1
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Chang CY, Aponick A. Enantioselective Synthesis of Allylic Sulfones via Rhodium-Catalyzed Direct Hydrosulfonylation of Allenes and Alkynes. J Am Chem Soc 2024; 146:16996-17002. [PMID: 38875709 DOI: 10.1021/jacs.4c05629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
A highly regio- and enantioselective hydrosulfonylation using commercially available sodium sulfinates is reported, providing the first direct asymmetric rhodium-catalyzed hydrosulfonylation of allenes/alkynes to synthesize chiral allylic sulfones. Ligand screening studies demonstrated the indispensable role of the C1-symmetric P,N-ligand (Rax,S,S)-StackPhim for achieving both high regioselecitivity (>20:1) and enantioselectivity (up to 97% ee). Notably, the operationally simple method and mild conditions allow for the rapid preparation of chiral allylic sulfones with a wide scope of functional groups. Moreover, the use of sodium tert-butyldimethylsilyloxymethanesulfinate enables the collective synthesis of various chiral sulfone derivatives after simple transformations of the protected hydroxymethyl product.
Collapse
Affiliation(s)
- Chieh-Yu Chang
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Aaron Aponick
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
3
|
Wang Y, Wu G, Yan K, Qin J, Liu R, Rong N, Tang Y, Loh TP, Xie P. Sulfination of Unactivated Allylic Alcohols via Sulfinate-Sulfone Rearrangement. Org Lett 2023. [PMID: 38059565 DOI: 10.1021/acs.orglett.3c03709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
A dehydrative cross-coupling of unactivated allylic alcohols with sulfinic acids was achieved under catalyst-free conditions. This reaction proceeded via allyl sulfination and concomitant allyl sulfinate-sulfone rearrangement. Various allylic sulfones could be obtained in good to excellent yields with water as the only byproduct. This study expands the synthetic toolbox for constructing allylic sulfone molecules.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guangming Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kaiyu Yan
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiaheng Qin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rui Liu
- Anhui JinTung Fine Chemical Co., Ltd, Cihu Economic & Technical Development Zone, Maanshan 243000, China
| | - Nannan Rong
- Anhui JinTung Fine Chemical Co., Ltd, Cihu Economic & Technical Development Zone, Maanshan 243000, China
| | - Yongming Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Yus M, Nájera C, Foubelo F, Sansano JM. Metal-Catalyzed Enantioconvergent Transformations. Chem Rev 2023; 123:11817-11893. [PMID: 37793021 PMCID: PMC10603790 DOI: 10.1021/acs.chemrev.3c00059] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 10/06/2023]
Abstract
Enantioconvergent catalysis has expanded asymmetric synthesis to new methodologies able to convert racemic compounds into a single enantiomer. This review covers recent advances in transition-metal-catalyzed transformations, such as radical-based cross-coupling of racemic alkyl electrophiles with nucleophiles or racemic alkylmetals with electrophiles and reductive cross-coupling of two electrophiles mainly under Ni/bis(oxazoline) catalysis. C-H functionalization of racemic electrophiles or nucleophiles can be performed in an enantioconvergent manner. Hydroalkylation of alkenes, allenes, and acetylenes is an alternative to cross-coupling reactions. Hydrogen autotransfer has been applied to amination of racemic alcohols and C-C bond forming reactions (Guerbet reaction). Other metal-catalyzed reactions involve addition of racemic allylic systems to carbonyl compounds, propargylation of alcohols and phenols, amination of racemic 3-bromooxindoles, allenylation of carbonyl compounds with racemic allenolates or propargyl bromides, and hydroxylation of racemic 1,3-dicarbonyl compounds.
