1
|
Rasool B, Zargar IA, Kundu S, Mukherjee D. Peroxodisulfate-assisted synthesis of 2-thiocyanato glycals and their transformation to C-2-thio acrylo/aryl nitrile-substituted glycals. Chem Commun (Camb) 2024; 60:8071-8074. [PMID: 38990064 DOI: 10.1039/d4cc02201g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
An efficient regioselective method to attach thiocyanato groups at the β-position of enol double bonds in sugar enol ethers using KSCN and potassium persulfate has been developed. The highly regioselective addition of the resulting sugar thiocyanate to electron rich species like terminal alkynes and benzynes under Pd catalysis generated C-2-thio acrylo/aryl nitrile glycals via simultaneous introduction of thio and cyano groups into carbon-carbon triple bonds.
Collapse
Affiliation(s)
- Bisma Rasool
- Natural Products and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Irshad Ahmad Zargar
- Natural Products and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu-180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sanchari Kundu
- Department of Chemical Sciences, Bose Institute Kolkata, EN 80, Sector V, Bidhan Nagar, Kolkata-700091, WB, India
| | - Debaraj Mukherjee
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
- Department of Chemical Sciences, Bose Institute Kolkata, EN 80, Sector V, Bidhan Nagar, Kolkata-700091, WB, India
| |
Collapse
|
2
|
Hua R, Wang Q, Yin H, Chen FX. Organophotocatalytic Remote Thiocyanation Reaction via Ring-Opening Functionalization of Cycloalkanols. Chemistry 2024; 30:e202400453. [PMID: 38634800 DOI: 10.1002/chem.202400453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
The remote C(sp3)-SCN bond formation via ring-opening functionalization of cycloalkanols with N-thiocyanatosaccharin as the precursor of SCN radicals and pyrylium salt as the organic photocatalyst under visible light has been developed. Thus, various terminal keto thiocyanates were prepared without transition metals and oxidants in moderate to good yields. The simplicity, wide substrate scope and mild conditions feature its synthetic application capability.
Collapse
Affiliation(s)
- Ruirui Hua
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Qing Wang
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Beijing Institute of Technology, No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| |
Collapse
|
3
|
Patel M, Kumar N, Bhukya H, Dholakiya BZ, Naveen T. Copper-catalyzed ortho-thiocyanation of aromatic amines. Org Biomol Chem 2024; 22:3386-3390. [PMID: 38619009 DOI: 10.1039/d4ob00137k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
A copper-catalyzed direct ortho-Csp2-H thiocyanation of free anilines has been developed. This method employs stable and non-toxic ammonium thiocyanate as a thiocyanation source, and tert-butyl hydroperoxide as the oxidant, enabling the synthesis of ortho-thiocyanated anilines with good yields and broad substrate tolerance. Hitherto, no reports have been found in the literature for the ortho-thiocyanation of aromatic amines, making this reaction an important breakthrough in synthetic organic chemistry.
Collapse
Affiliation(s)
- Monak Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat - 395 007, India.
| | - Nitish Kumar
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Andhra Pradesh - 517 507, India
| | - Hussain Bhukya
- Department of Biology, Indian Institute of Science Education and Research Tirupati, Andhra Pradesh - 517 507, India
| | - Bharatkumar Z Dholakiya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat - 395 007, India.
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat - 395 007, India.
| |
Collapse
|
4
|
Mindner J, Rombach S, Werz DB. Copper-Assisted (Pseudo-)Halochalcogenation of Arynes. Org Lett 2024; 26:2124-2128. [PMID: 38427809 DOI: 10.1021/acs.orglett.4c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
In this report, we describe the multicomponent coupling reaction between arynes, (pseudo)halides, and an electrophilic chalcogen species. Addition of a copper salt enabled smooth conversion by suppressing side reactions. A variety of different aryne precursors as well as seleno- and thiosulfonates were employed, yielding a broad spectrum of ortho-(pseudo)halogenated chalcogenides. This motif was subjected to different cross-coupling approaches, demonstrating the applicability of these compounds as building blocks for more complex structures.
Collapse
Affiliation(s)
- Jasper Mindner
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| | - Sina Rombach
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| | - Daniel B Werz
- Institute of Organic Chemistry, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
5
|
Cao WX, Zhu L, He Y, Wang R, Liu M, Ouyang Q, Xiao Q. Copper-Catalyzed Aryne Insertion into the Carbon-Iodine Bond of Heteroaryl Iodides. Angew Chem Int Ed Engl 2023; 62:e202305146. [PMID: 37571857 DOI: 10.1002/anie.202305146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
Aryne insertions into the carbon-iodine bond of heteroaryl iodides has been achieved for the first time. This novel reaction provides an efficient pathway for the synthesis of valuable building blocks 2-iodoheterobiaryls from heteroaryl iodides and o-silylaryl triflates in excellent regioselectivity. The copper(I) catalyst, which bears a N-heterocyclic carbene (NHC) ligand, is essential to accomplish the reaction. Control reactions and DFT calculations indicate that the coordination of copper, as a Lewis acid, with nitrogen atoms of heteroaryl iodides mediates the insertion of arynes into heteroaryl carbon-iodine bonds.
