phosphonium salts).
Collapse
Affiliation(s)
- Jakub Adamek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (A.K.); (A.P.-H.); (M.G.); (D.K.); (D.M.)
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Anna Kuźnik
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (A.K.); (A.P.-H.); (M.G.); (D.K.); (D.M.)
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Agnieszka Październiok-Holewa
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (A.K.); (A.P.-H.); (M.G.); (D.K.); (D.M.)
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (A.K.); (A.P.-H.); (M.G.); (D.K.); (D.M.)
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Dominika Kozicka
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (A.K.); (A.P.-H.); (M.G.); (D.K.); (D.M.)
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Dominika Mierzwa
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (A.K.); (A.P.-H.); (M.G.); (D.K.); (D.M.)
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland;
| |
Collapse
|
10
|
Fan YX, Huang HL, Su QQ, Lv YZ, Li S, Ma YH, Mao YX, Ma CL, Du JY. Brønsted acid-mediated tandem cyclization of triarylphosphines and in situ generated ortho-alkynyl quinone methides: access to heterocyclic quaternary phosphonium salts. Chem Commun (Camb) 2023; 59:3463-3466. [PMID: 36872868 DOI: 10.1039/d2cc06994f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Heterocyclic Quaternary Phosphonium Salts (HQPS) have emerged as promising chemicals for organic synthesis and medicinal chemistry. However, the present synthetic methodology of this type of compound is still limited. Here, we report a deconstructive reorganization strategy based on Brønsted acid-mediated tandem 1,4 addition/intramolecular cyclization of triphenylphosphine derivatives and in situ generated o-AQMs for the first time. This protocol provides a novel approach to heterocyclic quaternary phosphonium salts. The method also features a non-metal catalyst, mild reaction conditions, high efficiency and wide substrate scope. Moreover, a series of obtained heterocyclic phosphonium salts can be converted to isotopically labelled 2-benzofuran compounds directly by simple deuteration reactions.
Collapse
Affiliation(s)
- Ya-Xin Fan
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Hong-Li Huang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Qing-Qiang Su
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Yong-Zheng Lv
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Shan Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Yan-Hua Ma
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Yan-Xin Mao
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Chun-Lin Ma
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Ji-Yuan Du
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China.
| |
Collapse
|
11
|
Singer RA, Monfette S, Bernhardson D, Tcyrulnikov S, Hubbell AK, Hansen EC. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Robert A. Singer
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - David Bernhardson
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Sergei Tcyrulnikov
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Aran K. Hubbell
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| | - Eric C. Hansen
- Pfizer Chemical Research and Development, Pfizer Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
12
|
Wang Z, Zhao X, Wang H, Li X, Xu Z, Ramadoss V, Tian L, Wang Y. Dehydroxylative Arylation of Alcohols via Paired Electrolysis. Org Lett 2022; 24:7476-7481. [PMID: 36190448 DOI: 10.1021/acs.orglett.2c03136] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonactivated alcohols along with arene compounds are used in electrochemical dehydroxylative arylation for constructing C(sp3)-C(sp2) bonds. The PIII reagent undergoes single-electron anodic oxidation to form its radical cation, which reacts with the alcohol to produce an alkoxytriphenylphosphine radical. Through spontaneous β-scission of the phosphoranyl radical, the C-O bond is cleaved to form an alkyl radical species, which couples with the radical anion generated by cathodic reduction of the electron-poor arene to afford the dehydroxylative arylated product.
Collapse
Affiliation(s)
- Zhihui Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoqian Zhao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hongyu Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiuyun Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhimin Xu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Velayudham Ramadoss
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lifang Tian
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yahui Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
13
|
Song Z, Huang X, Jiang S, He C, Tang L, Ni Q, Ma M, Chen B, Ma Y. C(sp 2)-C(sp 2) Reductive Cross-Coupling of Triarylphosphines with Aryl Halides by Palladium/Nickel Co-catalysis. Org Lett 2022; 24:5573-5578. [PMID: 35862269 DOI: 10.1021/acs.orglett.2c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report the first general C(sp2)-C(sp2) reductive cross-coupling reaction of diverse triarylphosphines with a wide range of aryl halides by palladium/nickel co-catalysis. This protocol offers a unique route for the synthesis of biaryl compounds via the activation of inert C(Ar)-P bonds. The mechanistic studies demonstrate that the formation of the phosphonium salts in situ plays a key role in the catalytic cycle.
Collapse
Affiliation(s)
- Zhiyong Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Xinmiao Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Shuangshuang Jiang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Chen He
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Ling Tang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Qian Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Ming Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Yuanhong Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| |
Collapse
|
14
|
Roediger S, Leutenegger SU, Morandi B. Nickel-catalysed diversification of phosphine ligands by formal substitution at phosphorus. Chem Sci 2022; 13:7914-7919. [PMID: 35865908 PMCID: PMC9258342 DOI: 10.1039/d2sc02496a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/13/2022] [Indexed: 12/12/2022] Open
Abstract
We report a diversification strategy that enables the direct substituent exchange of tertiary phosphines. Alkylated phosphonium salts, prepared by standard alkylation of phosphines, are selectively dearylated in a nickel-catalysed process to access alkylphosphine products via a formal substitution at the phosphorus center. The reaction can be used to introduce a wide range of alkyl substituents into both mono- and bisphosphines. We also show that the alkylation and dearylation steps can be conducted in a one-pot sequence, enabling accelerated access to derivatives of the parent ligand. The phosphine products of the reaction are converted in situ to air-stable borane adducts for isolation, and versatile derivatisation reactions of these adducts are demonstrated. Phosphine substituents can be exchanged by standard alkylation of a phosphine and a subsequent dearylation of the resulting phosphonium salt. A wide variety of alkyl groups can be introduced into both mono- and bidentate ligands using this method.![]()
Collapse
Affiliation(s)
- Sven Roediger
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Sebastian U Leutenegger
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| |
Collapse
|