1
|
Pan C, Xiang C, Yu JT. Organophotocatalytic pyridination of N-arylglycines with 4-cyanopyridines by decarboxylative and decyanative radical-radical coupling. Org Biomol Chem 2024; 22:7806-7810. [PMID: 39254473 DOI: 10.1039/d4ob01257g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A photocatalytic decarboxylative aminoalkylation of 4-cyanopyridines with N-arylglycines is achieved, providing 4-(aminomethyl)pyridine derivatives in moderate to good yields. This organic photocatalytic reaction undergoes a radical-radical cross-coupling process under redox-neutral conditions, featuring simple operation, readily available N-arylglycines and a broad substrate scope. Mechanistic investigations indicated that a proton-coupled electron-transfer process was involved to enable the single electron transfer between the reduced photocatalyst and 4-cyanopyridine in the presence of N-arylglycines.
Collapse
Affiliation(s)
- Changduo Pan
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Chengli Xiang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
2
|
Ouyang WT, Ji HT, Liu YY, Li T, Jiang YF, Lu YH, Jiang J, He WM. TEMPO/O 2 Synergistically Mediated BiBrO-Photocatalyzed Decarboxylative Phosphorylation of N-Arylglycines. Chemistry 2024; 30:e202304234. [PMID: 38644695 DOI: 10.1002/chem.202304234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024]
Abstract
With both TEMPO and O2 (in air) as the homogeneous redox mediators, BiBrO as the heterogeneous semiconductor photocatalyst, the first example of semi-heterogeneous photocatalytic decarboxylative phosphorylation of N-arylglycines with diarylphosphine oxides was established. A series of α-amino phosphinoxides were efficiently synthesized.
Collapse
Affiliation(s)
- Wen-Tao Ouyang
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Hong-Tao Ji
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Yuan-Yuan Liu
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Ting Li
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Yan-Fang Jiang
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Yu-Han Lu
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South, China, Hengyang, 421001, China
| |
Collapse
|
3
|
Yan C, Qian Y, Liao Z, Le Z, Fan Q, Zhu H, Xie Z. Recent progress of metal halide perovskite materials in heterogeneous photocatalytic organic reactions. Photochem Photobiol Sci 2024; 23:1393-1415. [PMID: 38850494 DOI: 10.1007/s43630-024-00599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Photocatalytic technology is widely regarded as an important way to utilize solar energy and achieve carbon neutrality, which has attracted considerable attentions in various fields over the past decades. Metal halide perovskites (MHPs) are recognized as "superstar" materials due to their exceptional photoelectric properties, readily accessible and tunable structure, which made them intensively studied in solar cells, light-emitting diodes, and solar energy conversion fields. Since 2018, increased attention has been focused on applying the MHPs as a heterogeneous visible light photocatalyst in catalyzing organic synthesis reactions. In this review, we present an overview of photocatalytic technology and principles of heterogeneous photocatalysis before delving into the structural characteristics, stability, and classifications of MHPs. We then focus on recent developments of MHPs in photocatalyzing various organic synthesis reactions, such as oxidation, cyclization, C-C coupling etc., based on their classifications and reported reaction types. Finally, we discuss the main limitations and prospects regarding the application of metal halide perovskites in organic synthesis.
Collapse
Affiliation(s)
- Chunpei Yan
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Yan Qian
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Zhaohong Liao
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Zhanggao Le
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Qiangwen Fan
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China.
| | - Haibo Zhu
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Functional Organic Polymers, East China University of Technology, Nanchang, 330013, China
| |
Collapse
|
4
|
Xiao RX, Tian T, Yang TY, Lan MX, Lv S, Mou XQ, Chen YZ, Cui BD. 2,2'-Bipyridine-Enabled Photocatalytic Radical [4+2] Cyclization of N-Aryl-α-amino Acids for Synthesizing Polysubstituted Tetrahydroquinolines. Org Lett 2024; 26:3195-3201. [PMID: 38563798 DOI: 10.1021/acs.orglett.4c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A facile photocatalytic radical [4+2] cyclization of N-aryl-α-amino acids with various alkenes to access structurally polysubstituted tetrahydroquinolines has been developed. Using a simple bipyridine as a catalyst, different N-aryl-α-amino acids could be utilized as the radical precursors to react with diverse electrophilic alkenes, including exocyclic terminal alkenes, acyclic terminal alkenes, and cycloalkenes, producing 10 types of nitrogen-containing heterocyclic compounds fused in multiple frameworks in generally moderate yields with good diastereoselectivities. Scale-up synthesis and transformations of the products further demonstrated the synthetic application of this protocol. Moreover, a decarboxylative radial pathway via a proton-coupled electron transfer process for illustration of this [4+2] cyclization was proposed on the basis of the control experiments. This process is highlighted by a simple bipyridine photocatalysis, mild reaction conditions, various N-aryl-α-amino acids and alkene materials, and application for the modification of natural products.