Collapse
Affiliation(s)
- Wen-Xuan Cao
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Lei Zhu
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Yiyi He
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Run Wang
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Ming Liu
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Qin Ouyang
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| | - Qing Xiao
- School of Pharmacy, Third Military Medical University, Gao Tanyan Avenue, Chongqing, 400038, China
| |
Collapse
|
6
|
Li X, Wei B, Gong Y, Li C, Liu X, Liu B, Li Q, Ban S. Pyrosulfite-Involved Synthesis of Sulfides by Palladium-Catalyzed Decarboxylative Couplings. J Org Chem 2023; 88:10282-10286. [PMID: 37431757 DOI: 10.1021/acs.joc.3c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
The decarboxylative coupling using carboxylic acid and potassium metabisulfite, promoted by a palladium catalyst, is reported for the generation of sulfides. The coupling is performed using the easily available carboxylic acid and environmentally friendly inorganic sulfides as a divalent inorganic sulfur source. Not only aromatic acids but also aliphatic carboxylic acids are workable during the couplings. The method is applicable and practical to a scope of 20 examples and drug molecules.
Collapse
Affiliation(s)
- Xiaokang Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bei Wei
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yanlong Gong
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Chengyi Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoting Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Bin Liu
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Qingshan Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi 030001, China
- Shanxi Key Laboratory of Chronic Inflammatory Targeted Drugs, Shanxi University of Traditional Chinese Medicine, Jin-zhong, Shanxi 030619, China
| | - Shurong Ban
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
7
|
Fan R, Liu S, Yan Q, Wei Y, Wang J, Lan Y, Tan J. Empowering boronic acids as hydroxyl synthons for aryne induced three-component coupling reactions. Chem Sci 2023; 14:4278-4287. [PMID: 37123174 PMCID: PMC10132127 DOI: 10.1039/d3sc00072a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023] Open
Abstract
Boronic acids have become one of the most prevalent classes of reagents in modern organic synthesis, displaying various reactivity profiles via C-B bond cleavage. Herein, we describe the utilization of a readily available boronic acid as an efficient surrogate of hydroxide upon activation via fluoride complexation. The hitherto unknown aryne induced ring-opening reaction of cyclic sulfides and three-component coupling of fluoro-azaarenes are developed to exemplify the application value. Different from metal hydroxides or water, this novel hydroxy source displays mild activation conditions, great functionality tolerance and structural tunability, which shall engender a new synthetic paradigm and in a broad context offer new blueprints for organoboron chemistry. Detailed computational studies also recognize the fluoride activation mode, provide in-depth insights into the unprecedented mechanistic pathway and elucidate the reactivity difference of ArB(OH) x F y complexes, which fully support the experimental data.
Collapse
Affiliation(s)
- Rong Fan
- Department of Organic Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Shihan Liu
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 400030 China
| | - Qiang Yan
- Department of Organic Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Yun Wei
- Department of Organic Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Jingwen Wang
- Department of Organic Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Yu Lan
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 400030 China
- ZhengZhou JiShu Institute of AI Science Zhengzhou 450000 China
| | - Jiajing Tan
- Department of Organic Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
8
|
Dharpure PD, Behera M, Khade VV, Thube AS, Bhat RG. Direct Access to Thiocyano-Thioesters from Cyclic Thioacetals via Photoredox Catalysis: An Introduction of Two Functional Groups in One Pot. Org Lett 2022; 24:6919-6924. [PMID: 36121933 DOI: 10.1021/acs.orglett.2c02601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cyanation of organic compounds is an important synthetic transformation and mainly relies on a toxic CN source. Undeniably, thiocyanate salt has emerged as a very mild and environmentally benign CN source, yet its synthetic utility for cyanation is highly limited to very few types of organic compounds. Herein, we report the direct cyanation of cyclic thioacetals for accessing compounds with two different functional groups (thiocyano-thioesters) in one pot using sodium thiocyanate via photoredox catalysis. The protocol has been further extended for the direct cyanation of disulfides and diselenide to access aryl thiocyanates and aryl selenocyanate. A plausible mechanism has been proposed based on a series of control experiments, cyclic voltammetry and Stern-Volmer studies.
Collapse
Affiliation(s)
- Pankaj D Dharpure
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| | - Mousumi Behera
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| | - Vikas V Khade
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| | - Archana S Thube
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Pune, Maharashtra, India
| |
Collapse
|
9
|
Chen H, Shi X, Liu X, Zhao L. Recent progress of direct thiocyanation reactions. Org Biomol Chem 2022; 20:6508-6527. [PMID: 35942781 DOI: 10.1039/d2ob01018f] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thiocyanates are common in natural products, synthetic drugs and bioactive molecules. Many thiocyanate derivatives show excellent antibacterial, antiparasitic and anticancer activities. Thiocyanation can introduce SCN groups into parent molecules for constructing SCN-containing small organic molecules. Among them, the direct introduction method mainly includes nucleophilic reaction, electrophilic reaction and free radical reaction, which can simply and quickly introduce SCN groups at the target sites to construct thiocyanates, and has broad application prospects. In this review, we summarize the research progress of direct thiocyanation in recent years.
Collapse
Affiliation(s)
- Haixin Chen
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Xiaotian Shi
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Xiang Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| | - Limin Zhao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering & Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.
| |
Collapse
|
10
|
Jiang C, Zhu Y, Li H, Liu P, Sun P. Direct Cyanation of Thiophenols or Thiols to Access Thiocyanates under Electrochemical Conditions. J Org Chem 2022; 87:10026-10033. [PMID: 35866614 DOI: 10.1021/acs.joc.2c00995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A novel electrochemical cross-coupling method for the synthesis of thiocyanates via the direct cyanation of readily available thiophenols or thiols with trimethylsilyl cyanide (TMSCN) was developed. This approach was also suitable for selenols. External oxidant-free, transition-metal-free and mild operating conditions were the main advantages of this protocol. A series of thiocyanates and selenocyanates could be obtained in moderate to high yields.
