1
|
Blaha I, Weber S, Dülger R, Veiros LF, Kirchner K. Alkene Isomerization Catalyzed by a Mn(I) Bisphosphine Borohydride Complex. ACS Catal 2024; 14:13174-13180. [PMID: 39263541 PMCID: PMC11385370 DOI: 10.1021/acscatal.4c03364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/13/2024]
Abstract
An additive-free manganese-catalyzed isomerization of terminal alkenes to internal alkenes is described. This reaction is implementing an inexpensive nonprecious metal catalyst. The most efficient catalyst is the borohydride complex cis-[Mn(dippe)(CO)2(κ2-BH4)]. This catalyst operates at room temperature, with a catalyst loading of 2.5 mol %. A variety of terminal alkenes is effectively and selectively transformed into the respective internal E-alkenes. Preliminary results show chain-walking isomerization at an elevated temperature. Mechanistic studies were carried out, including stoichiometric reactions and in situ NMR analysis. These experiments are flanked by computational studies. Based on these, the catalytic process is initiated by the liberation of "BH3" as a THF adduct. The catalytic process is initiated by double bond insertion into an M-H species, leading to an alkyl metal intermediate, followed by β-hydride elimination at the opposite position to afford the isomerization product.
Collapse
Affiliation(s)
- Ines Blaha
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Stefan Weber
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Robin Dülger
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| | - Luis F Veiros
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal
| | - Karl Kirchner
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163-AC, A-1060 Wien, Austria
| |
Collapse
|
2
|
Li S, Hu C, Leo Liu L, Wu L. Selective Hydroboration of C-C Single Bonds without Transition-Metal Catalysis. Angew Chem Int Ed Engl 2024:e202412368. [PMID: 39090033 DOI: 10.1002/anie.202412368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/04/2024]
Abstract
Selective hydroboration of C-C single bonds presents a fundamental challenge in the chemical industry. Previously, only catalytic systems utilizing precious metals Ir and Rh, in conjunction with N- and P- ligands, could achieve this, ensuring bond cleavage and selectivity. In sharp contrast, we discovered an unprecedented and general transition-metal-free system for the hydroboration of C-C single bonds. This methodology is transition-metal and ligand-free and surpasses the transition-metal systems regarding chemo- and regioselectivities, substrate versatility, or yields. In addition, our system tolerates various functional groups such as Ar-X (X=halides), heterocyclic rings, ketones, esters, amides, nitro, nitriles, and C=C double bonds, which are typically susceptible to hydroboration in the presence of transition metals. As a result, a diverse range of γ-boronated amines with varied structures and functions has been readily obtained. Experimental mechanistic studies, density functional theory (DFT), and intrinsic bond orbital (IBO) calculations unveiled a hydroborane-promoted C-C bond cleavage and hydride-shift reaction pathway. The carbonyl group of the amide suppresses dehydrogenation between the free N-H and hydroborane. The lone pair on the nitrogen of the amide facilitates the cleavage of C-C bonds in cyclopropanes.
Collapse
Affiliation(s)
- Sida Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chaopeng Hu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
3
|
Meher NK, Suryavansi M, Geetharani K. Regioselective Hydroboration of Unsymmetrical Internal Alkynes Catalyzed by a Cobalt Pincer-NHC Complex. Org Lett 2024; 26:5862-5867. [PMID: 38935048 DOI: 10.1021/acs.orglett.4c02216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Highly regioselective hydroboration of unsymmetrical internal alkynes remains a significant challenge for synthesizing valuable alkenylboronate esters. Herein, we describe an easily synthesizable pincer NHC-based Co complex as a catalyst for the cis-α selective hydroboration of unactivated internal alkynes and the cis-β selective hydroboration of activated internal alkynes with pinacolborane. The reaction showcases high chemo-, regio-, and stereoselectivity, and the catalyst displays high efficiency and very low loading under base-free reaction conditions. The reaction scope was demonstrated by alkynes having a variety of functional groups. The mechanistic studies suggest a feasible Co-boryl intermediate to explain the unusual regioselectivity.
Collapse
Affiliation(s)
- Naresh Kumar Meher
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Maruti Suryavansi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - K Geetharani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
Bao Y, Zheng C, Xiong K, Hu C, Lu P, Wang Y, Lu Z. Enantioconvergent Hydroboration of E/ Z-Mixed Trisubstituted Alkenes. J Am Chem Soc 2024. [PMID: 38994866 DOI: 10.1021/jacs.4c06585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The lack of mode for chirality recognition makes it particularly challenging to carry out asymmetric transformations on E/Z-mixed minimally functionalized trisubstituted alkenes. Here, we report a catalytic enantioconvergent hydroboration of minimally functionalized trisubstituted E/Z-mixed alkenes to construct chiral organoboronic esters with excellent enantioselectivity using chiral radical cobalt catalyst. This C(sp3)-H borylation protocol showed good functional group tolerance and products could be converted to valuable compounds via C-B derivatizations. The mechanistic studies, which included control experiments, nonlinear effect experiments, deuterated labeling experiments, and X-ray diffraction, demonstrated that the favorable compatibility between the thermodynamically unfavorable isomerization and hydroboration was the key factor in achieving convergent transformation.