Collapse
Affiliation(s)
- Ren-Xu Xiao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Ting Tian
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Ting-You Yang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Ming-Xing Lan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Shuo Lv
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xue-Qing Mou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
5
|
Ahlawat M, Govind Rao V. Insights into interfacial mechanisms: CsPbBr 3 nanocrystals as sustainable photocatalysts for primary amine oxidation. Chem Commun (Camb) 2024; 60:2365-2368. [PMID: 38318670 DOI: 10.1039/d3cc05725a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
CsPbBr3 nanocrystals (NCs) employed as a photocatalyst resulted in efficient benzylamine oxidation under oxygen atmosphere. Improved reaction yields stem from favorable -NH2 functional group interactions on the NC surface, while additional interactions with -OMe or -SMe functional groups post-product formation result in lower yields. These insights into interfacial interactions and mechanistic aspects advance sustainable chemical transformations through cost-effective and recyclable CsPbBr3 NC-catalyzed primary amine oxidation.
Collapse
Affiliation(s)
- Monika Ahlawat
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India.
| | - Vishal Govind Rao
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India.
| |
Collapse
|
6
|
Sen B, Paul S, Krukowski P, Kundu D, Das S, Banerjee P, Mal Ecka M, Abbas SJ, Ali SI. CuAs 2O 4: Design, Hydrothermal Synthesis, Crystal Structure, Photocatalytic Dye Degradation, Hydrogen Evolution Reaction, Knoevenagel Condensation Reaction, and Thermal Studies. Inorg Chem 2024; 63:2919-2933. [PMID: 38297514 DOI: 10.1021/acs.inorgchem.3c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
CuAs2O4 has been explored as a heterogeneous catalyst in the fields of photocatalysis, electrocatalysis, and solvent-free organic transformation reactions. The homogeneity has been successfully attained for the first time by designing a pH-assisted hydrothermal synthesis technique. Single-crystal X-ray diffraction studies reveal that no phase transition has been observed by lowering the temperature up to 103 K with no existence of satellite reflections. The crystal structure exhibits tetragonal symmetry with space group P42/mbc and consists of [CuO6] octahedra and [AsO3E] tetrahedra (E represents the stereochemically active lone pair). Structural investigation shows a cylindrical void inside the structure, which could lead to interesting physical and chemical properties. The photocatalytic dye degradation efficiency with methylene blue (MB) showed ∼100% degradation, though the degradation efficiency increased by 2-fold with the addition of 6% H2O2. The reusability of the catalyst up to the 10th cycle with ∼35% MB dye degradation has been established. It can exhibit HER activity with a low overpotential of 165 mV with respect to RHE to attain the current density of j = 10 mA cm-2. SEM and TEM revealed rod-shaped particles, which supported the large number of catalytic active sites. The structural consistency of the catalyst after photodegradation and HER studies is confirmed by the PXRD pattern. XPS confirms the oxidation state of Cu and As in the compound. The catalytic activity toward the Knoevenagel condensation reaction at moderate temperature under solvent-free condition is also studied. TG-DTA shows an endothermic minimum (Tmin) at 436 °C due to the mass loss of As2O3.