Collapse
Affiliation(s)
- Cong Jiang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Yan Zhu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Heng Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
11
|
Zhang X, Ning Y, Liu Z, Li S, Zanoni G, Bi X. Defluorinative Carboimination of Trifluoromethyl Ketones. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Shuang Li
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Shao C, He Y, Yin H, Chen FX. Me3SiCl‐Catalyzed Electrophilic Thiocyanation/Cyclization of Alkynylbenzoates to Synthesize 4‐Thiocyanatoisocourmarins. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chukai Shao
- Beijing Institute of Technology School of Chemistry No. 8 Liangxiang East Road, Fangshan District, Beijing 102488 (P. R. China) 102488 Beijing CHINA
| | - Ying He
- Beijing Institute of Technology School of Chemistry CHINA
| | - Hongquan Yin
- Beijing Institute of Technology School of Chemistry CHINA
| | - Fu-Xue Chen
- Beijing Institute of Technology School of chemical Engineering No5 south zhongguancun street, Haidian 100081 Beijing CHINA
| |
Collapse
|
13
|
Hazarika H, Chutia K, Das B, Gogoi P. One-pot synthesis of 3-substituted-3-hydroxyindolin-2-ones: three component coupling of N-protected isatin, aryne precursor and 1,3-cyclodione under metal-free conditions. NEW J CHEM 2022. [DOI: 10.1039/d1nj04295e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A transition-metal free synthetic strategy for the direct synthesis of 3-substituted-3-hydroxy-indolin-2-ones via three component coupling of N-protected isatin, aryne precursor, and 1,3-cyclodione.
Collapse
Affiliation(s)
- Hemanta Hazarika
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Kangkana Chutia
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
| | - Babulal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Pranjal Gogoi
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| |
Collapse
|
14
|
Xiao J, Ai Z, Li X, Tao S, Zhao B, Wang X, Wang X, Du Y. Synthesis of 3-thiocyanated chromones via TCCA/NH4SCN-mediated cyclization/thiocyanation of alkynyl aryl ketones. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
15
|
Hazarika H, Gogoi P. Access to diverse organosulfur compounds via arynes: a comprehensive review on Kobayashi's aryne precursor. Org Biomol Chem 2021; 19:8466-8481. [PMID: 34568887 DOI: 10.1039/d1ob01436f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arynes are highly reactive transient intermediates having enormous applications in organic synthesis. In the last three decades aryne chemistry has shown incredible developments in carbon-carbon and carbon-heteroatom bond formation reactions. After the discovery of Kobayashi's protocol for the generation of aryne intermediates in a mild way, this field of chemistry witnessed rapid growth in synthetic organic chemistry. One aspect of development in this field involves C-S bond formation under mild conditions which has a tremendous scope for the synthesis of various important organosulfur building blocks.
Collapse
Affiliation(s)
- Hemanta Hazarika
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| | - Pranjal Gogoi
- Applied Organic Chemistry Group, Chemical Science and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P. 201002, India
| |
Collapse
|
16
|
Bürger M, Ehrhardt N, Barber T, Ball LT, Namyslo JC, Jones PG, Werz DB. Phosphine-Catalyzed Aryne Oligomerization: Direct Access to α,ω-Bisfunctionalized Oligo( ortho-arylenes). J Am Chem Soc 2021; 143:16796-16803. [PMID: 34585921 DOI: 10.1021/jacs.1c08689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A phosphine-catalyzed oligomerization of arynes using selenocyanates was developed. The use of JohnPhos as a bulky phosphine is the key to accessing α,ω-bisfunctionalized oligo(ortho-arylenes) with RSe as the substituent at one terminus and CN as the substituent at the other. The in situ formation of R3PSeR' cations, serving as sterically encumbered electrophiles, hinders the immediate reaction that affords the 1,2-bisfunctionalization product and instead opens a competitive pathway leading to oligomerization. Various optimized conditions for the predominant formation of dimers, but also for higher oligomers such as trimers and tetramers, were developed. Depending on the electronic properties of the electrophilic reaction partner, even compounds up to octamers were isolated. Optimization experiments revealed that a properly tuned phosphine as catalyst is of crucial importance. Mechanistic studies demonstrated that the cascade starts with the attack of cyanide; aryne insertion into n-mers leading to (n+1)-mers was ruled out.
Collapse
Affiliation(s)
| | | | - Thomas Barber
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Liam T Ball
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Jan C Namyslo
- Clausthal University of Technology, Institute of Organic Chemistry, Leibnizstrasse 6, 38678 Clausthal-Zellerfeld, Germany
| | | | | |
Collapse
|
17
|
Desai B, Patel M, Dholakiya BZ, Rana S, Naveen T. Recent advances in directed sp 2 C-H functionalization towards the synthesis of N-heterocycles and O-heterocycles. Chem Commun (Camb) 2021; 57:8699-8725. [PMID: 34397068 DOI: 10.1039/d1cc02176a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heterocyclic compounds are widely present in the core structures of several natural products, pharmaceuticals and agrochemicals, and thus great efforts have been devoted to their synthesis in a mild and simpler way. In the past decade, remarkable progress has been made in the field of heterocycle synthesis by employing C-H functionalization as an emerging synthetic strategy. As a complement to previous protocols, transition metal catalyzed C-H functionalization of arenes using various directing groups has recently emerged as a powerful tool to create different classes of heterocycles. This review is mainly focussed on the recent key progress made in the field of the synthesis of N,O-heterocycles from olefins and allenes by using nitrogen based and oxidizing directing groups.
