1
|
Zhang Z, Gevorgyan V. Visible Light-Induced Reactions of Diazo Compounds and Their Precursors. Chem Rev 2024; 124:7214-7261. [PMID: 38754038 DOI: 10.1021/acs.chemrev.3c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In recent years, visible light-induced reactions of diazo compounds have attracted increasing attention in organic synthesis, leading to improvement of existing reactions, as well as to the discovery of unprecedented transformations. Thus, photochemical or photocatalytic generation of both carbenes and radicals provide milder tools toward these key intermediates for many valuable transformations. However, the vast majority of the transformations represent new reactivity modes of diazo compounds, which are achieved by the photochemical decomposition of diazo compounds and photoredox catalysis. In particular, the use of a redox-active photocatalysts opens the avenue to a plethora of radical reactions. The application of these methods to diazo compounds led to discovery of transformations inaccessible by the classical reactivity associated with carbenes and metal carbenes. In most cases, diazo compounds act as radical sources but can also serve as radical acceptors. Importantly, the described processes operate under mild, practical conditions. This Review describes this subfield of diazo compound chemistry, particularly focusing on recent advancements.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
2
|
He Q, Zhang Q, Rolka AB, Suero MG. Alkoxy Diazomethylation of Alkenes by Photoredox-Catalyzed Oxidative Radical-Polar Crossover. J Am Chem Soc 2024; 146:12294-12299. [PMID: 38663863 PMCID: PMC11082901 DOI: 10.1021/jacs.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
Herein, we present the discovery and development of the first photoredox-catalyzed alkoxy diazomethylation of alkenes with hypervalent iodine reagents and alcohols. This multicomponent process represents a new disconnection approach to diazo compounds and is featured by a broad scope, mild reaction conditions, and excellent selectivity. Key to the process was the generation of diazomethyl radicals, which engaged alkenes and alcohols in an inter- and intramolecular fashion by a photoredox-catalyzed oxidative radical-polar crossover leading to unexplored β-alkoxydiazo compounds. The synthetic utility of such diazo compounds was demonstrated with a series of transformations involving C-H, N-H, and O-H insertions as well as in the construction of complex sp3-rich heterocycles.
Collapse
Affiliation(s)
- Qiyuan He
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona
Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Quan Zhang
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona
Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Analítica i Química Orgánica, Universitat Rovira i Virgili, Calle Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - Alessa B. Rolka
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona
Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
| | - Marcos G. Suero
- Institute
of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona
Institute of Science and Technology, Països Catalans 16, 43007 Tarragona, Spain
- ICREA,
Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
3
|
Zhao WW, Tian MY, Zhou YL, Liu LJ, Tian SF, He CY, Yang XZ, Chen YZ, Han WY. Trifluoromethyl Rhodium-Carbynoid in [2+1+2] Cycloadditions. Angew Chem Int Ed Engl 2024; 63:e202318887. [PMID: 38237082 DOI: 10.1002/anie.202318887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Indexed: 02/24/2024]
Abstract
Trifluoromethyl cationic carbyne (CF3 C+ :) possessing dual carbene-carbocation behavior emulated as trifluoromethyl metal-carbynoid (CF3 C+ =M) has not been explored yet, and its reaction characteristics are unknown. Herein, a novel α-diazotrifluoroethyl sulfonium salt was prepared and used in Rh-catalyzed three-component [2+1+2] cycloadditions for the first time with commercially available N-fused heteroarenes and nitriles, yielding a series of imidazo[1,5-a] N-heterocycles that are of interest in medicinal chemistry, in which the insertion of trifluoromethyl Rh-carbynoid (CF3 C+ =Rh) into C=N bonds of N-fused heteroarenes was involved. This strategy demonstrates synthetic applications in late-stage modification of pharmaceuticals, construction of CD3 -containing N-heterocycles, gram-scale experiments, and synthesis of phosphodiesterase 10A inhibitor analog. These highly valuable and modifiable imidazo[1,5-a] N-heterocycles exhibit good antitumor activity in vitro, thus demonstrating their potential applications in medicinal chemistry.