Collapse
Affiliation(s)
- Bibaswan Sen
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Sayantani Paul
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Pawel Krukowski
- Department of Solid State Physics, University of Lodz, Lodz 90-236, Poland
| | - Debojyoti Kundu
- CSIR- Central Mechanical Engineering Research Institute (CMERI), Durgapur, West Bengal 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sangita Das
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Priyabrata Banerjee
- CSIR- Central Mechanical Engineering Research Institute (CMERI), Durgapur, West Bengal 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Magdalena Mal Ecka
- Department of Physical Chemistry, University of Lodz, Lodz 90-236, Poland
| | - Sk Jahir Abbas
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| |
Collapse
|
7
|
Lin Y, Yan Y. CsPbBr 3 Perovskite Nanocrystals for Photocatalytic [3+2] Cycloaddition. CHEMSUSCHEM 2024; 17:e202301060. [PMID: 37607341 DOI: 10.1002/cssc.202301060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
Visible-light-induced halide-exchange between halide perovskite and organohalide solvents has been studied in which photoinduced electron transfer from CsPbBr3 nanocrystals (NCs) to dihalomethane solvent molecules produces halide anions via reductive dissociation, followed by a spontaneous anion-exchange. Photogenerated holes in this process are less focused. Here, for CsPbBr3 in dibromomethane (DBM), we discover that Br radical (Br⋅) is a key intermediate resulting from the hole oxidation. We successfully trapped Br⋅ with reported methods and found that Br⋅ is continuously generated in DBM under visible light irradiation, hence imperative for catalytic reaction design. Continuous Br⋅ formation within this halide-exchange process is active for photocatalytic [3+2] cycloaddition for vinylcyclopentane synthesis, a privileged scaffold in medicinal chemistry, with good yield and rationalized diastereoselectivity. The NC photocatalyst is highly recyclable due to Br-based self-healing, leading to a particularly economic and neat heterogeneous reaction where the solvent DBM also acts as a co-catalyst in perovskite photocatalysis. Halide perovskites, notable for efficient solar energy conversion, are demonstrated as exceptional photocatalysts for Br radical-mediated [3+2] cycloaddition. We envisage such perovskite-induced Br radical strategy may serve as a powerful chemical tool for developing valuable halogen radical-involved reactions.
Collapse
Affiliation(s)
- Yixiong Lin
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA-92182, USA
| | - Yong Yan
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA-92182, USA
| |
Collapse
|
8
|
Zhou P, Wu S, Niu K, Song H, Liu Y, Zhang J, Wang Q. Intramolecular trapping of an iminium salt: rapid construction of quindoline derivatives. Chem Commun (Camb) 2024; 60:292-295. [PMID: 38059581 DOI: 10.1039/d3cc05143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Construction of the pyridine ring is a practical and streamline way to construct a variety of quindoline derivatives. We have developed a novel method for synthesis of quindoline derivatives by means of intramolecular ring-closure reactions of 3-N-methylphenylindoles via an iminium salt intermediate. This practical method has the advantages of a short reaction time, operational simplicity, and nearly quantitative yields; and it can be used for the rapid synthesis of a variety of valuable quindoline derivatives.
Collapse
Affiliation(s)
- Pan Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Senhui Wu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Kaikai Niu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Jingjing Zhang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
- College of Basic Science, Tianjin Agricultural University, Tianjin 300384, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
9
|
Ouyang WT, Ji HT, Jiang J, Wu C, Hou JC, Zhou MH, Lu YH, Ou LJ, He WM. Ferrocene/air double-mediated FeTiO 3-photocatalyzed semi-heterogeneous annulation of quinoxalin-2(1 H)-ones in EtOH/H 2O. Chem Commun (Camb) 2023; 59:14029-14032. [PMID: 37964611 DOI: 10.1039/d3cc04020h] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
With both ferrocene and air as the redox catalysts, for the first time, the low-cost natural ilmenite (FeTiO3) was successfully used for photocatalytic bond formations. Under the assistance of a traceless H-bond, and HCHO as the methylene reagent, a variety of imidazo[1,5-a]quinoxalinones were semi-heterogeneously photosynthesized in high yields with good functional group compatibility.