Collapse
Affiliation(s)
- Bhargav Desai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | | | | | | | | |
Collapse
|
18
|
Ouyang W, Cai X, Chen X, Wang J, Rao J, Gao Y, Huo Y, Chen Q, Li X. Sequential C-H activation enabled expedient delivery of polyfunctional arenes. Chem Commun (Camb) 2021; 57:8075-8078. [PMID: 34296709 DOI: 10.1039/d1cc03243g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Modular construction of polyfunctional arenes from abundant feedstocks stands as an unremitting pursue in synthetic chemistry, accelerating the discovery of drugs and materials. Herein, using the multiple C-H activation strategy with versatile imidate esters, the expedient delivery of molecular libraries of densely functionalized sulfur-containing arenes was achieved, which enabled the concise construction of biologically active molecules, such as Bipenamol.
Collapse
Affiliation(s)
- Wensen Ouyang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xiaoqing Cai
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xiaojian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Jie Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Jianhang Rao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Wu H, Shao C, Wu D, Jiang L, Yin H, Chen FX. Atom-Economical Thiocyanation-Amination of Alkynes with N-Thiocyanato-Dibenzenesulfonimide. J Org Chem 2021; 86:5327-5335. [PMID: 33703903 DOI: 10.1021/acs.joc.0c02780] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly regioselective protocol for intermolecular thiocyanation-amination of alkynes by N-thiocyano-dibenzenesulfonimide (NTSI) as the SCN and nitrogen sources has been developed. A C-S bond and C-N bond are simultaneously constructed in only one step. The reaction under simple mild conditions features a broad substrate scope, atom economy, high yields (up to 94%), and excellent functional group tolerance.
Collapse
Affiliation(s)
- Haopeng Wu
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Chukai Shao
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Di Wu
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Liang Jiang
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China.,State Key Laboratory of Medicinal Chemical Biology, NanKai University, No. 94 Wei Jin Road, Nankai District, Tianjin, 300071, China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology (Liangxiang Campus), No. 8 Liangxiang East Road, Fangshan District, Beijing, 102488, China
| |
Collapse
|
20
|
Affiliation(s)
- Jiarong Shi
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Lianggui Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| | - Yang Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing, P. R. China, 400030
| |
Collapse
|
21
|
Feng Y, Zhao S, Du G, Zhang S, Zhang D, Liu H, Li X, Dong Y, Sun FG. Intermolecular alkene arylcyanation using BnSCN as a cyanide source via a reductive strategy: access to 3,3-disubstituted oxindoles. Org Chem Front 2021. [DOI: 10.1039/d0qo01462a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a nickel-catalyzed two-component reductive arylcyanation of aryl (pseudo)halide tethered alkenes using benzyl thiocyanate as a cyanide source via C–S bond activation is developed.
Collapse
Affiliation(s)
- Yunxia Feng
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Shen Zhao
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Guopeng Du
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Shuang Zhang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Daopeng Zhang
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Hui Liu
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Xinjin Li
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| | - Feng-Gang Sun
- School of Chemistry and Chemical Engineering
- Shandong University of Technology
- Zibo 255049
- P. R. China
| |
Collapse
|
22
|
Pimparkar S, Koodan A, Maiti S, Ahmed NS, Mostafa MMM, Maiti D. C–CN bond formation: an overview of diverse strategies. Chem Commun (Camb) 2021; 57:2210-2232. [DOI: 10.1039/d0cc07783f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aim for cyanation: a comprehensive overview on various approaches on C–CN bond formation in arenes/heteroarenes by activated halides/pseudohalide, directed, non-directed, electro-catalyzed, photoredox-catalyzed, and radical approaches.
Collapse
Affiliation(s)
| | | | | | - Nesreen S. Ahmed
- Department of Therapeutic Chemistry
- National Research Centre
- Cairo-12622
- Egypt
| | | | | |
Collapse
|
23
|
Hu G, Li P, Zhou Z, Yang F, Xu S, Fan H, Zhao X, Zhang X. NBS-assisted palladium-catalyzed bromination/cross-coupling reaction of 2-alkynyl arylazides with KSCN: an efficient method to synthesize 3-thiocyanindoles. NEW J CHEM 2021. [DOI: 10.1039/d0nj05894g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An efficient NBS-assisted palladium-catalyzed bromination/cross-coupling synthesis of 3-thiocyanindoles from 2-alkynyl arylazides with KSCN has been described.
Collapse
Affiliation(s)
- Guiwen Hu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Ping Li
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Zhiqiang Zhou
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Fan Yang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Shijie Xu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Hui Fan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Xuechun Zhao
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Xiaoxiang Zhang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| |
Collapse
|
24
|
de Oliveira Lima Filho E, Malvestiti I. Mechanochemical Thiocyanation of Aryl Compounds via C-H Functionalization. ACS OMEGA 2020; 5:33329-33339. [PMID: 33403295 PMCID: PMC7774286 DOI: 10.1021/acsomega.0c05131] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Aryl thiocyanate compounds are important building blocks for the synthesis of bioactive compounds and intermediates for several functional groups. Reported thiocyanation reactions via C-H functionalization have limited substrate scope and low RME. The ball-milling method reported here uses ammonium persulfate and ammonium thiocyanate as reagents and silica as a grinding auxiliary. It afforded aryl thiocyanates with moderate to excellent yields for a wide variety of aryl compounds (36 examples, 8-96% yield), such as anilines, phenols, anisoles, thioanisole, and indole, thus tolerating substrates with sensitive functional groups. New products such as benzo[d][1,3]oxathiol-2-ones were obtained with C-4 substituted phenols. Thus, to our knowledge, we report, for the first time, aryl thiocyanation reaction by ball-milling at room temperature and solvent-free conditions, with short reaction times and no workup. Analysis of several mass-based green metrics indicates that it is an efficient greener method.
