1
|
Ying Y, Tu S, Ni J, Lu X, Hu X, Lei P, Li X, Wang Y, Jin G, Wang H. Secondary metabolites from Aspergillus terreus F6-3, a marine fungus associated with Johnius belengerii. Fitoterapia 2023; 170:105662. [PMID: 37648028 DOI: 10.1016/j.fitote.2023.105662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Two new terrein derivatives asperterreinones A-B (1-2), one new octahydrocoumarin derivative (±)-asperterreinin A (6), along with seventeen known compounds, were isolated from Aspergillus terreus F6-3, a marine fungus associated with Johnius belengerii. The structures of 1, 2, and 6 were established on the basis of 1D and 2D NMR, mass spectroscopy, comparative electronic circular dichroism (ECD) spectra analysis, density functional theory calculation of 13C NMR, and DP4+ probability analysis. Among all the isolates, eurylene (7), a constituent of the Malaysian medicinal plant Eurycoma longifolia, was obtained from a microbial source for first time. In the in vitro bioassay, 11 and 13 showed potent inhibitory activity against the Escherichia coli β-glucuronidase (EcGUS) with IC50 values of 27.75 ± 0.73 and 17.73 ± 0.81 μM, respectively. It was the first time that questinol (11) and (±)-aspertertone B (13) were reported as potent EcGUS inhibitors.
Collapse
Affiliation(s)
- Youmin Ying
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Shubao Tu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiayue Ni
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xuejun Lu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoyan Hu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Panyi Lei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xingnuo Li
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ying Wang
- School of Life Science and Technology, China Pharmaceutical University, 211198 Nanjing, China
| | - Guoqian Jin
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment and Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Michaliski LF, Ióca LP, Oliveira LS, Crnkovic CM, Takaki M, Freire VF, Berlinck RGS. Improvement of Targeted Fungi Secondary Metabolite Production Using a Systematic Experimental Design and Chemometrics Analysis. Methods Protoc 2023; 6:77. [PMID: 37736960 PMCID: PMC10514814 DOI: 10.3390/mps6050077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/23/2023] Open
Abstract
Fungi are well-known producers of chemically diverse and biologically active secondary metabolites. However, their production yields through fermentation may hamper structural analysis and biological activity downstream investigations. Herein, a systematic experimental design that varies multiple cultivation parameters, followed by chemometrics analysis on HPLC-UV-MS or UHPLC-HRMS/MS data, is presented to enhance the production yield of fungal natural products. The overall procedure typically requires 3-4 months of work when first developed, and up to 3 months as a routine procedure.
Collapse
Affiliation(s)
- Lamonielli F. Michaliski
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos CEP 13560-970, SP, Brazil; (L.F.M.); (L.P.I.); (L.S.O.); (M.T.); (V.F.F.)
| | - Laura P. Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos CEP 13560-970, SP, Brazil; (L.F.M.); (L.P.I.); (L.S.O.); (M.T.); (V.F.F.)
| | - Leandro S. Oliveira
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos CEP 13560-970, SP, Brazil; (L.F.M.); (L.P.I.); (L.S.O.); (M.T.); (V.F.F.)
| | - Camila M. Crnkovic
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo CEP 05508-000, SP, Brazil;
| | - Mirelle Takaki
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos CEP 13560-970, SP, Brazil; (L.F.M.); (L.P.I.); (L.S.O.); (M.T.); (V.F.F.)
| | - Vitor F. Freire
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos CEP 13560-970, SP, Brazil; (L.F.M.); (L.P.I.); (L.S.O.); (M.T.); (V.F.F.)
| | - Roberto G. S. Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos CEP 13560-970, SP, Brazil; (L.F.M.); (L.P.I.); (L.S.O.); (M.T.); (V.F.F.)
| |
Collapse
|
3
|
da Silva Oliveira L, Crnkovic CM, de Amorim MR, Navarro-Vázquez A, Paz TA, Freire VF, Takaki M, Venâncio T, Ferreira AG, de Freitas Saito R, Chammas R, Berlinck RGS. Phomactinine, the First Nitrogen-Bearing Phomactin, Produced by Biatriospora sp. CBMAI 1333. JOURNAL OF NATURAL PRODUCTS 2023; 86:2065-2072. [PMID: 37490470 DOI: 10.1021/acs.jnatprod.3c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Metabolomics analyses and improvement of growth conditions were applied toward diversification of phomactin terpenoids by the fungus Biatriospora sp. CBMAI 1333. Visualization of molecular networking results on Gephi assisted the observation of phomactin diversification and guided the isolation of new phomactin variants by applying a modified version of chemometrics based on a fractional factorial design. Consequentially, the first nitrogen-bearing phomactin, phomactinine (1), with a new rearranged carbon skeleton, was isolated and identified. The strategy combining metabolomics and chemometrics can be extended to include bioassay potency, structure novelty, and metabolic diversification connected or not to genomic analyses.
