1
|
Bharath Kumar P, Raju CE, Roy S, Anoop A, Chandra R, Sridhar B, Karunakar GV. Rh(III)-Catalyzed Chemoselective [4 + 2] Annulations for the Synthesis of [1,3]Oxazinoindolones: A Combined Experimental and Computational Study. Org Lett 2024; 26:8680-8685. [PMID: 39364934 DOI: 10.1021/acs.orglett.4c02770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The interaction of N-alkoxy-1H-indole-1-carboxamides with transition metals leads to indole-fused heterocyclic scaffolds through directing group leaving/migration, [3 + 2], N-C2 [4 + 1], and [4 + 2] annulations. However, the corresponding O-C2 [4 + 2] annulation reactions have never been reported. Herein, we report the chemoselective annulation of N-alkoxy-1H-indole-1-carboxamides catalyzed by Rh(III), affording [1,3]oxazinoindolones through a hitherto unknown reaction pathway. This unprecedented C2 oxygen cyclization, rather than the known C2 nitrogen cyclization to form oxazinoindolones via five key steps, has been explained using density functional theory.
Collapse
Affiliation(s)
- Perla Bharath Kumar
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Chittala Emmaniel Raju
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Saikat Roy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Anakuthil Anoop
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajesh Chandra
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Balasubramanian Sridhar
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
- Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Galla V Karunakar
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
2
|
Bhanja R, Kanti Bera S, Mal P. Sustainable Synthesis through Catalyst-Free Photoinduced Cascaded Bond Formation. Chem Asian J 2024; 19:e202400279. [PMID: 38717944 DOI: 10.1002/asia.202400279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Indexed: 06/12/2024]
Abstract
The beginning of photochemical reactions revolutionized synthetic chemistry through sustainable practices. This review explores cutting-edge developments in leveraging light-induced processes for generating cascaded C-C and C-hetero bonds without catalysts. Significantly, catalyst-free photoinduced methodologies have garnered considerable attention, especially in the creation of varied heterocyclic frameworks for drug design and the synthesis of natural products. The article delves into underlying mechanisms, addresses limitations, and evaluates various methodologies, emphasizing the potential of photocatalyst and transition metal-free photochemical reactions to enhance sustainability. Divided into two sections, it covers recent strides in C-C and C-heteroatom and multiple C-heteroatom bond formation reactions.
Collapse
Affiliation(s)
- Rosalin Bhanja
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, 752050, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, India
| | - Shyamal Kanti Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, 752050, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, 752050, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, India
| |
Collapse
|
3
|
Li MY, Chen P, Pan MX, Hu HL, Jiang YJ. Palladium-catalyzed amidation of carbazole derivatives via hydroamination of isocyanates. Org Biomol Chem 2024. [PMID: 39005158 DOI: 10.1039/d4ob00771a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The first amidation of carbazoles at the N9 position via palladium-catalyzed hydroamination of isocyanates is demonstrated. This simple, general and efficient method could deliver a wide range of carbazole-N-carboxamides in up to 99% yield. The salient features of this transformation include simple conditions with no need for a strong base, high chemo- and regio-selectivities and good functional group tolerance. In particular, this work-up-free and chromatography-free protocol is time-saving, cost-effective and user-friendly.
Collapse
Affiliation(s)
- Meng-Yuan Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Peng Chen
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Ming-Xia Pan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Hao-Lan Hu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Yi-Jun Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
4
|
Huang X, Yi C, Bai M, Tang Y, Xu S, Li Y. Ruthenium and Iodine Anion Cocatalyzed Cascade Dihalogenation and Cyclization of Internal Alkyne-Tethered Cyclohexadienones with 1,2-Dihaloethanes. J Org Chem 2024; 89:9686-9694. [PMID: 38907735 DOI: 10.1021/acs.joc.4c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
We have established an efficient ruthenium(II) and iodine anion cocatalyzed dihalogenation and cascade cyclization of internal alkyne-tethered cyclohexadienones, which stereoselectively afforded numerous dihalogenation products with a bioactive hydrobenzofuran skeleton in high yields under mild conditions. In this transformation, the reaction pathway was determined by the concentration of electrophilic iodine reagent, which also provided a strategy for control of the reaction selectivity. Furthermore, this method features the use of 1,2-dihaloroethane as the halogen source via iodine anion catalyst.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Cui Yi
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Meiqi Bai
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuhai Tang
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Silong Xu
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yang Li
- Department of Material Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
5
|
Ghosh D, Samal AK, Parida A, Ikbal M, Jana A, Jana R, Sahu PK, Giri S, Samanta S. Progress in Electrochemically Empowered C-O Bond Formation: Unveiling the Pathway of Efficient Green Synthesis. Chem Asian J 2024:e202400116. [PMID: 38584137 DOI: 10.1002/asia.202400116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/12/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
(C-X) bonds (X=C, N, O) are the main backbone for making different skeleton in the organic synthetic transformations. Among all the sustainable techniques, electro-organic synthesis for C-X bond formation is the advanced tool as it offers a greener and more cost-effective approach to chemical reactions by utilizing electrons as reagents. In this review, we want to explore the recent advancements in electrochemical C-O bond formation. The electrochemically driven C-O bond formation represents an emerging and exciting area of research. In this context, electrochemical techniques offers numerous advantages, including higher yields, cost-efficient production, and simplified work-up procedures. This method enables the continuous and consistent formation of C-O bonds in molecules, significantly enhancing overall reaction yields. Furthermore, both intramolecular and intermolecular C-O bond forming reaction provided valuable products of O-containing acyclic/cyclic analogue. Hence, carbonyl (C=O), ether -O-), and ester (-COOR) functionalization in both cyclic/acyclic analogues have been prepared continuously via this innovative pathway. In this context, we want to discuss one-decade electrochemical synthetic pathways of various C-O bond contains functional group in chronological manner. This review focused on all the synthetic aspects including mechanistic path and has also mentioned overall critical finding regarding the C-O bond formation via electrochemical pathways.