Collapse
Affiliation(s)
- Edson de Oliveira Lima Filho
- Departamento de Química Fundamental—CCEN—Universidade
Federal de Pernambuco, Recife 50740-560, Pernambuco, Brazil
| | - Ivani Malvestiti
- Departamento de Química Fundamental—CCEN—Universidade
Federal de Pernambuco, Recife 50740-560, Pernambuco, Brazil
| |
Collapse
|
25
|
Divyavani C, Padmaja P, Ugale VG, Reddy PN. A Review on Thiocyanation of Indoles. Curr Org Synth 2020; 18:233-247. [PMID: 33272188 DOI: 10.2174/1570179417999201203211855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The thiocyanation of indoles is a direct way for carbon-sulfur bond formation to access 3-thiocyanato-indoles. 3-thiocyanato-indoles exhibit potent biological and pharmacological activities and also serve as building blocks to synthesize many biologically active sulfur-containing indole derivatives. OBJECTIVE The aim of this review is to highlight different approaches for the thiocyanation of indoles focusing on its scope and mechanism. CONCLUSION In this review, we have summarized various methods for the thiocyanation of indoles. Selection of new methods for the preparation of 3-thiocyanato-indoles will be done. The mechanistic aspects and significance of the methods are also briefly discussed.
Collapse
Affiliation(s)
- Chitteti Divyavani
- Department of Chemistry, Sri Padmavathi Women's Degree & PG College, Tirupati, Andhra Pradesh, India
| | - Pannala Padmaja
- Fluoro & Agrochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Vinod G Ugale
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur- 425405, Maharashtra, India
| | | |
Collapse
|
26
|
Bhattacharjee S, Guin A, Gaykar RN, Biju AT. Thiophenols as Protic Nucleophilic Triggers in Aryne Three-Component Coupling. Org Lett 2020; 22:9097-9101. [DOI: 10.1021/acs.orglett.0c03494] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Subrata Bhattacharjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rahul N. Gaykar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Akkattu T. Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
27
|
Kaur K, Srivastava S. Artificial sugar saccharin and its derivatives: role as a catalyst. RSC Adv 2020; 10:36571-36608. [PMID: 35517977 PMCID: PMC9057081 DOI: 10.1039/d0ra05974a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/24/2020] [Indexed: 12/28/2022] Open
Abstract
The primary objective of this review was to demonstrate the significance of artificial sugar saccharin and its derivatives as catalysts for a wide variety of organic transformations. The application of saccharin and its derivatives represents a greener and superior catalytic approach for reactions. In particular, we were interested in bringing together the literature pertaining to these saccharin derivatives from a catalysis perspective. The present review reports synthesis of saccharin and its derivatives such as saccharin-N-sulfonic acid, sodium saccharin, N-halo saccharin, saccharin lithium-bromide, N-formyl saccharin, N-acyl saccharin, N-nitrosaccharin, N-SCF3 saccharin, N-fluorosultam, N-phenylselenosaccharin, N-thiocyanatosaccharin palladium saccharin, DMAP-saccharin, and [Bmim]Sac. This catalytic application of saccharin and its derivatives includes reactions such as the Biginelli reaction, Paal-Knorr pyrrole synthesis, azo-coupling reaction, halogenations, domino Knoevenagel, Michael, deoximation reaction, catalytic condensation, functional group protection and oxidation etc. Also, these saccharin derivatives act as a source of CO, NH2, SCN, SCF3 and nitro groups. We reported all the available data on saccharin and its derivatives acting as a catalyst from 1957 to date.
Collapse
Affiliation(s)
- Kamalpreet Kaur
- Department of Applied Sciences, National Institute of Technology, Delhi NILERD Campus, Sec A-7, Narela Delhi 110040 India
| | - Suman Srivastava
- Department of Applied Sciences, National Institute of Technology, Delhi NILERD Campus, Sec A-7, Narela Delhi 110040 India
| |
Collapse
|
28
|
Wang Q, Tian P, Cao Z, Zhang H, Jiang C. Copper‐Catalyzed Remote Direct Thiocyanation of Alkyl C(
sp
3
)−H Bonds. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000754] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Qian Wang
- Department of Chemistry College of Science China University of Petroleum (East China) Qingdao 266580 People's Republic of China
| | - Peiyuan Tian
- Department of Chemistry College of Science China University of Petroleum (East China) Qingdao 266580 People's Republic of China
| | - Zhong‐Yan Cao
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road 18# Hangzhou 310014 People's Republic of China
| | - Hongwei Zhang
- Department of Chemistry College of Science China University of Petroleum (East China) Qingdao 266580 People's Republic of China
| | - Cuiyu Jiang
- Department of Chemistry College of Science China University of Petroleum (East China) Qingdao 266580 People's Republic of China
| |
Collapse
|
29
|
Wang X, Wang L, Yang S, Zhang L, Li Y, Zhang Q. Copper-catalyzed 1,3-aminothiocyanation of arylcyclopropanes. Org Biomol Chem 2020; 18:4932-4935. [PMID: 32582895 DOI: 10.1039/d0ob01060j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A copper-catalyzed 1,3-aminothiocyanation of arylcyclopropanes with N-fluorobenzenesulfonimide (NFSI) and trimethylsilyl isothiocyanate (TMSNCS) has been developed for the first time, efficiently synthesizing a series of γ-aminothiocyanate derivatives in moderate to excellent yields from readily available substrates under mild conditions. The practicability of the reaction was demonstrated by gram-scale preparation. Furthermore, the easily prepared γ-aminothiocyanate derivatives were verified to be versatile building blocks.