Collapse
Affiliation(s)
- Wen-Wen Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Meng-Yang Tian
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Yi-Lin Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Lu-Jie Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Shao-Fang Tian
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Xing-Zhi Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, 650201, Kunming, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Rd., 563006, Zunyi, China
| |
Collapse
|
4
|
Li Z, Zhang Y, Sun M, Zhang Y, Lu Z, Deng Y, Huang X, Shen G. La(OTf) 3-Catalyzed [3+2] Cycloaddition Reactions for the Synthesis of Benzo[ d]oxazoles/Benzofurans. J Org Chem 2024; 89:3809-3820. [PMID: 38395778 DOI: 10.1021/acs.joc.3c02641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
The La(OTf)3-catalyzed [3+2] cycloaddition reactions for the synthesis of benzo[d]oxazoles/benzofurans via quinones and 1,2-di-tert-butyl-3-(cyanimino)diaziridine (1,3-di-tert-butyl-2-cyanoguanidine)/vinyl azides have been explored. A series of 5-hydroxybenzofuran-4-carboxylic acid derivatives and 5-hydroxybenzo[d]oxazole-4-carboxylic acid derivatives were conveniently obtained with high yields and good stereoselectivities, which could be used for further transformations to valuable compounds.
Collapse
Affiliation(s)
- Zhanjun Li
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Avenue, Liaocheng 252000, Shandong, P. R. China
- Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, E-208 West Campus, 2 Ling Gong Road, Dalian 116024, P. R. China
| | - Yalin Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Avenue, Liaocheng 252000, Shandong, P. R. China
| | - Manman Sun
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Ye Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Avenue, Liaocheng 252000, Shandong, P. R. China
| | - Zhaoxiang Lu
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Avenue, Liaocheng 252000, Shandong, P. R. China
| | - Yupeng Deng
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Avenue, Liaocheng 252000, Shandong, P. R. China
| | - Xianqiang Huang
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Avenue, Liaocheng 252000, Shandong, P. R. China
| | - Guodong Shen
- School of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Avenue, Liaocheng 252000, Shandong, P. R. China
| |
Collapse
|
5
|
Xie ZY, Xuan J. Advances in heterocycle synthesis through photochemical carbene transfer reactions. Chem Commun (Camb) 2024; 60:2125-2136. [PMID: 38284428 DOI: 10.1039/d3cc06056j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Heterocyclic skeletons are commonly found in various bioactive molecules and pharmaceutical compounds, making them crucial in areas such as medicinal chemistry, materials science, and the realm of natural product synthesis. In recent years, the rapid advancements of visible light methodologies in organic synthesis have shown promising potential for the development of light-induced carbene transfer reactions. This is particularly significant as most organic molecules do not absorb visible light. Free carbene, known for its high activity, is frequently utilized for insertion reactions or cyclopropanation reactions. This review focuses on the photochemical strategy for the construction of heterocyclic skeletons, specifically highlighting the methods that employ visible light-promoted carbene transfer reactions.
Collapse
Affiliation(s)
- Zi-Yi Xie
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
6
|
Zhang C, Wan JP. Synthesis of Hypervalent Iodine Diazo Compounds and Their Application in Organic Synthesis. Chemistry 2024; 30:e202302718. [PMID: 37846841 DOI: 10.1002/chem.202302718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
Diazomethyl-substituted iodine(III) compounds with electron-withdrawing groups (EWG) connected to diazo methyl center were a type of donor-acceptor diazo compounds with potential reaction abilities similar to ordinary diazo compounds. Although several diazomethyl-substituted iodine(III) compounds were synthesized and used in the nucleophilic substitution reactions as early as 1994, the synthesis and application of new iodine(III) diazo compounds have only been reported to a certain extent in recent years. In the presence of rhodium catalyst, photocatalyst, or nucleophiles, diazomethyl-substituted iodine(III) compounds can be converted into rhodium-carbenes, diazomethyl radicals, ester radicals or nucleophilic intermediates, which can be used as key intermediates for the formation of chemical bonds. The aim of this review is to give an overview of diazomethyl-substituted iodine(III) compounds in organic synthesis.