Collapse
Affiliation(s)
- Yinwei Bao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenggong Zheng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Kangyu Xiong
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenke Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Peng Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuwen Wang
- Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, P. R. China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
5
|
Davies AM, Greene KH, Allen AR, Farris BM, Szymczak NK, Stephenson CRJ. Catalytic Olefin Transpositions Facilitated by Ruthenium N,N,N-Pincer Complexes. J Org Chem 2024; 89:9647-9653. [PMID: 38901003 DOI: 10.1021/acs.joc.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
In this report, we demonstrate olefin transposition/isomerization reactions catalyzed by a series of N,N,N-pincer (1,3-bis(2-pyridylimino)isoindoline) Ru-hydride complexes. The protocol proceeds at room temperature for most substrates, achieving excellent yields, regioselectivity, and diastereoselectivity in short reaction times. The air-stable Ru-chloride derivatives of these complexes exhibit comparable reactivity enabling benchtop setup and synthetic versatility. Furthermore, we demonstrate the potential for one-pot cascade sequences of the products derived from the transposition reactions.
Collapse
Affiliation(s)
- Alex M Davies
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Kara H Greene
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anthony R Allen
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Benjamin M Farris
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nathaniel K Szymczak
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Corey R J Stephenson
- Willard Henry Dow Laboratory, Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
6
|
He HD, Chitrakar R, Cao ZW, Wang DM, She LQ, Zhao PG, Wu Y, Xu YQ, Cao ZY, Wang P. Diphosphine Ligand-Enabled Nickel-Catalyzed Chelate-Assisted Inner-Selective Migratory Hydroarylation of Alkenes. Angew Chem Int Ed Engl 2024; 63:e202313336. [PMID: 37983653 DOI: 10.1002/anie.202313336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
The precise control of the regioselectivity in the transition metal-catalyzed migratory hydrofunctionalization of alkenes remains a big challenge. With a transient ketimine directing group, the nickel-catalyzed migratory β-selective hydroarylation and hydroalkenylation of alkenyl ketones has been realized with aryl boronic acids using alkyl halide as the mild hydride source for the first time. The key to this success is the use of a diphosphine ligand, which is capable of the generation of a Ni(II)-H species in the presence of alkyl bromide, and enabling the efficient migratory insertion of alkene into Ni(II)-H species and the sequent rapid chain walking process. The present approach diminishes organosilanes reductant, tolerates a wide array of complex functionalities with excellent regioselective control. Moreover, this catalytic system could also be applied to the migratory hydroarylation of alkenyl azahetereoarenes, thus providing a general approach for the preparation of 1,2-aryl heteroaryl motifs with wide potential applications in pharmaceutical discovery.
Collapse
Affiliation(s)
- Hua-Dong He
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Ravi Chitrakar
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Zhi-Wei Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Dao-Ming Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Li-Qin She
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Peng-Gang Zhao
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Yuan-Qing Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, P. R. China
| | - Zhong-Yan Cao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS 345 Lingling Road, Shanghai, 200032, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry, and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
7
|
Saunders TM, Shepard SB, Hale DJ, Robertson KN, Turculet L. Highly Selective Nickel-Catalyzed Isomerization-Hydroboration of Alkenes Affords Terminal Functionalization at Remote C-H Position. Chemistry 2023; 29:e202301946. [PMID: 37466914 DOI: 10.1002/chem.202301946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/20/2023]
Abstract
We report herein the synthesis and characterization of nickel complexes supported by tridentate and bidentate phosphino(silyl) ancillary ligands, along with the successful application of these complexes as precatalysts for the hydroboration of terminal and internal alkenes using pinacolborane (HBPin). These reactions proceeded with low nickel loadings of 2.5-5 mol % in the absence of co-solvent, and in some cases at room temperature. Isomerization to afford exclusively the terminal hydroboration product was obtained across a range of internal alkenes, including tri- and tetra-substituted examples. This reactivity is unprecedented for nickel and offers a powerful means of achieving functionalization at a C-H position remote from the C=C double bond. Nickel-catalyzed deuteroboration experiments using DBPin support a mechanism involving 1,2-insertion of the alkene and subsequent chain-walking, which results in isotopic scrambling.
Collapse
Affiliation(s)
- Tyler M Saunders
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Sydney B Shepard
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Dylan J Hale
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Katherine N Robertson
- Department of Chemistry, Saint Mary's University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Laura Turculet
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
8
|
Gao FC, Li M, Gu HY, Chen XY, Xu S, Wei Y, Hong K. Construction of α-Halogenated Boronic Esters via Visible Light-Induced C-H Bromination. J Org Chem 2023; 88:14246-14254. [PMID: 37733949 DOI: 10.1021/acs.joc.3c01915] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
α-Halogenated boronic esters are versatile building blocks that can be diversified into a wide variety of polyfunctionalized molecules. However, their synthetic potential has been hampered by limited preparation methods. Herein, we report a visible light-induced C-H bromination reaction of readily available benzyl boronic esters. This method features high yields, mild conditions, simple operation, and good functional group tolerance. The analogous chlorides and iodides can be accessed via Finkelstein reaction. Synthesis of halogenated geminal diborons has also been demonstrated.
Collapse
Affiliation(s)
- Feng-Chen Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Ming Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Heng-Yu Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Xin-Yi Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Shuang Xu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Yi Wei
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Kai Hong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
9
|
Luque-Gómez A, García-Orduña P, Lahoz FJ, Iglesias M. Synthesis and catalytic activity of well-defined Co(I) complexes based on NHC-phosphane pincer ligands. Dalton Trans 2023; 52:12779-12788. [PMID: 37615585 DOI: 10.1039/d3dt00463e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
A new methodology for the preparation of Co(I)-NHC (NHC = N-heterocyclic carbene) complexes, namely, [Co(PCNHCP)(CO)2][Co(CO)4] (1) and [Co(PCNHCP)(CO)2]BF4 (2), has been developed (PCNHCP = 1,3-bis(2-(diphenylphosphanyl)ethyl)-imidazol-2-ylidene). Both complexes can be straightforwardly prepared by direct reaction of their parent imidazolium salts with the Co(0) complex Co2(CO)8. Complex 1 efficiently catalyses the reductive amination of furfural and levulinic acid employing silanes as reducing agents under mild conditions. Furfural has been converted into a variety of secondary and tertiary amines employing dimethyl carbonate as the solvent, while levulinic acid has been converted into pyrrolidines under solventless conditions. Dehydrocoupling of the silane to give polysilanes has been observed to occur as a side reaction of the hydrosilylation process.