Collapse
Affiliation(s)
- Xiaomin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Lihong Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Shengbiao Yang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Linli Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Yan Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China. and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
30
|
Bürger M, Röttger SH, Loch MN, Jones PG, Werz DB. Pd-Catalyzed Cyanoselenylation of Internal Alkynes: Access to Tetrasubstituted Selenoenol Ethers. Org Lett 2020; 22:5025-5029. [PMID: 32610926 DOI: 10.1021/acs.orglett.0c01582] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Zhu YS, Xue Y, Liu W, Zhu X, Hao XQ, Song MP. Temperature-Controlled Chalcogenation and Chalcogenocyanation of Imidazopyridines in Water under Transition Metal-Free Conditions. J Org Chem 2020; 85:9106-9116. [DOI: 10.1021/acs.joc.0c01035] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yu-Shen Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Yuting Xue
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Wannian Liu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
32
|
Lou J, Wang Q, Wu P, Wang H, Zhou YG, Yu Z. Transition-metal mediated carbon-sulfur bond activation and transformations: an update. Chem Soc Rev 2020; 49:4307-4359. [PMID: 32458881 DOI: 10.1039/c9cs00837c] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Carbon-sulfur bond cross-coupling has become more and more attractive as an alternative protocol to establish carbon-carbon and carbon-heteroatom bonds. Diverse transformations through transition-metal-catalyzed C-S bond activation and cleavage have recently been developed. This review summarizes the advances in transition-metal-catalyzed cross-coupling via carbon-sulfur bond activation and cleavage since late 2012 as an update of the critical review on the same topic published in early 2013 (Chem. Soc. Rev., 2013, 42, 599-621), which is presented by the categories of organosulfur compounds, that is, thioesters, thioethers including heteroaryl, aryl, vinyl, alkyl, and alkynyl sulfides, ketene dithioacetals, sulfoxides including DMSO, sulfones, sulfonyl chlorides, sulfinates, thiocyanates, sulfonium salts, sulfonyl hydrazides, sulfonates, thiophene-based compounds, and C[double bond, length as m-dash]S functionality-bearing compounds such as thioureas, thioamides, and carbon disulfide, as well as the mechanistic insights. An overview of C-S bond cleavage reactions with stoichiometric transition-metal reagents is briefly given. Theoretical studies on the reactivity of carbon-sulfur bonds by DFT calculations are also discussed.
Collapse
Affiliation(s)
- Jiang Lou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Quannan Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ping Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. and University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongmei Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, P. R. China.
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China
| |
Collapse
|
33
|
Saputra A, Fan R, Yao T, Chen J, Tan J. Synthesis of 2‐(Arylthio)indolenines via Chemoselective Arylation of Thio‐Oxindoles with Arynes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Adi Saputra
- Department of Organic Chemistry, College of Chemistry, BeijingUniversity of Chemical Technology Beijing 100029 People's Republic of China
| | - Rong Fan
- Department of Organic Chemistry, College of Chemistry, BeijingUniversity of Chemical Technology Beijing 100029 People's Republic of China
| | - Tuanli Yao
- College of Chemistry and Chemical EngineeringShaanxi University of Science and Technology 6 Xuefu Road, Weiyang District Xi'an, Shaanxi 710021 People's Republic of China
| | - Jian Chen
- Department of Organic Chemistry, College of Chemistry, BeijingUniversity of Chemical Technology Beijing 100029 People's Republic of China
| | - Jiajing Tan
- Department of Organic Chemistry, College of Chemistry, BeijingUniversity of Chemical Technology Beijing 100029 People's Republic of China
| |
Collapse
|
34
|
Werz DB, Biju AT. Uncovering the Neglected Similarities of Arynes and Donor-Acceptor Cyclopropanes. Angew Chem Int Ed Engl 2020; 59:3385-3398. [PMID: 31529661 PMCID: PMC7065169 DOI: 10.1002/anie.201909213] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 12/21/2022]
Abstract
Arynes and donor-acceptor (D-A) cyclopropanes are two classes of strained systems having the potential for numerous applications in organic synthesis. The last two decades have witnessed a renaissance of interest in the chemistry of these species primarily because of the mild and robust methods for their generation or activation. Commonly, arynes as easily polarizable systems result in 1,2-disubstitution, whereas D-A cyclopropanes as polarized systems lead to 1,3-bisfunctionalization thereby showing striking similarities. Transformations with 1,2- and 1,3-dipoles afford cyclic structures. With arynes, emerging four-membered rings as intermediates might react further, whereas the analogous five-membered rings obtained from D-A cyclopropanes are most often the final products. However, there are a few cases where these intermediates behave surprisingly differently. This Minireview highlights the parallels in reactivity between arynes and D-A cyclopropanes thereby shedding light on the neglected similarities of these two reactive species.