Collapse
Affiliation(s)
- Wen-Tao Ouyang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Hong-Tao Ji
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Chao Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Jia-Cheng Hou
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Min-Hang Zhou
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Yu-Han Lu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Li-Juan Ou
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| |
Collapse
|
10
|
Xie L, Zhao C, Wang Z, Chen Z, Zhao Y, Liu X, Xu X, Liu W, Li X, Wu L. Synthesis of Polycyclic Imidazolidinones via Cascade [3 + 2]-Annulation of β-Oxo-acrylamides with Cyclic N-Sulfonyl Imines. J Org Chem 2023; 88:15805-15816. [PMID: 37906181 DOI: 10.1021/acs.joc.3c01878] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
An Et3N-catalyzed cascade [3 + 2]-annulation of β-oxo-acrylamides with cyclic N-sulfonyl ketimines or sulfamate-derived imines is developed under mild reaction conditions, which provides a concise and efficient route to access valuable sultam- or sulfamidate-fused imidazolidinone derivatives in good to excellent yields (80-95% yields) with excellent diastereoselectivities (>20:1 drs). The current protocol features atom economy, a transition-metal-free process, and broad functional group tolerance. Moreover, the asymmetric variant of the [3 + 2]-cycloaddition reaction was achieved in the presence of diphenylethanediamine or quinine-based bifunctional squaramide organocatalysts C-1 and C-11, giving the corresponding chiral polycyclic imidazolidinones in 68-90% yields with 25-94% ees and >20:1 drs in all cases.
Collapse
Affiliation(s)
- Lei Xie
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, Shandong, P. R. China
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng 252000, Shandong, P. R. China
| | - Chenyi Zhao
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, Shandong, P. R. China
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng 252000, Shandong, P. R. China
| | - Zhaoxue Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, Shandong, P. R. China
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng 252000, Shandong, P. R. China
| | - Zirui Chen
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, Shandong, P. R. China
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng 252000, Shandong, P. R. China
| | - Yingying Zhao
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, Shandong, P. R. China
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng 252000, Shandong, P. R. China
| | - Xinghan Liu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, Shandong, P. R. China
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng 252000, Shandong, P. R. China
| | - Xiangdong Xu
- Liaocheng Inspection and Testing Center, Liaocheng 252000, Shandong, P. R. China
| | - Wanxing Liu
- The Non-Public Enterprise Service Center of Liaocheng, Liaocheng 252000, Shandong, P. R. China
| | - Xiaojing Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, Shandong, P. R. China
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng 252000, Shandong, P. R. China
| | - Lingang Wu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng 252000, Shandong, P. R. China
- Liaocheng Key Laboratory of Quality Control and Pharmacodynamic Evaluation of Ganoderma Lucidum, Liaocheng 252000, Shandong, P. R. China
| |
Collapse
|
11
|
Zhou X, Zhang B, Wu P, Xu W, Wang R, Li J, Zhai H, Cheng B, Wang T. Access to Chromenopyrrolidines Enabled by Organophotocatalyzed [2 + 2 + 1] Annulation of Chromones with N-Arylglycines. Org Lett 2023; 25:7512-7517. [PMID: 37811898 DOI: 10.1021/acs.orglett.3c02801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
A facile approach toward chromenopyrrolidines was achieved under mild conditions via organophotocatalyzed aerobic decarboxylative [2 + 2 + 1] annulation of chromones with N-arylglycines, in which N-arylglycines perform dual roles (i.e., radical precursor and methylene provider). Mechanistic studies suggested that a Giese-type radical addition and consequent Mannich pathway were likely responsible for the annulation reaction.
Collapse
Affiliation(s)
- Xin Zhou
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
- Institute of Marine Biomedicine/Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Biwei Zhang
- Institute of Marine Biomedicine/Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Ping Wu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China
| | - Wei Xu
- Institute of Marine Biomedicine/Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Renqi Wang
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China
| | - Jingbai Li
- Institute of Marine Biomedicine/Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Hongbin Zhai
- Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Bin Cheng
- Institute of Marine Biomedicine/Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Taimin Wang
- Institute of Marine Biomedicine/Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen 518055, China
| |
Collapse
|
12
|
Lu YH, Mu SY, Jiang J, Zhou MH, Wu C, Ji HT, He WM. Paraformaldehyde as C1 Synthon: Electrochemical Three-Component Synthesis of Tetrahydroimidazo[1,5-a]quinoxalin-4(5H)-ones in Aqueous Ethanol. CHEMSUSCHEM 2023; 16:e202300523. [PMID: 37728196 DOI: 10.1002/cssc.202300523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/25/2023] [Indexed: 09/21/2023]
Abstract
A green and practical method for the electrochemical synthesis of tetrahydroimidazo[1,5-a]quinoxalin-4(5H)-ones through the three-component reaction of quinoxalin-2(1H)-ones, N-arylglycines and paraformaldehyde was reported. In this strategy, EtOH played dual roles (eco-friendly solvent and waste-free pre-catalyst) and the in situ generated ethoxide promoted triple sequential deprotonations.