Collapse
Affiliation(s)
- Ana Luque-Gómez
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009-Zaragoza, Spain.
| | - Pilar García-Orduña
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009-Zaragoza, Spain.
| | - Fernando J Lahoz
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009-Zaragoza, Spain.
| | - Manuel Iglesias
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009-Zaragoza, Spain.
| |
Collapse
|
10
|
Lee B, Pabst TP, Hierlmeier G, Chirik PJ. Exploring the Effect of Pincer Rigidity on Oxidative Addition Reactions with Cobalt(I) Complexes. Organometallics 2023; 42:708-718. [PMID: 37223209 PMCID: PMC10201995 DOI: 10.1021/acs.organomet.3c00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Cobalt complexes containing the 2,6-diaminopyridine-substituted PNP pincer (iPrPNMeNP = 2,6-(iPr2PNMe)2(C5H3N)) were synthesized. A combination of solid-state structures and investigation of the cobalt(I)/(II) redox potential established a relatively rigid and electron-donating chelating ligand as compared to iPrPNP (iPrPNP = 2,6-(iPr2PCH2)2(C5H3N)). Based on a buried volume analysis, the two pincer ligands are sterically indistinguishable. Nearly planar, diamagnetic, four-coordinate complexes were observed independent of the field strength (chloride, alkyl, aryl) of the fourth ligand completing the coordination sphere of the metal. Computational studies supported a higher barrier for C-H oxidative addition, largely a result of the increased rigidity of the pincer. The increased oxidative addition barrier resulted in stabilization of (iPrPNMeNP)Co(I) complexes, enabling the characterization of the cobalt boryl and the cobalt hydride dimer by X-ray crystallography. Moreover, (iPrPNMeNP)CoMe served as an efficient precatalyst for alkene hydroboration likely because of the reduced propensity to undergo oxidative addition, demonstrating that reactivity and catalytic performance can be tuned by rigidity of pincer ligands.
Collapse
Affiliation(s)
- Boran Lee
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gabriele Hierlmeier
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
11
|
Tohidi MM, Paymard B, Vasquez-García SR, Fernández-Quiroz D. Recent progress in applications of cobalt catalysts in organic reactions. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
12
|
Gutiérrez L, Martin-Diaconescu V, Casadevall C, Oropeza F, de la Peña O’Shea VA, Meng J, Ortuño MA, Lloret-Fillol J. Low Oxidation State Cobalt Center Stabilized by a Covalent Organic Framework to Promote Hydroboration of Olefins. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Luis Gutiérrez
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Organica i Analítica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Vlad Martin-Diaconescu
- ALBA Synchrotron Light Source, Carretera BP 1413, Km. 3.3, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Carla Casadevall
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | - Freddy Oropeza
- Photoactivated Processes Unit, IMDEA Energy, 28935 Móstoles, Spain
| | | | - JingJing Meng
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
| | - Manuel A. Ortuño
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Països Catalans 16, 43007 Tarragona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
13
|
Ma S, Fan H, Day CS, Xi Y, Hartwig JF. Remote Hydroamination of Disubstituted Alkenes by a Combination of Isomerization and Regioselective N-H Addition. J Am Chem Soc 2023; 145:3875-3881. [PMID: 36780535 DOI: 10.1021/jacs.2c13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Remote hydrofunctionalizations of alkenes incorporate functional groups distal to existing carbon-carbon double bonds. While remote carbonylations are well-known, remote hydrofunctionalizations are most common for addition of relatively nonpolar B-H, Si-H, and C-H bonds with alkenes. We report a system for the remote hydroamination of disubstituted alkenes to functionalize an alkyl chain selectively at the subterminal, unactivated, methylene position. Critical to the high regioselectivity and reaction rates are the electronic properties of the substituent on the amine and the development of the ligand DIP-Ad-SEGPHOS by evaluating the steric and electronic effects of ligand modules on reactivity and selectivity. The remote hydroamination is compatible with a broad scope of alkenes and aminopyridines and enables the regioconvergent synthesis of amines from an isomeric mixture of alkenes. The products can be derivatized by nucleophilic aromatic substitution on the amino substituent with a variety of nucleophiles.
Collapse
Affiliation(s)
- Senjie Ma
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Haoyu Fan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Craig S Day
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yumeng Xi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
14
|
Bories CC, Gontard G, Barbazanges M, Derat E, Petit M. Hydrido-Cobalt Complexes for the Chemo- and Regioselective 1,2-Silylative Dearomatization of N-Heteroarenes. Org Lett 2023; 25:843-848. [PMID: 36688841 DOI: 10.1021/acs.orglett.3c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We describe an efficient regio- and chemoselective dearomatization of N-heteroarenes using hydrido-cobalt catalysts. Reactions were performed under mild conditions on a wide range of N-heteroarenes leading exclusively to the silyl-1,2-dihydroheteroarene. Various quinolines and pyridines bearing electron-donating and electron-withdrawing substituents are compatible with this methodology. DFT calculations, NMR spectroscopic studies, and X-ray diffraction analysis underlined the importance of a second silane for the final step of the reaction.