Collapse
Affiliation(s)
- Daniel B. Werz
- Technische Universität BraunschweigInstitut für Organische ChemieHagenring 3038106BraunschweigGermany
| | - Akkattu T. Biju
- Department of Organic ChemistryIndian Institute of ScienceBangalore560012India
| |
Collapse
|
35
|
Zhou P, Chen C, Li S. Selectfluor-initiated cyanation of disulfides to thiocyanates. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820902670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A Selectfluor-initiated cyanation of disulfides to thiocyanates has been developed. In this process, Selectfluor was employed as the oxidant and trimethylsilyl cyanide was used as the cyanation reagent. It provides an eco-friendly and simple way to synthesize the thiocyanates.
Collapse
Affiliation(s)
- Pengpeng Zhou
- School of Chemistry and Material Engineering, Changzhou Vocational Institute of Engineering, Changzhou, P. R. China
| | - Chuan Chen
- School of Chemistry and Material Engineering, Changzhou Vocational Institute of Engineering, Changzhou, P. R. China
| | - Shubai Li
- School of Chemistry and Material Engineering, Changzhou Vocational Institute of Engineering, Changzhou, P. R. China
| |
Collapse
|
36
|
Mao X, Ni J, Xu B, Ding C. K2S2O8-promoted direct thiocyanation of pyrazolin-5-ones with ammonium thiocyanate at room temperature. Org Chem Front 2020. [DOI: 10.1039/c9qo01174a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A facile and efficient approach for the direct thiocyanation of pyrazolin-5-ones under mild conditions has been established for the first time.
Collapse
Affiliation(s)
- Xiaokang Mao
- Department of Chemistry
- Innovative Drug Research Center
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
| | - Jiabin Ni
- CAS Key Laboratory of Receptor Research
- and the State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica (SIMM)
- Chinese Academy of Sciences
- Shanghai 201203
| | - Bin Xu
- Department of Chemistry
- Innovative Drug Research Center
- School of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
| | - Chunyong Ding
- CAS Key Laboratory of Receptor Research
- and the State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica (SIMM)
- Chinese Academy of Sciences
- Shanghai 201203
| |
Collapse
|
37
|
Bao W, Gao ZP, Jin DP, Xue CG, Liang H, Lei LS, Xu XT, Zhang K, Wang SH. Direct synthesis of 2-substituted benzonitriles via alkylcyanation of arynes with N,N-disubstituted aminomalononitriles. Chem Commun (Camb) 2020; 56:7641-7644. [DOI: 10.1039/d0cc01591a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An efficient alkylcyanation of in situ generated arynes by N,N-disubstituted aminomalononitriles is described, enabling the direct synthesis of 2-substituted benzonitriles.
Collapse
Affiliation(s)
- Wen Bao
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Zhu-Peng Gao
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Da-Ping Jin
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Cao-Gen Xue
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Huan Liang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Ling-Sheng Lei
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Xue-Tao Xu
- School of Biotechnology and Health Science
- Wuyi University
- Jiangmen 529020
- P. R. China
| | - Kun Zhang
- School of Biotechnology and Health Science
- Wuyi University
- Jiangmen 529020
- P. R. China
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry
- Lanzhou University
- Lanzhou 730000
- P. R. China
- School of Biotechnology and Health Science
| |
Collapse
|
38
|
Sharma A, Gogoi P. Synthesis of 6-substituted indoloquinazolinones from arynes and 2-acyl-4-quinazolinones: a transition-metal free C–N and C–C bond formation strategy. NEW J CHEM 2020. [DOI: 10.1039/d0nj04395h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A versatile transition-metal free synthetic strategy has been developed for the direct synthesis of 6-substituted indoloquinazolinones from 2-acyl-4-quinazolinones and aryne precursors. This cascade strategy proceeds via successive C–N and C–C bond formation in a single reaction vessel.