Collapse
Affiliation(s)
- Yu-Han Lu
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Si-Yu Mu
- Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Min-Hang Zhou
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Chao Wu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Hong-Tao Ji
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| |
Collapse
|
13
|
Mohamadpour F. Recyclable photocatalyst perovskite as a single-electron redox mediator for visible-light-driven photocatalysis gram-scale synthesis of 3,4-dihydropyrimidin-2-(1H)-ones/thiones in air atmosphere. Sci Rep 2023; 13:10262. [PMID: 37355768 DOI: 10.1038/s41598-023-37526-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023] Open
Abstract
Based on the Biginelli reaction of β-ketoesters, arylaldehydes, and urea/thiourea, we created a green radical synthesis procedure for 3,4-dihydropyrimidin-2-(1H)-ones/thiones. A single-electron redox mediator was applied to a solution of ethanol in an air environment, at room temperature, and with blue LEDs as a renewable energy source in order to create. The objective of this research is to create a halide perovskite that is widely available, affordable, recyclable, and economically feasible. A factor mentioned in the discussion is that the procedure tolerates a variety of donating and withdrawing functional groups while still offering a very fast rate and excellent yields. The range of yields is quite uniform (86-94%, average: 90.4%), and the range of reaction times is very quick (4-8 min, average: 5.8 min). Furthermore, gram-scale cyclization shows that it is applicable for use in industry. Additionally, CsPbBr3 is quite stable and can be used six times in a row without experiencing significant structural changes or activity loss, which has been extremely helpful in meeting industrial needs and environmental issues.
Collapse
|
14
|
Kipkorir A, Jin X, Gao H, Kamat PV. Photoinduced electron transfer across the polymer-capped CsPbBr 3 interface in a polar medium. J Chem Phys 2023; 158:144702. [PMID: 37061503 DOI: 10.1063/5.0143920] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
In-situ polymer capping of cesium lead bromide (CsPbBr3) nanocrystals with polymethyl acrylate is an effective approach to improve the colloidal stability in the polar medium and thus extends their use in photocatalysis. The photoinduced electron transfer properties of polymethyl acrylate (PMA)-capped CsPbBr3 nanocrystals have been probed using surface-bound viologen molecules with different alkyl chains as electron acceptors. The apparent association constant (Kapp) obtained for the binding of viologen molecules with PMA-capped CsPbBr3 was 2.3 × 107 M-1, which is an order of magnitude greater than that obtained with oleic acid/oleylamine-capped CsPbBr3. Although the length of the alkyl chain of the viologen molecule did not show any impact on the electron transfer rate constant, it influenced the charge separation efficiency and net electron transfer quantum yield. Viologen moieties with a shorter alkyl chain length exhibited a charge separation efficiency of 72% compared with 50% for the longer chain alkyl chain length viologens. Implications of polymer-capped CsPbBr3 perovskite nanocrystals for carrying out photocatalytic reduction in the polar medium are discussed.
Collapse
Affiliation(s)
- Anthony Kipkorir
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Xiuyu Jin
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Haifeng Gao
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Prashant V Kamat
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
15
|
Rani P, Prakash M, Samanta S. Organobase-catalyzed Mannich reaction of cyclic N-sulfonyl imines and 1,2-diketones: a sustainable approach to 4-(3-arylquinoxalin-2-ylmethyl)sufamidates. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
16
|
Miralles-Comins S, Zanatta M, Gualdrón-Reyes AF, Rodriguez-Pereira J, Mora-Seró I, Sans V. Polymeric ionic liquid-based formulations for the fabrication of highly stable perovskite nanocrystal composites for photocatalytic applications. NANOSCALE 2023; 15:4962-4971. [PMID: 36786242 DOI: 10.1039/d2nr07254h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Halide perovskite nanocrystals (PNCs) have emerged as potential visible-light photocatalysts because of their outstanding intrinsic properties, including high absorption coefficient and tolerance to defects, which reduces non-radiative recombination, and high oxidizing/reducing power coming from their tuneable band structure. Nevertheless, their sensitivity to humidity, light, heat and water represents a great challenge that limits their applications in solar driven photocatalytic applications. Herein, we demonstrate the synergistic potential of embedding PNCs into polymeric ionic liquids (PILs@PS) to fabricate suitable composites for photodegradation of organic dyes. In this context, the stability of the PNCs after polymeric encapsulation was enhanced, showing better light, moisture, water and thermal stability compared to pristine PNCs for around 200 days.