Collapse
Affiliation(s)
- Debosmit Ghosh
- Department of Chemistry, Bidhannagar College, Kolkata, 700064, India
| | - Aroop Kumar Samal
- Department of Chemistry, C.V. Raman Global UniversityInstitution, Bhubaneswar, 752054, India
| | - Anita Parida
- Department of Chemistry, C.V. Raman Global UniversityInstitution, Bhubaneswar, 752054, India
| | - Mohammed Ikbal
- Department of Chemistry, Berhampore Girls' College, Berhampore, 742101, India
| | - Akash Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Kolkata, Mohanpur741246, India
| | - Rathin Jana
- Department of Chemistry, Shahid Matangini Hazra Govt. General Degree College for women, West Bengal, India
| | - Pradeepta Kumar Sahu
- Department of Chemistry, C.V. Raman Global UniversityInstitution, Bhubaneswar, 752054, India
| | - Soumen Giri
- Department of Chemistry, C.V. Raman Global UniversityInstitution, Bhubaneswar, 752054, India
| | | |
Collapse
|
6
|
Patel RK, Jha P, Chauhan A, Kant R, Kumar R. Polycyclic Pyrazoles from Alkynyl Cyclohexadienones and Nonstabilized Diazoalkanes via [3 + 2]-Cycloaddition/[1,5]-Sigmatropic Rearrangement/Aza-Michael Reaction Cascade. Org Lett 2024; 26:839-844. [PMID: 38252505 DOI: 10.1021/acs.orglett.3c03967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
An efficient method for the stereoselective synthesis of "all center substituted" polycyclic pyrazoles from alkynyl cyclohexa-2,5-dienones and nonstabilized diazoalkanes via sequential [3 + 2]-cycloaddition/[1,5]-sigmatropic rearrangement and aza-Michael reactions is reported. The developed process is highly regioselective and stereoselective. It employs a wide substrate scope to furnish structurally diverse linear and bridged [4.4.n.0] ring-fused pyrazoles in moderate to good yields. One-pot and gram-scale syntheses and synthetic transformations have also been showcased.
Collapse
Affiliation(s)
- Raj Kumar Patel
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Priyankar Jha
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Anil Chauhan
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
7
|
Dong K, Zhao YL, Jin XL, Liu Q. Indole-Fused Benzoxepine Synthesis via Visible-Light-Driven Aerobic Dehydrogenative [5 + 2] Annulation. Org Lett 2023; 25:8258-8262. [PMID: 37955358 DOI: 10.1021/acs.orglett.3c03310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
A photocatalyzed oxidative dehydrogenative annulation between 2-(1H-indol-2-yl)phenols and alkenylphenols is presented. Various indole-fused benzoxepines can be obtained at room temperature using atom-efficient strategies. This method not only avoids the use of stoichiometric amounts of oxidants but also exhibits excellent atom economy by generating H2O as the only theoretical byproduct.
Collapse
Affiliation(s)
- Kui Dong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yi-Lin Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ling Jin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Dai M, Zhang Y, Zhang X, Wang R, Wei W, Zhang Z, Liang T. Iodine-Mediated C2,3-H Aminoheteroarylation of Indoles. J Org Chem 2023; 88:15106-15117. [PMID: 37864558 DOI: 10.1021/acs.joc.3c01591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
A metal-free one-pot oxidative cross-dehydrogenation coupling reaction for the formation of C-N/C-C bonds at the C2,3-positions of indoles with azoles and quinoxalinones has been developed. The proposed method has several notable features, including metal-free catalysis, the use of N-H free indoles as substrates, ease of operation, mild reaction conditions, and compatibility with a wide range of substrates.