Collapse
Affiliation(s)
- Leandro da Silva Oliveira
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos, SP Brazil
| | - Camila M Crnkovic
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos, SP Brazil
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP Brazil
| | - Marcelo R de Amorim
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos, SP Brazil
| | - Armando Navarro-Vázquez
- Departamento de Química Fundamental, Universidade Federal de Pernambuco Cidade Universitária CEP, 50.740-540 Recife, PE Brazil
| | - Tiago A Paz
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, CEP 14040-903, Ribeirão Preto, SP Brazil
| | - Vitor F Freire
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos, SP Brazil
| | - Mirelle Takaki
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos, SP Brazil
| | - Tiago Venâncio
- Departamento de Química, Universidade Federal de São Carlos, CEP 13565-905, São Carlos, SP Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, CEP 13565-905, São Carlos, SP Brazil
| | - Renata de Freitas Saito
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Avenida Dr. Arnaldo, 251 - Cerqueira César, 01246-000, São Paulo, SP Brazil
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, Avenida Dr. Arnaldo, 251 - Cerqueira César, 01246-000, São Paulo, SP Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, C.P. 780, CEP 13560-970, São Carlos, SP Brazil
| |
Collapse
|
4
|
Hou A, Dickschat JS. Labelling studies in the biosynthesis of polyketides and non-ribosomal peptides. Nat Prod Rep 2023; 40:470-499. [PMID: 36484402 DOI: 10.1039/d2np00071g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 2015 to 2022In this review, we discuss the recent advances in the use of isotopically labelled compounds to investigate the biosynthesis of polyketides, non-ribosomally synthesised peptides, and their hybrids. Also, we highlight the use of isotopes in the elucidation of their structures and investigation of enzyme mechanisms. The biosynthetic pathways of selected examples are presented in detail to reveal the principles of the discussed labelling experiments. The presented examples demonstrate that the application of isotopically labelled compounds is still the state of the art and can provide valuable information for the biosynthesis of natural products.
Collapse
Affiliation(s)
- Anwei Hou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, West 7th Avenue No. 32, 300308 Tianjin, China.,Institute of Microbiology, Jiangxi Academy of Sciences, Changdong Road No. 7777, 330096 Nanchang, China
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
5
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
6
|
Chen Y, Xu LC, Liu S, Zhang ZX, Cao GY. Halometabolites isolated from the marine-derived fungi with potent pharmacological activities. Front Microbiol 2022; 13:1038487. [PMID: 36267169 PMCID: PMC9576957 DOI: 10.3389/fmicb.2022.1038487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Halometabolites, usually produced in marine environment, are an important group of natural halogenated compounds with rich biological functionality and drugability and thus play a crucial role in pharmaceutical and/or agricultural applications. In the exploration of novel halometabolites from marine microorganisms, the growing number of halogenated compounds makes it necessary to fully present these metabolites with diverse structures and considerable bioactivities. This review particularly focuses on the chemodiversity and bioactivities of halometabolites from marine-derived fungi. As a result, a total of 145 naturally halogenated compounds, including 118 chlorinated, 23 brominated, and four iodinated compounds, were isolated from 17 genera of marine-derived fungi. Interestingly, many of halometabolites, especially for the brominated and iodinated compounds, are generated by the substitution of bromide and iodide ions for the chloride ion in cultivation process. In addition, these compounds possess diverse structural types, which are classified into polyketides (62.7%), phenols (16.6%), alkaloids (14.5%), and terpenoids (6.2%). Their cytotoxic, antibacterial, and anti-inflammatory activities indicate the high potential of these halogenated compounds as lead compounds for drug discovery.