Collapse
Affiliation(s)
- Cassandre C Bories
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Geoffrey Gontard
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Marion Barbazanges
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Etienne Derat
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| | - Marc Petit
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
15
|
Zhang M, Liu Z, Zhao W. Rhodium-Catalyzed Remote Borylation of Alkynes and Vinylboronates. Angew Chem Int Ed Engl 2023; 62:e202215455. [PMID: 36445794 DOI: 10.1002/anie.202215455] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
Remote functionalization involving a fascinating chain-walking process has emerged as a powerful strategy for the rapid access to value-added functional molecules from readily available feedstocks. However, the scope of current methods is predominantly limited to mono- and di-substituted alkenes. The remote functionalization of multi- and heteroatom-substituted alkenes is challenging, and the use of alkynes in the chain walking is unexplored. We herein report a rhodium catalyzed remote borylation of internal alkynes, offering an unprecedented reaction mode of alkynes for the preparation of synthetically valuable 1,n-diboronates. The regioselective distal migratory hydroboration of sterically hindered tri- and tetra-substituted vinylboronates is also demonstrated to furnish various multi-boronic esters. Synthetic utilities are highlighted through the selective manipulation of the two boryl groups in products such as the regioselective cross coupling, oxidation, and amination.
Collapse
Affiliation(s)
- Minghao Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Hunan, Changsha, P. R. China
| | - Zheming Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Hunan, Changsha, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, 410082, Hunan, Changsha, P. R. China
| |
Collapse
|
16
|
Meher NK, Verma PK, Geetharani K. Cobalt-Catalyzed Regioselective 1,2-Hydroboration of N-Heteroarenes. Org Lett 2023; 25:87-92. [PMID: 36596240 DOI: 10.1021/acs.orglett.2c03891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Regioselective hydroboration of pyridines to 1,2-dihydropyridines remains a significant challenge for the synthesis of valuable nitrogenous bioactive molecules. Herein, we report a base free ligand-controlled cobalt-catalyzed 1,2-hydroboration of pyridines and quinolines with very low catalyst loading under neat reaction conditions. The choice of sterically demanding N-heterocyclic ligands led to the 1,2-regioselectivity and the scope was demonstrated by the N-heterocycles having a variety of functional groups. The preliminary mechanistic studies corroborate that the two ligands followed a distinct catalytic cycle with Co(I) as an active species.
Collapse
Affiliation(s)
- Naresh Kumar Meher
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Piyush Kumar Verma
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - K Geetharani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
17
|
Budagumpi S, Keri RS, Nagaraju D, Yhobu Z, Monica V, Geetha B, Kadu RD, Neole N. Progress in the catalytic applications of cobalt N–heterocyclic carbene complexes: Emphasis on their synthesis, structure and mechanism. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Zhao L, Zhu Y, Liu M, Xie L, Liang J, Shi H, Meng X, Chen Z, Han J, Wang C. Ligand-Controlled NiH-Catalyzed Regiodivergent Chain-Walking Hydroalkylation of Alkenes. Angew Chem Int Ed Engl 2022; 61:e202204716. [PMID: 35608276 DOI: 10.1002/anie.202204716] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 12/14/2022]
Abstract
A NiH-catalyzed migratory hydroalkylation of alkenyl amines with predictable and switchable regioselectivity is reported. By utilizing a ligand-controlled, directing group-assisted strategy, various alkyl units are site-selectively installed at inert sp3 C-H sites far away from the original C=C bonds. A range of structurally diverse α- and β-branched protected amines are conveniently synthesized via stabilization of 5- and 6-membered nickelacycles respectively. This method exhibits broad scope and high functional group tolerance, and can be applied to late-stage modification of medicinally relevant molecules.
Collapse
Affiliation(s)
- Lei Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Yuqin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Mengyuan Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Leipeng Xie
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Jimin Liang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Haoran Shi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Xiao Meng
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Zhengyang Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Jian Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chao Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, P. R. China
| |
Collapse
|
19
|
Ghafari S, Lay EN, Garshasbi M. Development of a dimensionless and dynamic model of the three-phase trickle bed reactor in light naphtha isomerization process: effects of axial mass dispersion and liquid-solid mass transfer on isomers concentration. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2022. [DOI: 10.1515/ijcre-2021-0274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
This study develops a general dimensionless model for a three-phase trickle bed reactor in the light naphtha isomerization process. The simulations are accomplished to study its conduct. The model brings up a one-dimensional axial dispersed flow to characterize dispersity and liquid-solid mass transfer in the forms of dimensionless Peclet and mass Stanton numbers under adiabatic conditions. It considers the essential reactions extant in the isomerization process comprising isomerization, hydrogenation, and hydrocracking reactions applying a precise approach of dimensionless kinetic equations and rate constants. The Crank–Nicolson method and a nonstandard finite difference approach are utilized for large systems of time-spatial PDEs to resolve the dynamic reactor model with MATLAB software. The aim is to elucidate how these large systems of PDEs and nonlinear ODEs can be solved with a comprehensive computation in the form of physical dimensionless numbers. The isomers compositions estimated with the suggested model are in corroboration simulation results obtained by empirical information. The dynamics are evaluated to consider the system conduct with a variation in the hydrogen concentration of the feedstock.
