1
|
Wei X, Zhang Y, Lin R, Zhu Q, Xie X, Zhang Y, Fang W, Chen Z. Transition-Metal-Free Late-Stage Decarboxylative gem-Difluoroallylation of Primary Alkyl Acids. J Org Chem 2024; 89:15234-15247. [PMID: 39377598 DOI: 10.1021/acs.joc.4c02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
A transition-metal-free late-stage decarboxylative gem-difluoroallylation of carboxylic acids with α-trifluoromethyl alkenes has been described by the use of organo-photoredox catalysis. Both primary alkyl and heteroaryl acids were readily incorporated. This approach merits feedstock materials, mild reaction conditions, and wide functionality tolerance. The synthetic utility of this approach has been highlighted by the late-stage functionalization of a variety of acid-containing natural products and drug molecules.
Collapse
Affiliation(s)
- Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qi Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Xinyu Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yumeng Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
2
|
Wang K, Cheng B, König B, Zhang D, Xu B, Wang S, Zhang G. Photocatalyzed 1,3-Bromodifluoroallylation of [1.1.1]Propellane with α-Trifluoromethylalkenes and KBr Salts. Org Lett 2024; 26:6889-6893. [PMID: 39106520 DOI: 10.1021/acs.orglett.4c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Herein we unveil a visible-light-driven transition-metal-free 1,3-bromodifluoroallylation of [1.1.1]propellane. This reactivity is harnessed through organophotocatalysis, providing practical synthetic pathways to 1-brominated-3-gem-difluoroallylic bicyclo[1.1.1]pentane derivatives, particularly derived from readily available α-trifluoromethylalkenes and inexpensive KBr salts utilized as precursors for bromine radicals. Mechanistic investigations reveal that bromide anions quench the excited state of the photocatalyst, leading to the formation of bromine radicals, which react in a strain-release radical addition process rather than hydrogen atom abstraction with [1.1.1]propellane.
Collapse
Affiliation(s)
- Kaiping Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China
| | - Beiyi Cheng
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Burkhard König
- Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, 545006, Liuzhou, Guangxi, China
| | - Bingxin Xu
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, 545006, Liuzhou, Guangxi, China
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China
| | - Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China
| |
Collapse
|
3
|
Ren M, Yu S, Li X, Yuan W, Lu J, Xiong Y, Liu H, Wang J, Wei J. Synthesis of gem-Difluorohomoallyl Amines via a Transition-Metal-Free Defluorinative Alkylation of Benzyl Amines with Trifluoromethyl Alkenes. J Org Chem 2024; 89:8342-8356. [PMID: 38819657 DOI: 10.1021/acs.joc.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
A mild and transition-metal-free defluorinative alkylation of benzyl amines with trifluoromethyl alkenes is reported. The features of this protocol are easy-to-obtain starting materials, a wide range of substrates, and functional group tolerance as well as high atom economy, thus offering a strategy to access a variety of gem-difluorohomoallyl amines, which are extensively distributed in pharmaceuticals and bioactive agents, with excellent chemoselectivity. The primary products can be further transformed to a diversity of 2-fluorinated pyrroline compounds.
Collapse
Affiliation(s)
- Man Ren
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengjiao Yu
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xuefeng Li
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Wenlong Yuan
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ji Lu
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Ying Xiong
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Hongliang Liu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, Shandong 265500, China
| | - Jun Wang
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jun Wei
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| |
Collapse
|
4
|
Wang JX, Fu MC, Yan LY, Lu X, Fu Y. Photoinduced Triphenylphosphine and Iodide Salt Promoted Reductive Decarboxylative Coupling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307241. [PMID: 38234213 DOI: 10.1002/advs.202307241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/21/2023] [Indexed: 01/19/2024]
Abstract
The transient electron donor-acceptor (EDA) complex has been an emerging area in the photoinduced organic synthesis field, generating radicals without exogenous transition-metal or organic dye-based photoredox catalysts. The catalytic platform to form suitable photoactive EDA complexes for photochemical reduction reactions remains underdeveloped. Herein, a general photoinduced reductive alkylation via the EDA complex strategy is described. A simple yet multifunctional system, triphenylphosphine and iodide salt, promotes the photoinduced decarboxylative hydroalkylation, and reductive defluorinative decarboxylative alkylation of trifluoromethyl alkenes, to access trifluoromethyl alkanes and gem-difluoroalkenes. Moreover, decarboxylative hydroalkylation can be applied to more kinds of electron-deficient alkenes as a general Giese addition reaction.