Collapse
Affiliation(s)
- Maoyi Dai
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yingying Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Xiaoxiang Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Ruiyi Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wanxing Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning, Guangxi 530004, P. R. China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
9
|
Singh Chauhan AN, Mali G, Dua G, Samant P, Kumar A, Erande RD. [RhCp*Cl 2] 2-Catalyzed Indole Functionalization: Synthesis of Bioinspired Indole-Fused Polycycles. ACS OMEGA 2023; 8:27894-27919. [PMID: 37576617 PMCID: PMC10413382 DOI: 10.1021/acsomega.3c02510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023]
Abstract
Polycyclic fused indoles are ubiquitous in natural products and pharmaceuticals due to their immense structural diversity and biological inference, making them suitable for charting broader chemical space. Indole-based polycycles continue to be fascinating as well as challenging targets for synthetic fabrication because of their characteristic structural frameworks possessing biologically intriguing compounds of both natural and synthetic origin. As a result, an assortment of new chemical processes and catalytic routes has been established to provide unified access to these skeletons in a very efficient and selective manner. Transition-metal-catalyzed processes, in particular from rhodium(III), are widely used in synthetic endeavors to increase molecular complexity efficiently. In recent years, this has resulted in significant progress in reaching molecular scaffolds with enormous biological activity based on core indole skeletons. Additionally, Rh(III)-catalyzed direct C-H functionalization and benzannulation protocols of indole moieties were one of the most alluring synthetic techniques to generate indole-fused polycyclic molecules efficiently. This review sheds light on recent developments toward synthesizing fused indoles by cascade annulation methods using Rh(III)-[RhCp*Cl2]2-catalyzed pathways, which align with the comprehensive and sophisticated developments in the field of Rh(III)-catalyzed indole functionalization. Here, we looked at a few intriguing cascade-based synthetic designs catalyzed by Rh(III) that produced elaborate frameworks inspired by indole bioactivity. The review also strongly emphasizes mechanistic insights for reaching 1-2, 2-3, and 3-4-fused indole systems, focusing on Rh(III)-catalyzed routes. With an emphasis on synthetic efficiency and product diversity, synthetic methods of chosen polycyclic carbocycles and heterocycles with at least three fused, bridged, or spiro cages are reviewed. The newly created synthesis concepts or toolkits for accessing diazepine, indol-ones, carbazoles, and benzo-indoles, as well as illustrative privileged synthetic techniques, are included in the featured collection.
Collapse
Affiliation(s)
| | - Ghanshyam Mali
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, India
| | - Garima Dua
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, India
| | - Priya Samant
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, India
| | - Akhilesh Kumar
- Department
of Chemistry and Nano Science, Ewha Womans
University, Seoul 03760, Korea
| | - Rohan D. Erande
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342037, India
| |
Collapse
|
10
|
Mishra AK, Chauhan A, Kumar S, Kant R, Kumar R. Catalyst-Controlled Diastereoselective Synthesis of Bridged [3.3.1] Bis(Indolyl)-Oxanes and Oxepanes via Desymmetrization of Bis(Indolyl)-Cyclohexadienones. Org Lett 2023; 25:3034-3039. [PMID: 37092788 DOI: 10.1021/acs.orglett.3c00834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
A catalyst-controlled divergent synthesis of bridged [3.3.1] bis(indolyl)-oxanes and cis-[6.7] fused bis(indolyl) oxepanes via diastereoselective desymmetrization of bis(indolyl)-cyclohexadienones is presented for the first time. The reaction is highly atom- and step-economic, furnishing sp3-rich functionalized bis(indolyl) derivatives in good to excellent yields with wide substrate scope. The reaction proceeds through Friedel-Crafts alkylation followed by catalyst-controlled selective C-C bond formation/rearrangement. Gram scale synthesis and synthetic utility to generate bis(indolyl) alkaloid-like molecular diversity were also illustrated.
Collapse
Affiliation(s)
- Abhishek Kumar Mishra
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh India
| | - Anil Chauhan
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Santosh Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
11
|
Kang TM, Wu YW, Zheng WS, Zhang XH, Zhang XG. The halogensulfonylative cyclizations of 1,6-enynes with sodium sulfinate/TBAX for the regioselective synthesis of tetrahydropyridines. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
12
|
Yu W, Zhang X, Liu C, Zhang Y, Gu X, Liao J, Zhang Z, Wei W, Li G, Liang T. Intermolecular C-H Aminocyanation of Indoles via Copper-iodine Cocatalyzed Tandem C-N/C-C Bond Formation. J Org Chem 2022; 87:12424-12433. [PMID: 36046980 DOI: 10.1021/acs.joc.2c01703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient copper-iodine cocatalyzed intermolecular C-H aminocyanation of indoles with a broad substrate scope has been developed for the first time. This method enables highly step-economic access to 2-amino-3-cyanoindoles in moderate to good yields and provides a complementary strategy for the regioselective difunctionalization of carbon═carbon double bonds of interest in organic synthesis and related areas. Mechanistic studies suggest that these transformations are initiated by iodine-mediated C2-H amination with azoles, followed by copper-catalyzed C3-H cyanation with ethyl cyanoformate.
