1
|
Doraghi F, Baghershahi P, Ghasemi M, Mahdavi M, Al-Harrasi A. Rhodium-catalyzed transformations of diazo compounds via a carbene-based strategy: recent advances. RSC Adv 2024; 14:39337-39352. [PMID: 39670167 PMCID: PMC11635351 DOI: 10.1039/d4ra07010k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024] Open
Abstract
Diazo compounds are known to be good coupling partners in the synthesis of heterocycles, carbocycles and functionalized molecules via a rhodium carbene-based strategy. Many heterocyclic and carbocyclic compounds, including isoquinolones and isocoumarins, quinoxalines, indoles, pyrrones, benzothazines, enaminones, benzenes and seven-membered rings, can be constructed using this rhodium-catalyzed system. The reaction mechanism involves C-H activation, carbene insertion and an annulation/functionalization sequence. This review describes the progress made in the last five years in rhodium-catalyzed transformations of diazo compounds as easily accessible precursors in organic chemistry.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Parsa Baghershahi
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran Iran
| | - Mehran Ghasemi
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa Nizwa 616 Sulanate of Oman
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa Nizwa 616 Sulanate of Oman
| |
Collapse
|
2
|
Yang Z, Luo J, Zhang W, Lei J, Liu C, Li Y. Rhodium(III)-catalyzed direct C-H activation of 2-aryl-3 H-indoles: a strategy for 4-heteroaryl pyrazole synthesis. Org Biomol Chem 2024. [PMID: 39600199 DOI: 10.1039/d4ob01655f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A novel protocol for synthesizing 4-heteroaryl pyrazoles from readily available 2-aryl-3H-indoles and diazopyrazolones through the rhodium(III)-catalyzed C-H bond activation has been achieved. This redox-neutral strategy features powerful reactivity, tolerates various functional groups, and proceeds with moderate yields under mild reaction conditions.
Collapse
Affiliation(s)
- Zi Yang
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, P. R. China.
| | - Ji Luo
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, P. R. China
| | - Wenbo Zhang
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, P. R. China
| | - Jieni Lei
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, P. R. China.
| | - Chaoshui Liu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha 410219, P. R. China
| | - Yaqian Li
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha 410219, P. R. China.
| |
Collapse
|
3
|
Zhu Q, Hsu W, Wang S, Lin F, Wu Y, Fang Y, Chen J, Song L. Synthesis, antimicrobial activity and application of polymers of praseodymium complexes based on pyridine nitrogen oxide. RSC Adv 2024; 14:18519-18527. [PMID: 38860246 PMCID: PMC11164178 DOI: 10.1039/d4ra03003f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024] Open
Abstract
The traditional pyridine nitrogen oxide-based antimicrobial agents are often associated with health risks due to heavy metal enrichment. To mitigate this concern, we synthesized two novel complexes, Pr2(mpo)6(H2O)2 and Pr(hpo)(mpo)2(H2O)2, and integrated rare-earth salts, Hhpo (2-hydroxypyridine-N-oxide) and Nampo (2-mercapto-pyridine-N-oxide sodium salt). These complexes were characterized through infrared analysis, elemental analysis, thermogravimetric analysis, and X-ray crystallographic analysis. Our comparative analyses demonstrate that the synthesized rare-earth complexes exhibit stronger antimicrobial activity against Staphylococcus aureus (S. aureus ATCC6538) and Escherichia coli (E. coli ATCC25922) compared to the ligands and rare-earth salts alone. Quantitative results revealed the lowest inhibitory concentrations of the two complexes against S. aureus ATCC6538 and E. coli ATCC25922 at 3.125 μg mL-1, 6.25 μg mL-1, 3.125 μg mL-1 and 6.25 μg mL-1, respectively. Preliminary investigations indicated that the antibacterial mechanism of these complexes involved promoting intracellular substance exudation to achieve antibacterial effects. Incorporation of these complexes into polymeric antimicrobial films resulted in a potent antimicrobial effect, achieving a 100% inhibition rate against S. aureus ATCC6538 and E. coli ATCC25922 at a low addition level of 0.6 wt%. Our results suggest that nitrogen oxide-based praseodymium complexes have potential for various antimicrobial applications.
Collapse
Affiliation(s)
- Qiuyin Zhu
- JiangXi University of Science and Technology Ganzhou Jiangxi 341000 China
- Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen Fujian 361021 China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Fujian 361021 China
| | - Wayne Hsu
- Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen Fujian 361021 China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Fujian 361021 China
| | - Shenglong Wang
- Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen Fujian 361021 China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Fujian 361021 China
| | - Fenglong Lin
- Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen Fujian 361021 China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Fujian 361021 China
| | - Yincai Wu
- Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen Fujian 361021 China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Fujian 361021 China
| | - Yimin Fang
- Xiamen AXENT Co. Ltd Xiamen Fujian 361000 China
| | - Jinglin Chen
- JiangXi University of Science and Technology Ganzhou Jiangxi 341000 China
| | - Lijun Song
- Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen Fujian 361021 China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials Xiamen Fujian 361021 China
| |
Collapse
|
4
|
Wen M, Zhang M, Gu F, Geng Y, Liu X, Wu Q, Yang X. Synthesis of spiropyrans via Ru(II)-catalyzed coupling of 3-aryl-2 H-benzo[ b][1,4]oxazines with benzoquinones. Org Biomol Chem 2024; 22:998-1009. [PMID: 38186088 DOI: 10.1039/d3ob01971c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
An efficient Ru(II)-catalyzed C-H activation-based spiroannulation of benzoxazines with the easily available benzoquinone and N-sulfonyl quinone monoimine has been realized, providing a straightforward strategy to access NH-containing spiropyrans in moderate to good yields with good functional group compatibility. The procedure features atom- and step-economy, mild conditions, and excellent chemoselectivity. Moreover, a catalytically competent five-membered cycloruthenated complex has been isolated.
Collapse
Affiliation(s)
- Mengke Wen
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Mengying Zhang
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Fan Gu
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yuehua Geng
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xiangyang Liu
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Qingnan Wu
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xifa Yang
- Institute of Pesticide, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
5
|
Zhang M, He Y, Li S, Geng Y, Liu X, Yang X. Synthesis of spiropyrans and arylquinones via Ru(II)-catalyzed condition-controlled coupling of 3-aryl-2 H-benzoxazinones with benzoquinones. Chem Commun (Camb) 2023; 59:11704-11707. [PMID: 37700730 DOI: 10.1039/d3cc03395c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Ru(II)-catalyzed condition-controlled divergent coupling between 3-aryl-2H-benzoxazin-2-ones and benzoquinones has been realized under operationally simple conditions, affording a series of structurally stable spiropyrans and valuable arylquinones. The potential of this method is also demonstrated by scale-up synthesis and derivatization. Additionally, an unprecedented cycloruthenated complex has been identified as a key intermediate.
Collapse
Affiliation(s)
- Mengying Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yuhao He
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Song Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Yuehua Geng
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xiangyang Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xifa Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|