1
|
Li KR, He XC, Gao J, Liu YL, Chen HB, Xiang HY, Chen K, Yang H. Amine-Borane-Mediated, Nickel/Photoredox-Catalyzed Cross-Electrophile Coupling between Alkyl and Aryl Bromides. J Org Chem 2024; 89:12658-12667. [PMID: 39159404 DOI: 10.1021/acs.joc.4c01605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Nickel/photoredox catalysis has emerged as a powerful platform for exploring nontraditional and challenging cross-couplings. Herein, a metallaphotoredox catalytic protocol has been developed on the basis of a tertiary amine-ligated boryl radical-induced halogen atom transfer process under blue-light irradiation. A wide variety of aryl and heteroaryl bromides featuring different functional groups and pharmaceutical moieties were facilely coupled to rapidly install C(sp3)-enriched aromatic scaffolds. The compatibility of Lewis base-ligated borane with nickel catalysis was well exemplified to extend the chemical space for Ni-catalyzed cross-electrophile coupling.
Collapse
Affiliation(s)
- Ke-Rong Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xian-Chen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yan-Ling Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hong-Bin Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Jiangxi Time Chemical Company, Ltd., Fuzhou 344800, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, China
| |
Collapse
|
2
|
Mikan CP, Watson JO, Walton R, Waddell PG, Knowles JP. Stereoselective Access to Diverse Alkaloid-Like Scaffolds via an Oxidation/Double-Mannich Reaction Sequence. Org Lett 2024; 26:5549-5553. [PMID: 38905202 PMCID: PMC11232018 DOI: 10.1021/acs.orglett.4c01924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Sequential oxidative cleavage and double-Mannich reactions enable the stereoselective conversion of simple norbornenes into complex alkaloid-like structures. The products undergo a wide range of derivatization reactions, including regioselective enol triflate formation/cross-coupling sequences and highly efficient conversion to an unusual tricyclic 8,5,5-fused lactam. Overall, the process represents a formal one-atom aza-ring expansion with concomitant bridging annulation, making it of interest for the broader derivatization of alkene feedstocks.
Collapse
Affiliation(s)
- Charles P Mikan
- Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Joseph O Watson
- Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Ryan Walton
- Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Paul G Waddell
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Jonathan P Knowles
- Department of Applied Sciences, Northumbria University, Ellison Place, Newcastle upon Tyne NE1 8ST, United Kingdom
| |
Collapse
|
3
|
Glogowski MP, Cercizi N, Lynch-Colameta T, Ridgers LH, Phelan JP, Rowley AM, Rauch MP. Utilization of High-Throughput Experimentation (HTE) and ChemBeads Toward the Development of an Aryl Bromide and Benzyl Bromide Photoredox Cross-Electrophile Coupling. Org Lett 2024. [PMID: 38498905 DOI: 10.1021/acs.orglett.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The discussion herein describes a metallaphotoredox reaction that allows for efficient exploration of benzyl structure-activity relationships in medicinal chemistry. The use of HTE (high-throughput experimentation) and ChemBeads allows for rapid reaction optimization. The formation of di(hetero)arylmethanes via cross-electrophile coupling between aryl bromides and benzyl bromides provides access to diverse chemical space. The breadth of the substrate scope will be discussed, along with the utilization of batch photochemistry for the preparation of this di(hetero)arylmethane motif on a larger scale.