Collapse
Affiliation(s)
- Yu Chen
- Department of General Surgery, Suqian First Hospital, Suqian, China
| | - Lian-Cheng Xu
- Department of General Surgery, Suqian First Hospital, Suqian, China
| | - Shan Liu
- Department of General Surgery, Suqian First Hospital, Suqian, China
| | - Zi-Xiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Guan-Yi Cao, ; Zi-Xiang Zhang,
| | - Guan-Yi Cao
- Department of General Surgery, Suqian First Hospital, Suqian, China
- *Correspondence: Guan-Yi Cao, ; Zi-Xiang Zhang,
| |
Collapse
|
7
|
Liu M, Zhang X, Li G. Structural and Biological Insights into the Hot‐spot Marine Natural Products Reported from 2012 to 2021. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingyu Liu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology Shandong University Qingdao 266237 China
| | - Guoqiang Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy Ocean University of China Qingdao 266003 China
- Laboratory of Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology Qingdao 266235 China
| |
Collapse
|
8
|
Wang J, Pang X, Chen C, Gao C, Zhou X, Liu Y, Luo X. Chemistry, Biosynthesis, and Biological Activity of Halogenated Compounds Produced by Marine Microorganisms. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jiamin Wang
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Xiaoyan Pang
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
| | - Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Chenghai Gao
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning 530200 China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio‐resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology Chinese Academy of Sciences Guangzhou 510301 China
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning 530200 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458 China
- University of Chinese Academy of Sciences 19 Yuquan Road Beijing 100049 China
| | - Xiaowei Luo
- Institute of Marine Drugs Guangxi University of Chinese Medicine Nanning 530200 China
| |
Collapse
|
9
|
Berlinck RGS, Crnkovic CM, Gubiani JR, Bernardi DI, Ióca LP, Quintana-Bulla JI. The isolation of water-soluble natural products - challenges, strategies and perspectives. Nat Prod Rep 2021; 39:596-669. [PMID: 34647117 DOI: 10.1039/d1np00037c] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Covering period: up to 2019Water-soluble natural products constitute a relevant group of secondary metabolites notably known for presenting potent biological activities. Examples are aminoglycosides, β-lactam antibiotics, saponins of both terrestrial and marine origin, and marine toxins. Although extensively investigated in the past, particularly during the golden age of antibiotics, hydrophilic fractions have been less scrutinized during the last few decades. This review addresses the possible reasons on why water-soluble metabolites are now under investigated and describes approaches and strategies for the isolation of these natural compounds. It presents examples of several classes of hydrosoluble natural products and how they have been isolated. Novel stationary phases and chromatography techniques are also reviewed, providing a perspective towards a renaissance in the investigation of water-soluble natural products.
Collapse
Affiliation(s)
- Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Camila M Crnkovic
- Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Juliana R Gubiani
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Darlon I Bernardi
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| | - Jairo I Quintana-Bulla
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
10
|
Kahlert L, Bernardi D, Hauser M, Ióca LP, Berlinck RGS, Skellam EJ, Cox RJ. Early Oxidative Transformations During the Biosynthesis of Terrein and Related Natural Products. Chemistry 2021; 27:11895-11903. [PMID: 34114710 PMCID: PMC8453496 DOI: 10.1002/chem.202101447] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 01/09/2023]
Abstract
The mycotoxin terrein is derived from the C10‐precursor 6‐hydroxymellein (6‐HM) via an oxidative ring contraction. Although the corresponding biosynthetic gene cluster (BGC) has been identified, details of the enzymatic oxidative transformations are lacking. Combining heterologous expression and in vitro studies we show that the flavin‐dependent monooxygenase (FMO) TerC catalyzes the initial oxidative decarboxylation of 6‐HM. The reactive intermediate is further hydroxylated by the second FMO TerD to yield a highly oxygenated aromatic species, but further reconstitution of the pathway was hampered. A related BGC was identified in the marine‐derived Roussoella sp. DLM33 and confirmed by heterologous expression. These studies demonstrate that the biosynthetic pathways of terrein and related (polychlorinated) congeners diverge after oxidative decarboxylation of the lactone precursor that is catalyzed by a conserved FMO and further indicate that early dehydration of the side chain is an essential step.
Collapse
Affiliation(s)
- Lukas Kahlert
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Darlon Bernardi
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany.,Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP, 13560-970, São Carlos, SP, Brazil
| | - Maurice Hauser
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - Laura P Ióca
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP, 13560-970, São Carlos, SP, Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP, 13560-970, São Carlos, SP, Brazil
| | - Elizabeth J Skellam
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany.,Department of Chemistry & BioDiscovery Institute, University of North Texas, 1155 Union Circle 305220, Denton, Texas, 76203, USA
| | - Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover, Schneiderberg 38, 30167, Hannover, Germany
| |
Collapse
|
11
|
Kahlert L, Villanueva M, Cox RJ, Skellam EJ. Biosynthesis of 6-Hydroxymellein Requires a Collaborating Polyketide Synthase-like Enzyme. Angew Chem Int Ed Engl 2021; 60:11423-11429. [PMID: 33661567 PMCID: PMC8251887 DOI: 10.1002/anie.202100969] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/22/2021] [Indexed: 12/12/2022]
Abstract
The polyketide synthase (PKS)-like protein TerB, consisting of inactive dehydratase, inactive C-methyltransferase, and functional ketoreductase domains collaborates with the iterative non reducing PKS TerA to produce 6-hydroxymellein, a key pathway intermediate during the biosynthesis of various fungal natural products. The catalytically inactive dehydratase domain of TerB appears to mediate productive interactions with TerA, demonstrating a new mode of trans-interaction between iterative PKS components.