Collapse
Affiliation(s)
- Sara Ghafari
- Department of Chemical Engineering , University of Kashan , Ravand Street, P.O. Box 87317-51167 , Kashan , Iran
| | - Ebrahim Nemati Lay
- Department of Chemical Engineering , University of Kashan , Ravand Street, P.O. Box 87317-51167 , Kashan , Iran
| | - Morteza Garshasbi
- Department of Applied Mathematics , School of Mathematics, Iran University of Science and Technology , P.O. Box 1684613114 , Tehran , Iran
| |
Collapse
|
20
|
Dong W, Ye Z, Zhao W. Enantioselective Cobalt-Catalyzed Hydroboration of Ketone-Derived Silyl Enol Ethers. Angew Chem Int Ed Engl 2022; 61:e202117413. [PMID: 35488385 DOI: 10.1002/anie.202117413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Indexed: 12/23/2022]
Abstract
Catalytic asymmetric hydroboration of alkenes is a powerful tool for the synthesis of natural products, agrochemicals, and pharmaceuticals via the versatile transformations of chiral alkyl boronic esters. However, the scope of available alkenes is limited to styrenes, activated alkenes, and compounds with directing groups. The catalytic enantioselective hydroboration of heteroatom-substituted alkenes is rarely explored and those catalyzed by earth-abundant metals are yet to be reported. Herein, we report a cobalt-catalyzed asymmetric hydroboration of ketone-derived silyl enol ethers and provide a convenient approach to access valuable enantiopure β-hydroxy boronic esters. This protocol features mild reaction conditions, a broad substrate scope, and excellent enantioselectivities (up to 99 % ee). This approach was applied in the successful synthesis of salmeterol and albuterol, demonstrating its potential to streamline complex molecule synthesis.
Collapse
Affiliation(s)
- Wenke Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Zhiyang Ye
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
21
|
Bołt M, Żak P. Solvent-free hydroboration of alkynes catalyzed by an NHC-cobalt complex. RSC Adv 2022; 12:18572-18577. [PMID: 35873331 PMCID: PMC9234744 DOI: 10.1039/d2ra03005e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
A new cobalt complex bearing a bulky N-heterocyclic carbene (NHC) ligand is described as a pre-catalyst for alkyne hydroboration. The proposed catalytic system, synthesized using easily accessible reagents, allowed obtaining a series of mono- and dialkenylboranes in solvent-free conditions with excellent efficiency and selectivity. The results have been compared to those obtained in the presence of the same cobalt complex containing smaller NHC ligands and those achieved for the catalytic system based on a CoCl2 - NHC precursor.
Collapse
Affiliation(s)
- Małgorzata Bołt
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan Uniwersytetu Poznańskiego 8 61-614 Poznan Poland
| | - Patrycja Żak
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan Uniwersytetu Poznańskiego 8 61-614 Poznan Poland
| |
Collapse
|
22
|
Zhao L, Zhu Y, Liu M, Xie L, Liang J, Shi H, Meng X, Chen Z, Han J, Wang C. Ligand‐Controlled NiH‐Catalyzed Regiodivergent Chain‐Walking Hydroalkylation of Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lei Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Yuqin Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Mengyuan Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Leipeng Xie
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Jimin Liang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Haoran Shi
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Xiao Meng
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Zhengyang Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| | - Jian Han
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Chao Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules College of Chemistry Tianjin Normal University Tianjin 300387 P. R. China
| |
Collapse
|
23
|
Zhang Q, Wang S, Yin J, Xiong T, Zhang Q. Remote Site-Selective Asymmetric Protoboration of Unactivated Alkenes Enabled by Bimetallic Relay Catalysis. Angew Chem Int Ed Engl 2022; 61:e202202713. [PMID: 35297558 DOI: 10.1002/anie.202202713] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/14/2022]
Abstract
A remote C(sp3 )-H bond asymmetric borylation of unactivated alkenes was achieved by bimetallic relay catalysis. The reaction proceeded through reversible and consecutive β-H elimination/olefin insertion promoted by CoH species generated in situ, followed by copper-catalyzed asymmetric protoboration. The use of this synergistic Co/Cu catalysis protocol allowed the enantioselective protoboration of various unactivated terminal alkenes and internal alkenes, as well as an unrefined mixture of olefin isomers, at the distal less-reactive β-position to a functional group, leading to chiral organoboronates.
Collapse
Affiliation(s)
- Qiao Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Simin Wang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jianjun Yin
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Tao Xiong
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
24
|
|
25
|
Dong W, Ye Z, Zhao W. Enantioselective Cobalt‐Catalyzed Hydroboration of Ketone‐Derived Silyl Enol Ethers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wenke Dong
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Zhiyang Ye
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Wanxiang Zhao
- Hunan University chemistry Yuelushan, Changsha 410082 changsha CHINA
| |
Collapse
|
26
|
Zhao Y, Ge S. Synergistic Hydrocobaltation and Borylcobaltation Enable Regioselective Migratory Triborylation of Unactivated Alkenes. Angew Chem Int Ed Engl 2022; 61:e202116133. [PMID: 35088939 DOI: 10.1002/anie.202116133] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 01/06/2023]
Abstract
The structural diversity of sp3 -triorganometallic reagents enhances their potentiality in the modular construction of molecular complexity in chemical synthesis. Despite significant achievements on the preparation of sp3 1,1,1- and 1,1,2-triorganometallic B,B,B-reagents, catalytic approaches that enable the installation of multiple boryl groups at skipped carbons of unactivated alkenes still remain elusive. Herein, we report a cobalt-catalyzed selective triborylation reaction of unactivated alkenes to access synthetically versatile 1,1,3-triborylalkanes. This triborylation protocol provides a general platform for regioselective trifunctionalization of unactivated alkenes, and its utility is highlighted by the synthesis of various value-added chemicals from readily accessible unactivated alkenes. Mechanistic studies, including deuterium-labelling experiments and evaluation of potential reactive intermediates, provide insight into the experimentally observed chemo- and regioselectivity.