Collapse
Affiliation(s)
- Sara Miralles-Comins
- Institute of Advanced Materials (INAM), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat, s/n, 12071 Castelló de la Plana, Castellón, Spain.
| | - Marcileia Zanatta
- Institute of Advanced Materials (INAM), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat, s/n, 12071 Castelló de la Plana, Castellón, Spain.
| | - Andrés F Gualdrón-Reyes
- Institute of Advanced Materials (INAM), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat, s/n, 12071 Castelló de la Plana, Castellón, Spain.
- Facultad de Ciencias, Instituto de Ciencias Químicas, Isla Teja, Universidad Austral de Chile, 5090000, Valdivia, Chile
| | - Jhonatan Rodriguez-Pereira
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkyňova, 123,612 00 Brno, Czech Republic
| | - Iván Mora-Seró
- Institute of Advanced Materials (INAM), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat, s/n, 12071 Castelló de la Plana, Castellón, Spain.
| | - Víctor Sans
- Institute of Advanced Materials (INAM), Universitat Jaume I (UJI), Avenida de Vicent Sos Baynat, s/n, 12071 Castelló de la Plana, Castellón, Spain.
| |
Collapse
|
17
|
Prakash M, Halder S, Guin S, Samanta S. Swapping Copper-Catalytic Process: Selective Access to Pyrazoles and Conjugated Ketimines from Oxime Acetates and Cyclic Sulfamidate Imines. Chem Asian J 2023; 18:e202201114. [PMID: 36583485 DOI: 10.1002/asia.202201114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
A powerful CuCl-catalyzed sequential one-pot reaction of aryl methyl ketoxime acetates with cyclic N-sulfonyl imines followed by elimination in the presence of base is reported. This hydrazine-free method conveniently makes C-C and N-N bonds via a radical cleavage of the N-O bond, delivering a special class of C3-hydroxyarylated pyrazoles in good yields. Surprisingly, while employing CuI as a catalyst instead of CuCl, the reaction proceeds through a non-radical pathway which embodies a new tactic for the high-yielding access to value-added conjugated N-unsubstituted ketimines. Moreover, additive-free approach to sulfamidate-fused-pyrazoles was achieved by successfully catalyzing addition and oxidative N-N bond-making reactions by CuI and CuCl, respectively. Significantly, our novel technique could convert the prepared ketimines into the pharmacologically recognized 6H-benzo[c]chromene frameworks.
Collapse
Affiliation(s)
- Meher Prakash
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Sajal Halder
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Soumitra Guin
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Sampak Samanta
- Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| |
Collapse
|
18
|
Hsueh NC, Wang YH, Chang MY. Sequential condensation and double desulfonylative cyclopropanation of 1,2-bis(sulfonylmethyl)arenes with 3-arylacroleins: access to biscyclopropane-fused tetralins. Org Biomol Chem 2023; 21:1206-1221. [PMID: 36632710 DOI: 10.1039/d2ob02188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Efficient tBuOK-mediated sequential condensation and double desulfonylative cyclopropanation of readily accessible 1,2-bis(sulfonylmethyl)arenes with 3-arylacroleins is described. This high-yielding, single-step strategy provides a variety of polysubstituted biscyclopropane-fused tetralins with six contiguous stereogenic centers via the construction of five carbon-carbon single bonds. A plausible mechanism is proposed and discussed. In the overall reaction process, water and sulfinic acid salts were generated as the byproducts.