Collapse
Affiliation(s)
- Jia-Xin Wang
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, 230026, China
| | - Ming-Chen Fu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Lu-Yu Yan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xi Lu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Yao Fu
- Hefei National Research Center for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
5
|
He SL, Bao YS, Hu J, Bai C, Liu D. Selective and controllable amination and defluoroamidation of α-trifluoromethylstyrene. Org Biomol Chem 2023; 21:8658-8662. [PMID: 37878244 DOI: 10.1039/d3ob01595e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
We present a blueprint for the amination and defluoroamidation of α-trifluoromethylstyrene. This practical protocol presents a general method for the diversity-oriented synthesis of vicinal trifluoromethyl amines and gem-difluoro alkenes from α-trifluoromethylstyrene maintaining excellent chemoselectivity. The synthetic strategy features outstanding atom economy and wide functional group tolerance under mild reaction conditions.
Collapse
Affiliation(s)
- Shuang-Lian He
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Yong-Sheng Bao
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Juan Hu
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Chaolumen Bai
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| | - Dan Liu
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot, 010022, China.
| |
Collapse
|
6
|
Zhang X, Huang X, Chen Y, Chen B, Ma Y. Synthesis of gem-Difluorinated 1,4-Dienes via Nickel-Catalyzed Three-Component Coupling of (Trifluoromethyl)alkenes, Alkynes, and Organoboronic Acids. Org Lett 2023; 25:1748-1753. [PMID: 36866931 DOI: 10.1021/acs.orglett.3c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Herein, a nickel-catalyzed defluorinative three-component coupling of trifluoromethyl alkenes, internal alkynes, and organoboronic acids is presented. The protocol provides a highly efficient and selective route for the synthesis of structurally diverse gem-difluorinated 1,4-dienes under mild conditions. Mechanistic studies suggest that C-F bond activation proceeds probably through the oxidative cyclization of trifluoromethyl alkenes with Ni(0) species, sequential addition to alkynes, and β-fluorine elimination.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Xinmiao Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Yingzhuang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| | - Yuanhong Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of Phytochemistry R&D of Hunan Province, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Institute of Interdisciplinary Studies, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081 Changsha, P. R. China
| |
Collapse
|
7
|
Zhang G, Wang L, Cui L, Gao P, Chen F. Deaminative defluoroalkylation of α-trifluoromethylalkenes enabled by photoredox catalysis. Org Biomol Chem 2023; 21:294-299. [PMID: 36510767 DOI: 10.1039/d2ob02114e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we disclose a new photoredox-catalysed strategy to access gem-difluoroallylarenes from α-trifluoromethylalkenes with sterically hindered primary amines via C-N and C-F bond activation. This deaminative and defluorinative allylation is generally compatible with diverse functional groups and sterically hindered α-3° and 2° primary amines.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Liping Cui
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Pan Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| |
Collapse
|
8
|
Li N, Wang Y, Gu S, Hu C, Yang Q, Jin Z, Ouyang WT, Qiao J, He WM. Visible-light-initiated external photocatalyst-free synthesis of α,α-difluoro-β-ketoamides from 4-aminocoumarins. Org Biomol Chem 2023; 21:370-374. [PMID: 36515252 DOI: 10.1039/d2ob01914k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A concise and efficient ring-opening difluorination strategy was developed for the synthesis of highly functionalized hydroxy-containing α,α-difluoro-β-ketoamides from the one-pot multicomponent reaction of 4-aminocoumarins, NFSI, and water in dimethyl carbonate (DMC) as a green solvent. The reactions were smoothly achieved under visible light irradiation in air at room temperature without the addition of any other external photocatalysts. With this protocol, various α,α-difluoro-β-ketoamides were successfully synthesized under mild conditions (25 examples, 73-91% yields). This transition-metal-free synthetic procedure shows good functional group compatibility and attractive practical potential for large-scale synthesis.