Collapse
Affiliation(s)
- Yinsong Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Shaozhong Ge
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| |
Collapse
|
27
|
Zhang Q, Wang S, Yin J, Xiong T, Zhang Q. Remote Site‐Selective Asymmetric Protoboration of Unactivated Alkenes Enabled by Bimetallic Relay Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qiao Zhang
- Northeast Normal University Department of Chemistry CHINA
| | - Simin Wang
- Northeast Normal University Department of Chemistry CHINA
| | - Jianjun Yin
- Northeast Normal University Department of Chemistry CHINA
| | - Tao Xiong
- Northeast Normal University Department of Chemistry Renmin ST. 5268 130024 ChangChun CHINA
| | - Qian Zhang
- Northeast Normal University Department of Chemistry CHINA
| |
Collapse
|
28
|
Chodkiewicz M, Pawlędzio S, Woińska M, Woźniak K. Fragmentation and transferability in Hirshfeld atom refinement. IUCRJ 2022; 9:298-315. [PMID: 35371499 PMCID: PMC8895009 DOI: 10.1107/s2052252522000690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
Hirshfeld atom refinement (HAR) is one of the most effective methods for obtaining accurate structural parameters for hydrogen atoms from X-ray diffraction data. Unfortunately, it is also relatively computationally expensive, especially for larger molecules due to wavefunction calculations. Here, a fragmentation approach has been tested as a remedy for this problem. It gives an order of magnitude improvement in computation time for larger organic systems and is a few times faster for metal-organic systems at the cost of only minor differences in the calculated structural parameters when compared with the original HAR calculations. Fragmentation was also applied to polymeric and disordered systems where it provides a natural solution to problems that arise when HAR is applied. The concept of fragmentation is closely related to the transferable aspherical atom model (TAAM) and allows insight into possible ways to improve TAAM. Hybrid approaches combining fragmentation with the transfer of atomic densities between chemically similar atoms have been tested. An efficient handling of intermolecular interactions was also introduced for calculations involving fragmentation. When applied in fragHAR (a fragmentation approach for polypeptides) as a replacement for the original approach, it allowed for more efficient calculations. All of the calculations were performed with a locally modified version of Olex2 combined with a development version of discamb2tsc and ORCA. Care was taken to efficiently use the power of multicore processors by simple implementation of load-balancing, which was found to be very important for lowering computational time.
Collapse
Affiliation(s)
- Michał Chodkiewicz
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Sylwia Pawlędzio
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Magdalena Woińska
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| |
Collapse
|
29
|
Newar R, Begum W, Akhtar N, Antil N, Chauhan M, Kumar A, Gupta P, Malik J, Kumar B, Manna K. Mono‐Phosphine Metal‐Organic Framework‐Supported Cobalt Catalyst for Efficient Borylation Reactions. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rajashree Newar
- Indian Institute of Technology Delhi Chemistry HAUZ KHASNew Delhi 110016 New Delhi INDIA
| | - Wahida Begum
- Indian Institute of Technology Delhi Chemistry Hauz KhasNew Delhi 110016 New Delhi INDIA
| | - Naved Akhtar
- Indian Institute of Technology Delhi Chemistry HAUZ KHASNew Delhi 110016 New Delhi INDIA
| | - Neha Antil
- Indian Institute of Technology Delhi Chemistry HAUZ KHASNew Delhi 110016 New Delhi INDIA
| | - Manav Chauhan
- Indian Institute of Technology Delhi Chemistry Hauz KhasIIT DELHI, HAUZ KHAS 110016 New Delhi INDIA
| | - Ajay Kumar
- Indian Institute of Technology Delhi Chemistry HAUZ KHASNew Delhi 110016 New Delhi INDIA
| | - Poorvi Gupta
- Indian Institute of Technology Delhi Chemistry HAUZ KHAS 110016 New Delhi INDIA
| | - Jaideep Malik
- Indian Institute of Technology Roorkee Chemistry Roorkee 247667 Roorkee INDIA
| | - Balendra Kumar
- Sri Venkateswara College Chemistry University of Delhi 110021 New Delhi INDIA
| | - Kuntal Manna
- Indian Institute of Technology Delhi Department of Chemistry CHEMISTRY IIT DELHI, HAUZ KHAS 110016 New Delhi INDIA
| |
Collapse
|
30
|
Hanna S, Bloomer B, Ciccia NR, Butcher TW, Conk RJ, Hartwig JF. Contra-thermodynamic Olefin Isomerization by Chain-Walking Hydroboration and Dehydroboration. Org Lett 2022; 24:1005-1010. [PMID: 35080409 PMCID: PMC8931855 DOI: 10.1021/acs.orglett.1c03124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report a dehydroboration process that can be coupled with chain-walking hydroboration to create a one-pot, contra-thermodynamic, short- or long-range isomerization of internal olefins to terminal olefins. This dehydroboration occurs by a sequence comprising activation with a nucleophile, iodination, and base-promoted elimination. The isomerization proceeds at room temperature without the need for a fluoride base, and the substrate scope of this isomerization is expanded over those of previous isomerizations we have reported with silanes.
Collapse
Affiliation(s)
- Steven Hanna
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Brandon Bloomer
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Nicodemo R Ciccia
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Trevor W Butcher
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richard J Conk
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F Hartwig
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
31
|
Zhao Y, Ge S. Synergistic Hydrocobaltation and Borylcobaltation Enable Regioselective Migratory Triborylation of Unactivated Alkenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yinsong Zhao
- National University of Singapore Department of Chemistry 3 Science Drive 3 117543 Singapore SINGAPORE
| | - Shaozhong Ge
- National University of Singapore Chemistry 3 Science Drive 3 117543 Singapore SINGAPORE
| |
Collapse
|
32
|
Geier SJ, Vogels CM, Melanson JA, Westcott SA. The transition metal-catalysed hydroboration reaction. Chem Soc Rev 2022; 51:8877-8922. [DOI: 10.1039/d2cs00344a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the development of the transition metal-catalysed hydroboration reaction, from its beginnings in the 1980s to more recent developments including earth-abundant catalysts and an ever-expanding array of substrates.