Collapse
Affiliation(s)
- Cai Zhang
- Department of Safety Supervision and Management, Chongqing Vocational Institute of Safety Technology, 583 Anqing road, Wanzhou district, 404020, Chongqing, China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Avenue, 330022, Nanchang, China
| |
Collapse
|
7
|
He MY, Tang X, Wu HY, Nie J, Ma JA, Zhang FG. Electron Donor-Acceptor Complex Enabled Radical Cyclization of α-Diazodifluoroethyl Sulfonium Salt with Unactivated Alkynes. Org Lett 2023; 25:9041-9046. [PMID: 38088909 DOI: 10.1021/acs.orglett.3c03790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
An α-diazodifluoroethane sulfonium reagent was developed in this study to undergo [3 + 2] radical cyclization with unactivated alkynes to give the corresponding 3-difluoromethyl pyrazoles under blue light irradiation conditions. The key to the success of this transformation lies in the formation of an electron donor-acceptor (EDA) complex between an electron-deficient α-diazo sulfonium salt and an electron-rich triaryl amine. This study circumvents a major substrate scope limitation in polar cycloaddition reactions of existent diazodifluoroethane reagents.
Collapse
Affiliation(s)
- Ming-Yue He
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. of China
| | - Xiaodong Tang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China
| | - Hao-Yan Wu
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. of China
| | - Jing Nie
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. of China
| |
Collapse
|
8
|
Russo C, Donati G, Giustiniano F, Amato J, Marinelli L, Whitby RJ, Giustiniano M. Isocyanides as Catalytic Electron Acceptors in the Visible Light Promoted Oxidative Formation of Benzyl and Acyl Radicals. Chemistry 2023; 29:e202301852. [PMID: 37505481 DOI: 10.1002/chem.202301852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/29/2023]
Abstract
The recent disclosure of the ability of aromatic isocyanides to harvest visible light and act as single electron acceptors when reacting with tertiary aromatic amines has triggered a renewed interest in their application to the development of green photoredox catalytic methodologies. Accordingly, the present work explores their ability to promote the generation of both alkyl and acyl radicals starting from radical precursors such as Hantzsch esters, potassium alkyltrifluoroborates, and α-oxoacids. Mechanistic studies involving UV-visible absorption and fluorescence experiments, electrochemical measurements of the ground-state redox potentials along with computational calculations of both the ground- and the excited-state redox potentials of a set of nine different aromatic isocyanides provide key insights to promote a rationale design of a new generation of isocyanide-based organic photoredox catalysts. Importantly, the green potential of the investigated chemistry is demonstrated by a direct and easy access to deuterium labeled compounds.
Collapse
Affiliation(s)
- Camilla Russo
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Greta Donati
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Francesco Giustiniano
- School of Chemistry, University of Southampton, University Road, SO171BJ, Southampton, UK
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| | - Richard John Whitby
- School of Chemistry, University of Southampton, University Road, SO171BJ, Southampton, UK
| | - Mariateresa Giustiniano
- Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
9
|
Cen K, Wei J, Feng Y, Liu Y, Wang X, Liu Y, Yin Y, Yu J, Wang D, Cai J. Synthesis of fused 3-trifluoromethyl-1,2,4-triazoles via base-promoted [3 + 2] cycloaddition of nitrile imines and 1 H-benzo[ d]imidazole-2-thiols. Org Biomol Chem 2023; 21:7095-7099. [PMID: 37622281 DOI: 10.1039/d3ob01133j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Here we report a strategy for the facile assembly of fused 3-trifluoromethyl-1,2,4-triazoles, which are difficult to synthesize using traditional strategies, in 50-96% yields through a triethylamine-promoted intermolecular [3 + 2] cycloaddition pathway. This protocol features high efficiency, good functional group tolerance, mild conditions, and easy operation. Furthermore, a gram-scale reaction and product derivatizations were carried out smoothly to illustrate the practicability of this method.