Collapse
Affiliation(s)
- Miguel Yus
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Carmen Nájera
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - Francisco Foubelo
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| | - José M. Sansano
- Centro
de Innovación en Química Avanzada (ORFEO−CINQA), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
- Departamento
de Química Orgánica and Instituto de Síntesis
Orgánica (ISO), Universidad de Alicante, Apdo. 99, E-03080 Alicante, Spain
| |
Collapse
|
5
|
McNicholas BJ, Tong ZJ, Bím D, Turro RF, Kazmierczak NP, Chalupský J, Reisman SE, Hadt RG. Electronic Structures of Nickel(II)-Bis(indanyloxazoline)-dihalide Catalysts: Understanding Ligand Field Contributions That Promote C(sp 2)-C(sp 3) Cross-Coupling. Inorg Chem 2023; 62:14010-14027. [PMID: 37584501 PMCID: PMC10530056 DOI: 10.1021/acs.inorgchem.3c02048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
NiII(IB) dihalide [IB = (3aR,3a'R,8aS,8a'S)-2,2'-(cyclopropane-1,1-diyl)bis(3a,8a-dihydro-8H-indeno[1,2-d]-oxazole)] complexes are representative of a growing class of first-row transition-metal catalysts for the enantioselective reductive cross-coupling of C(sp2) and C(sp3) electrophiles. Recent mechanistic studies highlight the complexity of these ground-state cross-couplings but also illuminate new reactivity pathways stemming from one-electron redox and their significant sensitivities to reaction conditions. For the first time, a diverse array of spectroscopic methods coupled to electrochemistry have been applied to NiII-based precatalysts to evaluate specific ligand field effects governing key Ni-based redox potentials. We also experimentally demonstrate DMA solvent coordination to catalytically relevant Ni complexes. Coordination is shown to favorably influence key redox-based reaction steps and prevent other deleterious Ni-based equilibria. Combined with electronic structure calculations, we further provide a direct correlation between reaction intermediate frontier molecular orbital energies and cross-coupling yields. Considerations developed herein demonstrate the use of synergic spectroscopic and electrochemical methods to provide concepts for catalyst ligand design and rationalization of reaction condition optimization.
Collapse
Affiliation(s)
- Brendon J. McNicholas
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Z. Jaron Tong
- Division of Chemistry and Chemical Engineering, The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Daniel Bím
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Raymond F. Turro
- Division of Chemistry and Chemical Engineering, The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Nathanael P. Kazmierczak
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Jakub Chalupský
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo náměstí 2, 166 10 Prague 6, Czech Republic
| | - Sarah E. Reisman
- Division of Chemistry and Chemical Engineering, The Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
6
|
Bauer T, Hakim YZ, Morawska P. Recent Advances in the Enantioselective Radical Reactions. Molecules 2023; 28:6252. [PMID: 37687085 PMCID: PMC10489153 DOI: 10.3390/molecules28176252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The review covers research published since 2017 and is focused on enantioselective synthesis using radical reactions. It describes recent approaches to the asymmetric synthesis of chiral molecules based on the application of the metal catalysis, dual metal and organocatalysis and finally, pure organocatalysis including enzyme catalysis. This review focuses on the synthetic aspects of the methodology and tries to show which compounds can be obtained in enantiomerically enriched forms.
Collapse
Affiliation(s)
- Tomasz Bauer
- Faculty of Chemistry, University of Warsaw, L Pasteura 1, PL-02-093 Warsaw, Poland; (Y.Z.H.); (P.M.)
| | | | | |
Collapse
|
7
|
Haibach MC, Shekhar S, Ahmed TS, Ickes AR. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Michael C. Haibach
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Shashank Shekhar
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Tonia S. Ahmed
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew R. Ickes
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
8
|
Asymmetric construction of allylicstereogenic carbon center featuring atrifluoromethyl group via enantioselective reductive fluoroalkylation. Nat Commun 2022; 13:7035. [PMID: 36396652 PMCID: PMC9672039 DOI: 10.1038/s41467-022-34841-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
Emerging as a powerful tool for lead optimization in pharmaceutical research and development, to develop the facile, general protocols that allows the incorporation of fluorine-containing motif in drug candidates has accumulated enormous research interest in recent years. Among these important motifs, the incorporation of strategic motif CF3 on aliphatic chain especially with the concomitant construction of trifluoromethylated alkanes bearing a CF3-substituted stereogenic carbon, is of paramount importance. Herein, we disclose an asymmetric nickel-catalyzed reductive trifluoroalkylation of alkenyl halides for enantioselective syntheses of diverse α-trifluoromethylated allylic alkanes, offering a general protocol to access the trifluoromethyl analogue to chiral α-methylated allylic alkanes, one of the most prevalent key components among natural products and pharmaceuticals. Utilities of the method including the application of the asymmetric trifluoroalkylation on multiple biologically active complex molecules, derivatization of transformable alkenyl functionality were demonstrated, providing a facile method in the diversity-oriented syntheses of CF3-containing chiral drugs and bioactive-molecules.
Collapse
|