Collapse
Affiliation(s)
- Stephen J. Geier
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Jennifer A. Melanson
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|
33
|
Liu W, Shen Z, Xu S. Synthesis of 1,1-Diboron Alkanes via Diborylation of Unactivated Primary C(sp 3)—H Bonds Enabled by AsPh 3/Iridium Catalysis. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202111032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
Grygorenko OO, Moskvina VS, Kleban I, Hryshchyk OV. Synthesis of saturated and partially saturated heterocyclic boronic derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Zhao P, Huang J, Li J, Zhang K, Yang W, Zhao W. Ligand-controlled cobalt-catalyzed remote hydroboration and alkene isomerization of allylic siloxanes. Chem Commun (Camb) 2021; 58:302-305. [PMID: 34889327 DOI: 10.1039/d1cc05964e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The Co-catalyzed remote hydroboration and alkene isomerization of allylic siloxanes were realized by a ligand-controlled strategy. The remote hydroboration with dcype provided borylethers, while xantphos favored the formation of silyl enol ethers.
Collapse
Affiliation(s)
- Pei Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China.
| | - Jiaxin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China.
| | - Jie Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China.
| | - Kezhuo Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China.
| | - Wen Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China.
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China.
| |
Collapse
|
36
|
Li S, Hu C, Cui X, Zhang J, Liu LL, Wu L. Site‐Fixed Hydroboration of Terminal and Internal Alkenes using BX
3
/
i
Pr
2
NEt**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sida Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chenyang Hu
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Xin Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 China
| | - Jiong Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
37
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
38
|
Abstract
We here present a generally applicable cobalt-catalyzed remote hydroboration of alkenyl amines, providing a practical strategy for the preparation of borylamines and aminoalcohols. This method shows broad substrate scope and good functional group tolerance, tolerating a series of alkenyl amines, including alkyl-alkyl amines, alkyl-aryl amines, aryl-aryl amines, and amides. Of note, this protocol is also compatible with a variety of natural products and drug derivatives. Preliminary mechanistic studies suggest that this transformation involves an iterative chain walking and hydroboration sequence.
Collapse
Affiliation(s)
- Yaqin Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Jiaxin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
39
|
Lee C, Seo H, Jeon J, Hong S. γ-Selective C(sp 3)-H amination via controlled migratory hydroamination. Nat Commun 2021; 12:5657. [PMID: 34580295 PMCID: PMC8476554 DOI: 10.1038/s41467-021-25696-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022] Open
Abstract
Remote functionalization of alkenes via chain walking has generally been limited to C(sp3)-H bonds α and β to polar-functional units, while γ-C(sp3)-H functionalization through controlled alkene transposition is a longstanding challenge. Herein, we describe NiH-catalyzed migratory formal hydroamination of alkenyl amides achieved via chelation-assisted control, whereby various amino groups are installed at the γ-position of aliphatic chains. By tuning olefin isomerization and migratory hydroamination through ligand and directing group optimization, γ-selective amination can be achieved via stabilization of a 6-membered nickellacycle by an 8-aminoquinoline directing group and subsequent interception by an aminating reagent. A range of amines can be installed at the γ-C(sp3)-H bond of unactivated alkenes with varying alkyl chain lengths, enabling late-stage access to value-added γ-aminated products. Moreover, by employing picolinamide-coupled alkene substrates, this approach is further extended to δ-selective amination. The chain-walking mechanism and pathway selectivity are investigated by experimental and computational methods.
Collapse
Affiliation(s)
- Changseok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Huiyeong Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Jinwon Jeon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
40
|
Jankins TC, Martin-Montero R, Cooper P, Martin R, Engle KM. Low-Valent Tungsten Catalysis Enables Site-Selective Isomerization-Hydroboration of Unactivated Alkenes. J Am Chem Soc 2021; 143:14981-14986. [PMID: 34498848 PMCID: PMC8958473 DOI: 10.1021/jacs.1c07162] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A tungsten-catalyzed hydroboration of unactivated alkenes at distal C(sp3)-H bonds aided by native directing groups is described herein. The method is characterized by its simplicity, exquisite regio- and chemoselectivity, and wide substrate scope, offering a complementary site-selectivity pattern to other metal-catalyzed borylation reactions and chain-walking protocols.
Collapse
Affiliation(s)
- Tanner C. Jankins
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| | - Raul Martin-Montero
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Phillippa Cooper
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010, Barcelona, Spain
| | - Keary M. Engle
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, United States
| |
Collapse
|
41
|
Li S, Hu C, Cui X, Zhang J, Liu LL, Wu L. Site-Fixed Hydroboration of Terminal and Internal Alkenes using BX 3 / i Pr 2 NEt*. Angew Chem Int Ed Engl 2021; 60:26238-26245. [PMID: 34536251 DOI: 10.1002/anie.202111978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 12/27/2022]
Abstract
An unprecedented and general hydroboration of alkenes with BX3 (X=Br, Cl) as the boration reagent in the presence of i Pr2 NEt is reported. The addition of i Pr2 NEt not only suppresses alkene polymerization and haloboration side reactions but also provides an "H" source for hydroboration. More importantly, the site-fixed installation of a boryl group at the original position of the internal double bond is readily achieved in contrast to conventional transition-metal-catalyzed hydroboration processes. Further application to the synthesis of 1,n-diborylalkanes (n=3-10) is also demonstrated. Preliminary mechanistic studies reveal a major reaction pathway that involves radical species and operates through a frustrated Lewis pair type single-electron-transfer mechanism.