Collapse
Affiliation(s)
- Michal P Glogowski
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Noel Cercizi
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Tessa Lynch-Colameta
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Lance H Ridgers
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - James P Phelan
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Ann M Rowley
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Martin P Rauch
- GSK, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
4
|
Zhu WF, Empel C, Pelliccia S, Koenigs RM, Proschak E, Hernandez-Olmos V. Photochemistry in Medicinal Chemistry and Chemical Biology. J Med Chem 2024. [PMID: 38457829 DOI: 10.1021/acs.jmedchem.3c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Photochemistry has emerged as a transformative force in organic chemistry, significantly expanding the chemical space accessible for medicinal chemistry. Light-induced reactions enable the efficient synthesis of intricate organic structures and have found applications throughout the different stages of the drug discovery and development processes. Moreover, photochemical techniques provide innovative solutions in chemical biology, allowing precise spatiotemporal drug activation and targeted delivery. In this Perspective, we highlight the already numerous remarkable applications and the even more promising future of photochemistry in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- W Felix Zhu
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Sveva Pelliccia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Kim SF, Schwarz H, Jurczyk J, Nebgen BR, Hendricks H, Park H, Radosevich A, Zuerch MW, Harper K, Lux MC, Yeung CS, Sarpong R. Mechanistic Investigation, Wavelength-Dependent Reactivity, and Expanded Reactivity of N-Aryl Azacycle Photomediated Ring Contractions. J Am Chem Soc 2024; 146:5580-5596. [PMID: 38347659 DOI: 10.1021/jacs.3c13982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Under mild blue-light irradiation, α-acylated saturated heterocycles undergo a photomediated one-atom ring contraction that extrudes a heteroatom from the cyclic core. However, for nitrogenous heterocycles, this powerful skeletal edit has been limited to substrates bearing electron-withdrawing substituents on nitrogen. Moreover, the mechanism and wavelength-dependent efficiency of this transformation have remained unclear. In this work, we increased the electron richness of nitrogen in saturated azacycles to improve light absorption and strengthen critical intramolecular hydrogen bonding while enabling the direct installation of the photoreactive handle. As a result, a broadly expanded substrate scope, including underexplored electron-rich substrates and previously unsuccessful heterocycles, has now been achieved. The significantly improved yields and diastereoselectivities have facilitated reaction rate, kinetic isotope effect (KIE), and quenching studies, in addition to the determination of quantum yields. Guided by these studies, we propose a revised ET/PT mechanism for the ring contraction, which is additionally corroborated by computational characterization of the lowest-energy excited states of α-acylated substrates through time-dependent DFT. The efficiency of the ring contraction at wavelengths longer than those strongly absorbed by the substrates was investigated through wavelength-dependent rate measurements, which revealed a red shift of the photochemical action plot relative to substrate absorbance. The elucidated mechanistic and photophysical details effectively rationalize empirical observations, including additive effects, that were previously poorly understood. Our findings not only demonstrate enhanced synthetic utility of the photomediated ring contraction and shed light on mechanistic details but may also offer valuable guidance for understanding wavelength-dependent reactivity for related photochemical systems.
Collapse
Affiliation(s)
- Sojung F Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Henrik Schwarz
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Justin Jurczyk
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Bailey R Nebgen
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Lawrence Berkeley National Laboratory, Materials Sciences Division, Berkeley, California 94720, United States
| | - Hailey Hendricks
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Hojoon Park
- Department of Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Andrew Radosevich
- Small Molecule Therapeutics & Platform Technologies, Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Michael W Zuerch
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Lawrence Berkeley National Laboratory, Materials Sciences Division, Berkeley, California 94720, United States
| | - Kaid Harper
- Process Chemistry, Abbvie Inc., North Chicago, Illinois 60064, United States
| | - Michaelyn C Lux
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Charles S Yeung
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Bjørnstad F, Havik S, Aarhus TI, Mahdi I, Unger A, Habenberger P, Degenhart C, Eickhoff J, Klebl BM, Sundby E, Hoff BH. Pyrrolopyrimidine based CSF1R inhibitors: Attempted departure from Flatland. Eur J Med Chem 2024; 265:116053. [PMID: 38141285 DOI: 10.1016/j.ejmech.2023.116053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/25/2023]
Abstract
The colony-stimulating factor 1 receptor (CSF1R) is an attractive target for inflammation disorders and cancers. Based on a series of pyrrolo[2,3-d]pyrimidine containing two carbo-aromatic rings, we have searched for new CSF1R inhibitors having a higher fraction of sp3-atoms. The phenyl unit in the 4-amino group could efficiently be replaced by tetrahydropyran (THP) retaining inhibitor potency. Exchanging the 6-aryl group with cyclohex-2-ene units also resulted in highly potent compounds, while fully saturated ring systems at C-6 led to a loss of activity. The structure-activity relationship study evaluating THP containing pyrrolo[2,3-d]pyrimidine derivates identified several highly active inhibitors by enzymatic studies. A comparison of 11 pairs of THP and aromatic compounds showed that inhibitors containing THP had clear benefits in terms of enzymatic potency, solubility, and cell toxicity. Guided by cellular experiments in Ba/F3 cells, five CSF1R inhibitors were further profiled in ADME assays, indicating the para-aniline derivative 16t as the most attractive compound for further development.
