1
|
Chi D, Qi H, Wang L, Chen S. Pd-Catalyzed cascade Heck cyclization/carbonylation of indoles with aryl formates: enantioselective construction of indolo[2,1- a]isoquinolines. Chem Commun (Camb) 2024; 60:8613-8616. [PMID: 39046243 DOI: 10.1039/d4cc02577f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
An efficient palladium-catalyzed cascade cyclization/carbonylation of indoles with aryl formates to access ester-functionalized indolo[2,1-a]isoquinoline scaffolds has been developed. In addition, an asymmetric variant is also achieved using a chiral phosphine ligand, affording the indolo[2,1-a]isoquinoline products in good yields and enantioselectivities.
Collapse
Affiliation(s)
- Dongmei Chi
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Hongbo Qi
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Leming Wang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
2
|
Hu W, Diao X, Yuan J, Liang W, Yang W, Yang L, Ma J, Zhang S. Photoredox-Catalyzed Tandem Cyclization of Enaminones with N-Sulfonylaminopyridinium Salts toward the Synthesis of 3-Sulfonaminated Chromones. J Org Chem 2024; 89:644-655. [PMID: 38088130 DOI: 10.1021/acs.joc.3c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
A photoredox-catalyzed intermolecular tandem sulfonamination/cyclization of enaminones was realized by using N-aminopyridinium salts as the sulfonaminated reagents without transition-metal catalysts or bases. The reaction exhibits a broad scope and good functional group tolerance, good yields, and regioselectivity. Preliminary mechanistic studies support the radical property of the reaction and the involvement of N-centered radical intermediates.
Collapse
Affiliation(s)
- Wenyu Hu
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Xiaoqiong Diao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jinwei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Wei Liang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Wan Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Liangru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Ji Ma
- Tobacco Research Institute of China National Tobacco Company, Zhengzhou 450001, P.R. China
| | - Shouren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, P. R. China
| |
Collapse
|
3
|
Hu YY, Xu XQ, Deng WC, Liang RX, Jia YX. Nickel-Catalyzed Enantioselective Dearomative Heck-Reductive Allylic Defluorination Reaction of Indoles. Org Lett 2023; 25:6122-6127. [PMID: 37578397 DOI: 10.1021/acs.orglett.3c02092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Herein, we describe a nickel-catalyzed asymmetric dearomative aryl-difluoroallylation reaction of indoles with α-trifluoromethyl alkenes as an electrophilic coupling partner. The reaction proceeds via a cascade sequence involving dearomative Heck cyclization and reductive allylic defluorination. A series of gem-difluoroallyl substituted indolines are obtained in moderate to good yields (36-77% yield) with excellent enantioselectivity (up to 99% ee). The reaction features broad functional group tolerance, scaled-up synthesis, and late-stage diversification.
Collapse
Affiliation(s)
- Yuan-Yuan Hu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
| | - Xiao-Qiu Xu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
| | - Wei-Chao Deng
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
| | - Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
| | - Yi-Xia Jia
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou, 310014, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
4
|
Liu A, Qi H, Chi D, Chen S. Construction of Conjugated 1,3-Enynes via Pd-Catalyzed Cascade Alkynylation of Aryl Phenol-Tethered Alkynes with Alkynyl Bromides. Org Lett 2023; 25:6087-6092. [PMID: 37552605 DOI: 10.1021/acs.orglett.3c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
An efficient Pd-catalyzed cascade alkynylation of aryl phenol-tethered alkynes with alkynyl bromides is described. This protocol could provide various conjugated 1,3-enynes possessing a polysubstituted spirocyclohexadienone, as well as an all-carbon tetrasubstituted alkene moiety. The products could also undergo ring-expansion and cyclization transformations under different conditions to convert to diverse fused cyclic scaffolds.
Collapse
Affiliation(s)
- Anjia Liu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Hongbo Qi
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Dongmei Chi
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Shufeng Chen
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
5
|
Zhu Y, Yang S, Pu E, Li L, Ye S, Wei L, Ma G, Zhang Y, Zhang H, Chen J. Iodine(III)-Mediated C-C Bond Coupling to Construct Spirocyclic Indolenines of Various Ring Sizes. Org Lett 2023; 25:3533-3538. [PMID: 37154601 DOI: 10.1021/acs.orglett.3c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Herein, we report a novel iodine(III)-mediated intramolecular dearomative spirocyclization of indole derivatives to generate highly strained spirocyclobutyl, spirocyclopentyl, and spirocyclohexyl indolenines in moderate to good yields. A set of structurally novel, densely functionalized spiroindolenines with broad functional group compatibility was efficiently constructed in this way under mild reaction conditions. Moreover, the β-enamine ester as a versatile functional group in the product provides great convenience for the synthesis of bioactive compounds and related natural products.
Collapse
Affiliation(s)
- Yanren Zhu
- School of Pharmacy, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Shaoxiong Yang
- School of Pharmacy, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Enfan Pu
- School of Pharmacy, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Li Li
- School of Pharmacy, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Silei Ye
- School of Pharmacy, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Longsheng Wei
- School of Pharmacy, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Guolan Ma
- School of Pharmacy, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Yushun Zhang
- School of Pharmacy, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Hongbin Zhang
- School of Pharmacy, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Jingbo Chen
- School of Pharmacy, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|