Collapse
Affiliation(s)
- Nai-Chen Hsueh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yu-Han Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.,NPUST College of Professional Studies, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| |
Collapse
|
19
|
Gui QW, Teng F, Yu P, Wu YF, Nong ZB, Yang LX, Chen X, Yang TB, He WM. Visible light-induced Z-scheme V2O5/g-C3N4 heterojunction catalyzed cascade reaction of unactivated alkenes. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64162-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
20
|
Kim J, Lee JK, Moon B, Lee A. Photocatalytic Alkyl Addition to Access Quaternary Alkynyl α-Amino Esters. Org Lett 2022; 24:8870-8874. [PMID: 36414400 DOI: 10.1021/acs.orglett.2c03669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A regioselective alkylation of β,γ-alkynyl-α-imino esters by visible-light photocatalysis has been developed. This method enables 1,2-addition of methyl, primary, secondary, and tertiary alkyl radicals to the conjugated imines under mild conditions to produce a variety of quaternary alkynyl α-amino acid and cyclic amino acid motifs. Alkyl radicals are generated from alkyl bis(catecholato)silicates with an organic photocatalyst. This process is effective under an air atmosphere, providing operational benefits compared to conventional alkylation using organometallic reagents.
Collapse
Affiliation(s)
- Juyeong Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Jae Kyun Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Bongjin Moon
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Ansoo Lee
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
21
|
Cai X, Fu J, Gu L, Cheng D, Wang H, xu X. Visible‐light‐promoted cascade reaction of acryloylbenzamides with carboxylic acids: metal‐free synthesis of isoquinolinediones. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xingxing Cai
- Zhejiang University of Technology College Of Chemical Engineering CHINA
| | - Jiahui Fu
- Zhejiang University of Technology College Of Chemical Engineering CHINA
| | - Li Gu
- Zhejiang University of Technology College Of Chemical Engineering CHINA
| | - Dongping Cheng
- Zhejiang University of Technology College of Pharmaceutical Sciences CHINA
| | - Hong Wang
- ZJUT: Zhejiang University of Technology College of Chemical Engineering CHINA
| | - xiaoliang xu
- Zhejiang University of Technology College of Chemical Engineering Chaohui 6th district 310014 Hangzhou CHINA
| |
Collapse
|
22
|
Tang L, Ouyang Y, Sun K, Yu B. Visible-light-promoted decarboxylative radical cascade cyclization to acylated benzimidazo/indolo[2,1- a]isoquinolin-6(5 H)-ones in water. RSC Adv 2022; 12:19736-19740. [PMID: 35865204 PMCID: PMC9260743 DOI: 10.1039/d2ra03467k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/30/2022] [Indexed: 12/25/2022] Open
Abstract
A metal-free visible-light-induced decarboxylative radical addition/cyclization procedure at room temperature was described for the synthesis of acylated benzimidazo/indolo[2,1-a]isoquinolines. The procedure was prepared in water via a reaction of functionalized 2-arylbenzoimidazoles or 2,3-diarylindoles and α-oxocarboxylic acids in the presence of phenyliodine(iii) diacetate (PIDA) in one step under mild reaction conditions. In this procedure, traditional heating and metal reagents could be effectively avoided to access 1,4-dicarbonyl-containing benzimidazo/indolo[2,1-a]isoquinoline-6(5H)-ones in satisfactory yields.
Collapse
Affiliation(s)
- Lili Tang
- Hunan Engineering Research Center for Recycled Aluminum, College of Chemistry & Materials Engineering, Huaihua University Huaihua 418008 China
| | - Yuejun Ouyang
- Hunan Engineering Research Center for Recycled Aluminum, College of Chemistry & Materials Engineering, Huaihua University Huaihua 418008 China
| | - Kai Sun
- Hunan Engineering Research Center for Recycled Aluminum, College of Chemistry & Materials Engineering, Huaihua University Huaihua 418008 China .,College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - Bing Yu
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
23
|
Wang X, Shi A, Huang XQ, Chen X, Li T, Qu L, Yu B. Visible-light-induced cyclization of cyclic N-sulfonyl ketimines to N-sulfonamide fused imidazolidines. Org Biomol Chem 2022; 20:3798-3802. [PMID: 35445233 DOI: 10.1039/d2ob00460g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-induced metal-free cascade cyclization of cyclic N-sulfonyl ketimines with N-arylglycines for the construction of N-sulfonamide-fused imidazolidines was developed. The procedure employed 3 mol% of eosin Y as the photocatalyst at room temperature under visible light irradiation, providing various N-sulfonamide-fused imidazolidines in good yields (32 examples, up to 86% yields).
Collapse
Affiliation(s)
- Xiaotong Wang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Anzai Shi
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xian-Qiang Huang
- School of Chemistry & Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xiaolan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Tiesheng Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Lingbo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|