Collapse
Affiliation(s)
- Wenhua Yu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Nanning, Guangxi 530004, P. R. China
| | - Xiaoxiang Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Chenrui Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yingying Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Xiaoting Gu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jiahao Liao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| | - Wanxing Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Guanghua Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Nanning, Guangxi 530004, P. R. China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
13
|
Patel RK, Chauhan A, Jha P, Kant R, Kumar R. Catalytic Friedel-Crafts Alkylative Desymmetrization of Cyclohexa-2,5-dienones: Access to Linear and Bridged Polycyclic Pyrroles and 3-Arylpyrroles. Org Lett 2022; 24:5422-5427. [PMID: 35852460 DOI: 10.1021/acs.orglett.2c02135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A catalytic [3 + 2]-cycloaddition/Friedel-Crafts alkylative desymmetrization strategy has been developed for the stereoselective construction of linear and bridged polycyclic pyrroles from alkynylcyclohexa-2,5-dienones. This strategy was further explored for the synthesis of 3-arylpyrroles under Brønsted acid catalysis. Reaction is highly chemo-, regio-, and stereoselective and is compatible with wide range of functionalized cyclohexa-2,5-dienones/pyrroles (>51 examples, ≤98% yields). Gram-scale synthesis and synthetic utility of the products have also been demonstrated to showcase the robustness of present method.
Collapse
Affiliation(s)
- Raj Kumar Patel
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Anil Chauhan
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad UP-201002, India
| | - Priyankar Jha
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ravindra Kumar
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, UP, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad UP-201002, India
| |
Collapse
|
14
|
Zhang X, Yu W, Nie Y, Zhang Y, Gu X, Wei W, Zhang Z, Liang T. Copper-iodine Co-catalyzed C−H Aminoalkenylation of Indoles via Temperature-controlled Selectivity Switch: Facile Synthesis of 2-Azolyl-3-alkenylindoles. Org Chem Front 2022. [DOI: 10.1039/d2qo00627h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient copper-iodine co-catalyzed 2,3-difunctionalization of indoles with azoles and phenols via temperature-controlled selectivity switch has been developed for the green synthesis of 2-azolyl-3-alkenylindoles. The strategy involves the simultaneous establishment...
Collapse
|
15
|
Li Y, Wang Y, Huang X, Shi Y, Tang Y, Jiao J, Li J, Xu S. Rapid Construction of Hexacyclic Indolines via the Ru(II)-Catalyzed C-H Activation Initiated Cascade Cyclization of Phenidones with Enynones. Org Lett 2021; 24:435-440. [PMID: 34928618 DOI: 10.1021/acs.orglett.1c04133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A highly efficient cascade cyclization of phenidones and enynones has been developed via a Ru(II)-catalyzed C-H activation initiated indole formation/Diels-Alder reaction/iminium ion cyclization sequence, which afforded hexacyclic indolines as single diastereomer in good to excellent yields with a broad substrate scope under mild conditions. The reaction features the simultaneous generation of five new chemical bonds and four new rings in one pot, providing a rapid and concise approach toward polycyclic indoline alkaloids and their analogues.
Collapse
Affiliation(s)
- Yang Li
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yongzhuang Wang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xiaoli Huang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yan Shi
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuhai Tang
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jiao Jiao
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jing Li
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Silong Xu
- Department of Material Chemistry, School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
16
|
Jadhav SB, Maurya S, Navaneetha N, Chegondi R. Rh(III)-catalyzed diastereoselective cascade annulation of enone-tethered cyclohexadienones via C(sp 2)-H bond activation. Chem Commun (Camb) 2021; 57:13598-13601. [PMID: 34853840 DOI: 10.1039/d1cc05941f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report highly diastereoselective arylative cyclization of enone-tethered cyclohexadienones via Rh(III)-catalyzed C-H activation of N-methoxybenzamides. This reaction proceeds through the formation of a five-membered rhodacycle followed by bis-Michael cascade annulation to access functionalized bicyclic scaffolds with four contiguous stereocenters with a broad substrate scope. These products have excellent functional handles, allowing further synthetic transformation to increase the structural complexity. Furthermore, mechanistic studies of arylative cyclization and a gram-scale experiment are also presented.
Collapse
Affiliation(s)
- Sandip B Jadhav
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sundaram Maurya
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - N Navaneetha
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|