Collapse
Affiliation(s)
- Ningbo Li
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Yuxin Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Shuo Gu
- School of Pharmaceutical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Chuqian Hu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Qian Yang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhaohui Jin
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Wen-Tao Ouyang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China.
| | - Jie Qiao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, 030001, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China.
| |
Collapse
|
9
|
Zhao Y, Empel C, Liang W, Koenigs RM, Patureau FW. Gem-Difluoroallylation of Aryl Sulfonium Salts. Org Lett 2022; 24:8753-8758. [PMID: 36440861 DOI: 10.1021/acs.orglett.2c03419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unprecedented photochemical late-stage defluorinative gem-difluoroallylation of aryl sulfonium salts, which are formed site-selectively by direct C(sp2)─H functionalization, is herein disclosed. This method is distinguished by its mild reaction conditions, wide scope, and excellent site-selectivity. As showcase examples, a Flurbiprofen and Pyriproxyfen derivatives could be late stage C(sp2)─H gem-difluoroallylated with high yields. Experimental and computational investigations were conducted.
Collapse
Affiliation(s)
- Yue Zhao
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| | - Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| | - Wenjing Liang
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| | - Frederic W Patureau
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, Aachen 52074, Germany
| |
Collapse
|
10
|
Organophotoredox-catalyzed ring-opening gem-difluoroallylation of nonstrained cycloalkanols. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Atriardi SR, Kim J, Anita Y, Woo SK. Synthesis of
gem
‐difluoroalkenes
via
photoredox‐catalyzed
defluoroaryloxymethylation of
α‐trifluoromethyl
alkenes. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jae‐Young Kim
- Department of Chemistry University of Ulsan Ulsan Korea
| | - Yulia Anita
- Department of Chemistry University of Ulsan Ulsan Korea
- Research Center for Chemistry National Research and Innovation Agency Jakarta Pusat Indonesia
| | - Sang Kook Woo
- Department of Chemistry University of Ulsan Ulsan Korea
| |
Collapse
|
12
|
Visible Light-Induced Deoxygenation and Allylation/Vinylation of Pyridyl Ethers. Org Lett 2022; 24:7309-7314. [PMID: 36190797 DOI: 10.1021/acs.orglett.2c02756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The generation of alkyl radicals by deoxygenation of unactivated ethers under visible light catalysis is a hitherto unmet challenge. Herein, we report a visible light-induced deoxygenation of pyridyl ethers via formation of their pyridinium salts. The generated benzylic radicals further react with allyl/alkenyl sulfones to provide a series of coupling products in good to moderate yields. This process is proposed to undergo a reductive quenching cycle, which was elucidated by chemical, optical, and electrical experiments.