Collapse
Affiliation(s)
- Sida Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenyang Hu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jiong Zhang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
42
|
He Y, Han B, Zhu S. Terminal-Selective C(sp 3)–H Arylation: NiH-Catalyzed Remote Hydroarylation of Unactivated Internal Olefins. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00819] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuli He
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People’s Republic of China
| | - Bo Han
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People’s Republic of China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People’s Republic of China
| |
Collapse
|
43
|
Wang X, Cui P, Xia C, Wu L. Catalytic Boration of Alkyl Halides with Borane without Hydrodehalogenation Enabled by Titanium Catalyst. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xianjin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Penglei Cui
- College of Science Hebei Agricultural University Baoding 071001 P. R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
44
|
Peng H, Li T, Tian D, Yang H, Xu G, Tang W. Metal-free reduction of unsaturated carbonyls, quinones, and pyridinium salts with tetrahydroxydiboron/water. Org Biomol Chem 2021; 19:4327-4337. [PMID: 33908552 DOI: 10.1039/d1ob00300c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of unsaturated carbonyls, quinones, and pyridinium salts have been effectively reduced to the corresponding saturated carbonyls, dihydroxybenzenes, and hydropyridines in moderate to high yields with tetrahydroxydiboron/water as a mild, convenient, and metal-free reduction system. Deuterium-labeling experiments have revealed this protocol to be an exclusive transfer hydrogenation process from water.
Collapse
Affiliation(s)
- Henian Peng
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China.
| | | | | | | | | | | |
Collapse
|
45
|
Wang L, Lin S, Zhu Y, Ferrante D, Ishak T, Baba Y, Sharma A. α-Hydroxy boron-enabled regioselective access to bifunctional halo-boryl alicyclic ethers and α-halo borons. Chem Commun (Camb) 2021; 57:4564-4567. [PMID: 33955990 DOI: 10.1039/d1cc00336d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
α-Hydroxy borons are an underutilized class of compounds and their only previous application involved oxidation into acylborons. Herein, we describe the synthesis of functionalized olefinic α-hydroxy borons and their utility to enable a novel and regioselective route to hitherto unknown bifunctional halo-boryl tetrahydrofurans/tetrahydropyrans and α-halo MIDA boronates. The orthogonally functionalized alicyclic ethers provided a building block-based approach for diversification of the tetrahydrofuran core.
Collapse
Affiliation(s)
- Lucia Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Wang X, Cui P, Xia C, Wu L. Catalytic Boration of Alkyl Halides with Borane without Hydrodehalogenation Enabled by Titanium Catalyst. Angew Chem Int Ed Engl 2021; 60:12298-12303. [DOI: 10.1002/anie.202100569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Xianjin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Penglei Cui
- College of Science Hebei Agricultural University Baoding 071001 P. R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
47
|
Liu C, Yuan J, Zhang Z, Gridnev ID, Zhang W. Asymmetric Hydroacylation Involving Alkene Isomerization for the Construction of C
3
‐Chirogenic Center. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jing Yuan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhenfeng Zhang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Ilya D. Gridnev
- Department of Chemistry Graduate School of Science Tohoku University Aramaki 3–6, Aoba-ku Sendai 980-8578 Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontier Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
48
|
Poitras AM, Oliemuller LK, Hatzis GP, Thomas CM. Highly Selective Hydroboration of Terminal Alkenes Catalyzed by a Cobalt Pincer Complex Featuring a Central Reactive N-Heterocyclic Phosphido Fragment. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Andrew M. Poitras
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Leah K. Oliemuller
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Gillian P. Hatzis
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Christine M. Thomas
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
49
|
Woof CR, Durand DJ, Fey N, Richards E, Webster RL. Iron Catalyzed Double Bond Isomerization: Evidence for an Fe I /Fe III Catalytic Cycle. Chemistry 2021; 27:5972-5977. [PMID: 33492679 PMCID: PMC8048803 DOI: 10.1002/chem.202004980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/19/2021] [Indexed: 12/21/2022]
Abstract
Iron-catalyzed isomerization of alkenes is reported using an iron(II) β-diketiminate pre-catalyst. The reaction proceeds with a catalytic amount of a hydride source, such as pinacol borane (HBpin) or ammonia borane (H3 N⋅BH3 ). Reactivity with both allyl arenes and aliphatic alkenes has been studied. The catalytic mechanism was investigated by a variety of means, including deuteration studies, Density Functional Theory (DFT) and Electron Paramagnetic Resonance (EPR) spectroscopy. The data obtained support a pre-catalyst activation step that gives access to an η2 -coordinated alkene FeI complex, followed by oxidative addition of the alkene to give an FeIII intermediate, which then undergoes reductive elimination to allow release of the isomerization product.
Collapse
Affiliation(s)
- Callum R. Woof
- School of ChemistryUniversity of BathClaverton DownBathBA2 7AYUK
| | - Derek J. Durand
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Natalie Fey
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
| | - Emma Richards
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Ruth L. Webster
- School of ChemistryUniversity of BathClaverton DownBathBA2 7AYUK
| |
Collapse
|
50
|
Liu J, Gong H, Zhu S. BH
3
⋅ Me
2
S: An Alternative Hydride Source for NiH‐Catalyzed Reductive Migratory Hydroarylation and Hydroalkenylation of Alkenes. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiandong Liu
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry Shanghai University Shanghai 200444 China
| | - Hegui Gong
- School of Materials Science and Engineering, Center for Supramolecular Chemistry and Catalysis, Department of Chemistry Shanghai University Shanghai 200444 China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|