Collapse
Affiliation(s)
- Kaili Cen
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, China.
| | - Jiahao Wei
- School of Pharmaceutical Science, University of South China, Hengyang 421001, Hunan, China
| | - Yuting Feng
- Chuanshan College University of South China, Hengyang 421001, Hunan, China
| | - Yuan Liu
- Chuanshan College University of South China, Hengyang 421001, Hunan, China
| | - Xinye Wang
- Chuanshan College University of South China, Hengyang 421001, Hunan, China
| | - Yangyu Liu
- Chuanshan College University of South China, Hengyang 421001, Hunan, China
| | - Yalin Yin
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, China.
| | - Junhong Yu
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, China.
| | - Dahan Wang
- Department of Food and Chemical Engineering, Shaoyang University, Shaoyang 422100, Hunan, China.
| | - Jinhui Cai
- College of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
10
|
Xu XC, Wu DN, Liang YX, Yang M, Yuan HY, Zhao YL. Visible Light-Induced Coupling Cyclization Reaction of α-Diazosulfonium Triflates with α-Oxocarboxylic Acids or Alkynes. J Org Chem 2022; 87:16604-16616. [DOI: 10.1021/acs.joc.2c02267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xue-Cen Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Dan-Ni Wu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yong-Xin Liang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ming Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Hai-Yan Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
11
|
Wen J, Zhao W, Gao X, Ren X, Dong C, Wang C, Liu L, Li J. Synthesis of [1,2,3]Triazolo-[1,5- a]quinoxalin-4(5 H)-ones through Photoredox-Catalyzed [3 + 2] Cyclization Reactions with Hypervalent Iodine(III) Reagents. J Org Chem 2022; 87:4415-4423. [PMID: 35234036 DOI: 10.1021/acs.joc.2c00135] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An efficient synthesis of a variety of [1,2,3]triazolo-[1,5-a]quinoxalin-4(5H)-ones via a [3 + 2] cyclization reaction by photoredox catalysis between quinoxalinones and hypervalent iodine(III) reagents is reported. A range of quinoxalinones and hypervalent iodine(III) reagents were tolerated well. This cyclization reaction allows access to structurally diverse [1,2,3]triazolo-[1,5-a]quinoxalin-4(5H)-ones in moderate to good yields.
Collapse
Affiliation(s)
- Jinxia Wen
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Wenyan Zhao
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Xu Gao
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Xiaofang Ren
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Chunping Dong
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Cheli Wang
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Li Liu
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Jian Li
- School of Pharmacy, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| |
Collapse
|
12
|
Li S, Zhou L. Visible Light-Promoted Radical Reactions of Diazo Compounds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Zhao L, Xu J, Ma J, Yin G, Li F, Suo T, Wang C. Formal [4+1] cyclization of (thio/imido)hydrazides and ethyl 3,3,3-trifluoropropanoate: unified synthesis of 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazoles. NEW J CHEM 2022. [DOI: 10.1039/d2nj04147b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have developed a unified approach to 1,3,4-oxadiazoles, 1,3,4-thiadiazoles and 1,2,4-triazoles with ethyl acetate decoration by treating hydrazides, thiohydrazides and imidohydrazide with ethyl 3,3,3-trifluoropropanoate in the presence of a suitable base.
Collapse
Affiliation(s)
- Lan Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, P. R. China
| | - Jun Xu
- School of Pharmaceutical Science & Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Jun Ma
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, P. R. China
| | - Guangwei Yin
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, P. R. China
| | - Fangyi Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, P. R. China
| | - Tongchuan Suo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, P. R. China
| | - Chunhua Wang
- School of Medicine, Foshan University, Foshan 528225, P. R. China
| |
Collapse
|