Collapse
|
13
|
Chen L, Wang J, Lin C, Zhu Y, Du D. CF 2Br 2 as a Source for Difluoroolefination of 1,3-Enynes via N-Heterocyclic Carbene Catalysis. Org Lett 2022; 24:7047-7051. [PMID: 36121666 DOI: 10.1021/acs.orglett.2c03007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Commercially available CF2Br2 has been used as a convenient source for the rapid and reliable incorporation of the gem-difluorovinyl motif into an allene framework via an N-heterocyclic carbene catalyzed difluoroolefination of 1,3-enynes. The reaction proceeds through a cascade three-component radical relay/elimination process. This protocol is distinguished by its mild conditions, readily accessible starting materials, wide substrate scope, and ease of late-stage functionalization, thus unlocking an untraditional strategy to construct a new class of functionalized gem-difluorovinyl allenes.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Jingyi Wang
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Chen Lin
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Yiwei Zhu
- School of Chemistry and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P.R. China
| | - Ding Du
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing, 210009, P.R. China
| |
Collapse
|
14
|
Tang Y, Dai K, Xiang X, Yang Y, Li M. Synthesis of ester-functionalized indolo[2,1- a]isoquinolines via iron-catalyzed radical cascade cyclization of 2-aryl- N-acryloyl indoles with carbazates. Org Biomol Chem 2022; 20:5704-5711. [PMID: 35838169 DOI: 10.1039/d2ob00934j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An FeCl2·4H2O-catalyzed oxidative alkoxycarbonylation/cyclization reaction of 2-aryl-N-acryloyl indoles with carbazates leading to ester-functionalized indolo[2,1-a]isoquinoline derivatives has been developed. The reaction features mild reaction conditions and broad functional group tolerance. Moreover, the ester group could be easily converted to the corresponding free acid and alcohol, and has high potential applications in organic and pharmaceutical synthesis. A radical pathway was proposed to explain this experiment.
Collapse
Affiliation(s)
- Yucai Tang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Kaiming Dai
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Xingxian Xiang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Yiting Yang
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| | - Min Li
- College of Chemistry and Materials Engineering, Hunan University of Arts and Science, Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Changde 415000, China.
| |
Collapse
|
15
|
Sun W, Zou J, Xu X, Wang J, Liu M, Liu X. Photo‐Catalyzed Redox‐Neutral 1,2‐Dialkylation of Alkenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wen‐Hui Sun
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Jian‐Yu Zou
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Xiao‐Jing Xu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Jin‐Lin Wang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Mei‐Ling Liu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| | - Xue‐Yuan Liu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
16
|
Wang Q, Yue L, Bao Y, Wang Y, Kang D, Gao Y, Yuan Z. Oxalates as Activating Groups for Tertiary Alcohols in Photoredox-Catalyzed gem-Difluoroallylation To Construct All-Carbon Quaternary Centers. J Org Chem 2022; 87:8237-8247. [PMID: 35612278 DOI: 10.1021/acs.joc.2c00664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Construction of challenging and important all-carbon quaternary centers has received growing attention. Herein, with oxalates as activating groups for tertiary alcohols, we report photoredox-catalyzed gem-difluoroallylation to construct all-carbon quaternary centers enabled by efficient tertiary radical addition to α-trifluoromethyl alkenes. This transformation shows good functional group tolerance for both α-trifluoromethyl alkenes and oxalates. Moreover, this strategy is also successfully applied to the synthesis of monofluoralkenes from the corresponding electron-rich gem-difluoroalkenes and cesium tertiary alkyl oxalates under modified conditions.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Ling Yue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yanyang Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Danni Kang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yan Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| |
Collapse
|
17
|
Kim H, Jung Y, Cho SH. Defluorinative C-C Bond-Forming Reaction of Trifluoromethyl Alkenes with gem-(Diborylalkyl)lithiums. Org Lett 2022; 24:2705-2710. [PMID: 35380841 DOI: 10.1021/acs.orglett.2c00809] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the transition-metal-free defluorinative C-C bond-forming reaction of trifluoromethyl alkenes with gem-(diborylalkyl)lithiums. This synthetic strategy provides access to a variety of 4,4-difluoro homoallylic diboronate esters, which serve as versatile intermediates in the efficient preparation of valuable gem-difluoroalkene derivatives. Further synthetic modifications are conducted to demonstrate the synthetic utility of the obtained 4,4-difluoro homoallylic diboronate esters.