Collapse
Affiliation(s)
- Abhilash Sharma
- Applied Organic Chemistry Group
- Chemical Science and Technology Division
- CSIR-North East Institute of Science and Technology
- Jorhat 785006
- India
| | - Pranjal Gogoi
- Applied Organic Chemistry Group
- Chemical Science and Technology Division
- CSIR-North East Institute of Science and Technology
- Jorhat 785006
- India
| |
Collapse
|
39
|
Bürger M, Loch MN, Jones PG, Werz DB. From 1,2-difunctionalisation to cyanide-transfer cascades - Pd-catalysed cyanosulfenylation of internal (oligo)alkynes. Chem Sci 2019; 11:1912-1917. [PMID: 34123284 PMCID: PMC8148069 DOI: 10.1039/c9sc04569d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Internal alkynes substituted by aliphatic or aromatic moieties or by heteroatoms were converted into sulphur-substituted acrylonitrile derivatives. Key is the use of Pd catalysis, which allows the addition of aromatic and aliphatic thiocyanates in an intra- and intermolecular manner. Substrates with several alkyne units underwent further carbopalladation steps after the initial thiopalladation step, thus generating in a cascade-like fashion an oligoene unit with sulphur at one terminus and the cyano group at the other. The intra- and intermolecular Pd-catalysed cyanosulfenylation of internal alkynes enables the formation of tetrasubstituted thioacrylonitriles and is extended to oligoyne systems leading to oligoenes and a cyanide transfer over four or six atoms.![]()
Collapse
Affiliation(s)
- Marcel Bürger
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Maximilian N Loch
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Peter G Jones
- Technische Universität Braunschweig, Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
40
|
Werz DB, Biju AT. Über bislang nicht beachtete Parallelen in der Reaktivität von Arinen und Donor‐Akzeptor‐Cyclopropanen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909213] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Daniel B. Werz
- Technische Universität BraunschweigInstitut für Organische Chemie Hagenring 30 38106 Braunschweig Deutschland
| | - Akkattu T. Biju
- Department of Organic ChemistryIndian Institute of Science Bangalore 560012 Indien
| |
Collapse
|
41
|
Visible-light-mediated selective thiocyanation/ipso-cyclization/oxidation cascade for the synthesis of thiocyanato-containing azaspirotrienediones. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130763] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Meng F, Zhang H, He H, Xu N, Fang Q, Guo K, Cao S, Shi Y, Zhu Y. Copper‐Catalyzed Domino Cyclization/Thiocyanation of Unactivated Olefins: Access to SCN‐Containing Pyrazolines. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201901104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fei Meng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Honglin Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Han He
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Ning Xu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Qin Fang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Kang Guo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yun Shi
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
- College of Plant ProtectionNanjing Agricultural University Nanjing 210095 People's Republic of China
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of SciencesNanjing Agricultural University Nanjing 210095 People's Republic of China
| |
Collapse
|
43
|
Guin A, Gaykar RN, Bhattacharjee S, Biju AT. Selective Synthesis of N-H and N-Aryl Benzotriazoles by the [3 + 2] Annulation of Sodium Azide with Arynes. J Org Chem 2019; 84:12692-12699. [DOI: 10.1021/acs.joc.9b02198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Rahul N. Gaykar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Subrata Bhattacharjee
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Akkattu T. Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
44
|
Ito Y, Touyama A, Uku M, Egami H, Hamashima Y. Thiocyanation of Aromatic and Heteroaromatic Compounds with 1-Chloro-1,2-benziodoxol-3-(1 H)-one and (Trimethylsilyl)isothiocyanate. Chem Pharm Bull (Tokyo) 2019; 67:1015-1018. [DOI: 10.1248/cpb.c19-00352] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuta Ito
- School of Pharmaceutical Sciences, University of Shizuoka
| | | | - Minako Uku
- School of Pharmaceutical Sciences, University of Shizuoka
| | | | | |
Collapse
|
45
|
Chen Y, Qi H, Chen N, Ren D, Xu J, Yang Z. Fluorium-Initiated Dealkylative Cyanation of Thioethers to Thiocyanates. J Org Chem 2019; 84:9044-9050. [PMID: 31244086 DOI: 10.1021/acs.joc.9b00965] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Thioethers are converted to thiocyanates via fluorium-initiated dealkylative cyanation. Selectfluor is used as the oxidant, and trimethylsilyl cyanide is used as the cyanation reagent. The well-streamlined procedure is user-friendly, operationally simple, and step-economical. The current mechanistic studies show that the sulfur radical cation and cyano radical are both involved. They combine to deliver cyanosulfonium, an intermediate toward thiocyanate after dealkylation. Alternatively, a nucleophilic mechanism is also possible. Our dealkyaltive cyanation is also efficient in synthesizing thiocyanates with strongly electrophilic functionalities.
Collapse
Affiliation(s)
| | | | | | - Demin Ren
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers , Hunan University of Science and Technology , Xiangtan 411201 , P. R. China
| | | | | |
Collapse
|
46
|
Zhao J, Li H, Li P, Wang L. Annulation of Benzamides with Arynes Using Palladium with Photoredox Dual Catalysis. J Org Chem 2019; 84:9007-9016. [DOI: 10.1021/acs.joc.9b00893] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jie Zhao
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongji Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Pinhua Li
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
47
|
Palladium catalyzed annulation of benzylamines and arynes via C–H activation to construct 5,6-dihydrophenanthridine derivatives. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Silver-promoted regio- and stereoselective aminocyanation of alkynes for the synthesis of β-aminoacrylonitriles using N-isocyanoiminotriphenylphosphorane. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.05.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Gaykar RN, Bhattacharjee S, Biju AT. Transition-Metal-Free Thioamination of Arynes Using Sulfenamides. Org Lett 2019; 21:737-740. [PMID: 30648876 DOI: 10.1021/acs.orglett.8b03966] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The insertion of arynes into the S-N σ-bond of sulfenamides allowing the synthesis of o-sulfanylaniline derivatives with reasonable functional group compatibility is presented. The aryne generated from 2-(trimethylsilyl)aryl triflates using CsF in DME was the key for the success of this transition-metal-free thioamination reaction, which involves new C-N and C-S bond formations in a single step under mild conditions. Moreover, the synthetic potential of this method was demonstrated by the synthesis of the antidepressant drug vortioxetine.
Collapse
Affiliation(s)
- Rahul N Gaykar
- Department of Organic Chemistry , Indian Institute of Science , Bangalore 560012 , India
| | - Subrata Bhattacharjee
- Department of Organic Chemistry , Indian Institute of Science , Bangalore 560012 , India
| | - Akkattu T Biju
- Department of Organic Chemistry , Indian Institute of Science , Bangalore 560012 , India
| |
Collapse
|
50
|
Uchida K, Yoshida S, Hosoya T. Synthetic Aryne Chemistry toward Multicomponent Coupling. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Suguru Yoshida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Takamitsu Hosoya
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|