Collapse
Affiliation(s)
- Frithjof Bjørnstad
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway; Department of Material Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Simen Havik
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Thomas Ihle Aarhus
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway; Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Iktedar Mahdi
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Anke Unger
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Peter Habenberger
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Carsten Degenhart
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Jan Eickhoff
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Bert M Klebl
- Lead Discovery Center GmbH (LDC), Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Eirik Sundby
- Department of Material Science, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway
| | - Bård Helge Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway.
| |
Collapse
|
7
|
Park SM, Kwon CH. Unraveling the Conformational Preference of Morpholine: Insights from Infrared Resonant Vacuum Ultraviolet Photoionization Mass Spectroscopy. J Phys Chem Lett 2023; 14:9472-9478. [PMID: 37831631 PMCID: PMC10615077 DOI: 10.1021/acs.jpclett.3c02280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
The preference for different conformations in morpholine has a notable effect on its behavior and reactivity in organic synthesis. Herein, we explored the intricate conformational properties of morpholines through a combination of advanced mass spectrometric techniques and theoretical calculations. Notably, we employed infrared (IR) resonant vacuum ultraviolet (VUV) mass-analyzed threshold ionization spectroscopy to measure the unique vibrational spectra of the distinct conformers (Chair-Eq and Chair-Ax) in morpholine for the first time. Through precise VUV photon energy adjustments to coincide with the vibrational excitation via IR absorption, we effectively pinpointed the adiabatic ionization thresholds corresponding to the Chair-Eq (65 442 ± 4 cm-1) and Chair-Ax (65 333 ± 4 cm-1) conformers. This allowed us to accurately determine the conformational stability between the two conformers (109 ± 4 cm-1). By shedding light on the conformational properties of morpholine, this study brings far-reaching implications to the fields of organic synthesis and pharmaceutical research.
Collapse
Affiliation(s)
- Sung Man Park
- Department of Chemistry and
Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Chan Ho Kwon
- Department of Chemistry and
Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
8
|
Palkowitz MD, Emmanuel MA, Oderinde MS. A Paradigm Shift in Catalysis: Electro- and Photomediated Nickel-Catalyzed Cross-Coupling Reactions. Acc Chem Res 2023; 56:2851-2865. [PMID: 37772915 DOI: 10.1021/acs.accounts.3c00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
ConspectusTransition-metal catalyzed cross-coupling reactions are fundamental reactions in organic chemistry, facilitating strategic bond formations for accessing natural products, organic materials, agrochemicals, and pharmaceuticals. Redox chemistry enables access to elusive cross-coupling mechanisms through single-electron processes as an alternative to classical two-electron strategies predominated by palladium catalysis. The seminal reports of Baran, MacMillan, Doyle, Molander, Weix, Lin, Fu, Reisman, and others in merging redox perturbation (photochemical, electrochemical, and purely chemical) with catalysis are pivotal to the current resurgence and mechanistic understanding of first-row transition metal-based catalysis. The hallmark of this redox platform is the systematic modulation of transition-metal oxidation states by a photoredox catalyst or at a heterogeneous electrode surface. Electrocatalysis and photocatalysis enhance transition metal catalysis' capacity for bond formation through electron- or energy-transfer processes that promote otherwise challenging elementary steps or elusive mechanisms. Cross-coupling conditions promoted by electrocatalysis and photocatalysis are mild, and bond formation proceeds with exceptionally high chemoselectivity and wide functional group tolerance. The interfacing of abundant first-row transition-metal catalysis with electrocatalysis and photocatalysis has brought about a paradigm shift in cross-coupling technology as practitioners are quickly applying these tools in synthesizing fine chemicals and pharmaceutically relevant motifs. In particular, the merger of Ni catalysis with electro- and photochemistry ushered in a new era for carbon-carbon and carbon-heteroatom cross-couplings with expanded generality compared to their thermally driven counterparts. Over the past decade, we have developed enabling photo- and electrochemical methods throughout our combined research experience in industry (BMS, AstraZeneca) and academia (Professor Baran, Scripps Research) in cross-disciplinary collaborative environments. In this Account, we will outline recent progress from our past and present laboratories in photo- and electrochemically mediated Ni-catalyzed cross-couplings. By highlighting these cross-coupling methodologies, we will also compare mechanistic features of both electro- and photochemical strategies for forging C(sp2)-C(sp3), C(sp3)-C(sp3), C-O, C-N, and C-S bonds. Through these side-by-side comparisons, we hope to demystify the subtle differences between the two complementary tools to enact redox control over transition metal catalysis. Finally, building off the collective experience of ourselves and the rest of the community, we propose a tactical user guide to photo- and electrochemically driven cross-coupling reactions to aid the practitioner in rapidly applying such tools in their synthetic designs.
Collapse
Affiliation(s)
- Maximilian D Palkowitz
- Small Molecule Drug Discovery, Bristol Myers Squibb, 250 Water Street, Cambridge, Massachusetts 02141, United States
| | - Megan A Emmanuel
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Martins S Oderinde
- Small Molecule Discovery Chemistry, Bristol Myers Squibb Research & Early Development, Route 206 & Province Line Road, Princeton, New Jersey 08543, United States
| |
Collapse
|