Collapse
Affiliation(s)
- Haeun Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yujin Jung
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
18
|
Xu W, Xia C, Shao Q, Zhang Q, Liu M, Zhang H, Wu M. Visible-light-induced transition-metal-free defluorosilylation of α-trifluoromethylalkenes via hydrogen atom transfer of silanes. Org Chem Front 2022. [DOI: 10.1039/d2qo00894g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green and feasible synthetic protocol for silyl gem-difluoroalkenes was developed using α-trifluoromethylalkenes and silanes via the synergistic combination of photoredox and hydrogen-atom transfer catalysis under visible light irradiation.
Collapse
Affiliation(s)
- Wengang Xu
- College of New Energy, China University of Petroleum (China East), 266580, Qingdao, P. R. China
| | - Congjian Xia
- College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (China East), 266580, Qingdao, P. R. China
| | - Qi Shao
- College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (China East), 266580, Qingdao, P. R. China
| | - Qiao Zhang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (China East), 266580, Qingdao, P. R. China
| | - Mingrui Liu
- College of New Energy, China University of Petroleum (China East), 266580, Qingdao, P. R. China
| | - Hongwei Zhang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (China East), 266580, Qingdao, P. R. China
| | - Mingbo Wu
- College of New Energy, China University of Petroleum (China East), 266580, Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (China East), 266580, Qingdao, P. R. China
| |
Collapse
|
19
|
Yuan WQ, Liu YT, Ni YQ, Liu YZ, Pan F. Metal-free photocatalytic intermolecular trifluoromethylation- gem-difluoroallylation of unactivated alkenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00764a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient, transition-metal-free, photocatalytic three-component intermolecular trifluoromethylation-gem-difluoroallylation of unactivated alkenes has been achieved.
Collapse
Affiliation(s)
- Wan-Qiang Yuan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| | - Yu-Tao Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| | - Yu-Qing Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| | - Yong-Ze Liu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, People's Republic of China
| |
Collapse
|
20
|
Barsukova T, Sato T, Takumi H, Niwayama S. Efficient and practical synthesis of monoalkyl oxalates under green conditions. RSC Adv 2022; 12:25669-25674. [PMID: 36199299 PMCID: PMC9465637 DOI: 10.1039/d2ra04419f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Monoalkyl oxalates are among the most important building blocks being applied to the synthesis of a variety of significant classes of compounds or applied to various cutting-edge reactions. However, their commercial availability is limited. Their synthetic methods are also limited because of the difficulty to synthesize them, and those hitherto reported are carried out in organic solvents often with the use of toxic reagents with mostly low to modest yields. Here we have developed practical synthesis of monoalkyl oxalates in aqueous media by applying the highly efficient selective monohydrolysis reactions of symmetric diesters which we reported previously. The best conditions apply an aqueous NaOH solution with relatively nontoxic THF or acetonitrile as a co-solvent at around 0–5 °C. The procedures are simple and environmentally friendly without requiring toxic or expensive reagents, yet yielding the corresponding half-esters in high yields with high purities. All the half-esters prepared here are stable over a long period of time. Therefore, our studies are expected to offer practical green methods for the synthesis of monoalkyl oxalates. Simple and environmentally-friendly methods have been developed for the synthesis of monoalkyl oxalates without requiring toxic or expensive reagents.![]()
Collapse
Affiliation(s)
- Tatiana Barsukova
- Graduate School of Engineering, Muroran Institute of Technology, 27-1, Mizumoto-cho, Muroran, Hokkaido, Japan
| | - Takeyuki Sato
- Graduate School of Engineering, Muroran Institute of Technology, 27-1, Mizumoto-cho, Muroran, Hokkaido, Japan
| | - Haruki Takumi
- Graduate School of Engineering, Muroran Institute of Technology, 27-1, Mizumoto-cho, Muroran, Hokkaido, Japan
| | - Satomi Niwayama
- Graduate School of Engineering, Muroran Institute of Technology, 27-1, Mizumoto-cho, Muroran, Hokkaido, Japan
| |
Collapse
|