Collapse
Affiliation(s)
- Lukas Kahlert
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Miranda Villanueva
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
- Current address: The Molecular Biology InstituteUCLALos AngelesCA90095-1570USA
| | - Russell J. Cox
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Elizabeth J. Skellam
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
- Current address: Department of Chemistry & BioDiscovery InstituteUniversity of North Texas1155 Union Circle 305220DentonTX76203USA
| |
Collapse
|
12
|
Kahlert L, Villanueva M, Cox RJ, Skellam EJ. Biosynthesis of 6‐Hydroxymellein Requires a Collaborating Polyketide Synthase‐like Enzyme. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukas Kahlert
- Institute for Organic Chemistry and BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Germany
| | - Miranda Villanueva
- Institute for Organic Chemistry and BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Germany
- Current address: The Molecular Biology Institute UCLA Los Angeles CA 90095-1570 USA
| | - Russell J. Cox
- Institute for Organic Chemistry and BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Germany
| | - Elizabeth J. Skellam
- Institute for Organic Chemistry and BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Germany
- Current address: Department of Chemistry & BioDiscovery Institute University of North Texas 1155 Union Circle 305220 Denton TX 76203 USA
| |
Collapse
|
13
|
Sommart U, Rukachaisirikul V, Saithong S, Phongpaichit S, Sakayaroj J, Preedanon S, Chainok K, Khunrong T. 2-Oxaspiro[4.5]decane and α-pyrenocine derivatives from the endophytic fungus Roussoella sp. PSU-H51. Nat Prod Res 2021; 36:4911-4920. [PMID: 33853446 DOI: 10.1080/14786419.2021.1910692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
One new 2-oxaspiro[4.5]decane, roussoellide, and one new α-pyrenocine, 2',3'-dihydropyrenocine A, together with nine known compounds including known arthropsolide A, and pyrenocines A and E, were obtained from the culture broth of the endophytic fungus Roussoella sp. Their structures were determined using spectroscopic data. The absolute configuration of known arthropsolide A was assigned on the basis of X-ray diffraction data using Cu Kα radiation. Known pyrenocine A displayed weak cytotoxic activity against breast cancer (MCF-7) cells with an IC50 value of 27.1 µM and weak antifungal activity against Microsporum gypseum SH-MU-4 with an MIC value of 615.2 µM.
Collapse
Affiliation(s)
- Ubonta Sommart
- Faculty of Science and Technology, Suratthani Rajabhat University, Surat Thani, Thailand
| | - Vatcharin Rukachaisirikul
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Saowanit Saithong
- Division of Physical Science and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Souwalak Phongpaichit
- Faculty of Science, Division of Biological Science, Prince of Songkla University, Hat Yai, Thailand
| | - Jariya Sakayaroj
- School of Science, Walailak University, Nakhonsithammarat, Thailand
| | - Sita Preedanon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Klong Luang, Thailand
| | - Kittipong Chainok
- Faculty of Science and Technology, Material and Textile Technology, Thammasat University, Khlong Luang, Thailand
| | - Teerayut Khunrong
- Scientific Laboratory & Equipment Center, Prince of Songkla University, Surat Thani, Thailand
| |
Collapse
|
14
|
Wang C, Lu H, Lan J, Zaman KHA, Cao S. A Review: Halogenated Compounds from Marine Fungi. Molecules 2021; 26:458. [PMID: 33467200 PMCID: PMC7830638 DOI: 10.3390/molecules26020458] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Marine fungi produce many halogenated metabolites with a variety of structures, from acyclic entities with a simple linear chain to multifaceted polycyclic molecules. Over the past few decades, their pharmaceutical and medical application have been explored and still the door is kept open due to the need of new drugs from relatively underexplored sources. Biological properties of halogenated compounds such as anticancer, antiviral, antibacterial, anti-inflammatory, antifungal, antifouling, and insecticidal activity have been investigated. This review describes the chemical structures and biological activities of 217 halogenated compounds derived mainly from Penicillium and Aspergillus marine fungal strains reported from 1994 to 2019.
Collapse
Affiliation(s)
- Cong Wang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China; (H.L.); (J.L.)
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i, Hilo, HI 96720, USA;
| | - Huanyun Lu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China; (H.L.); (J.L.)
| | - Jianzhou Lan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, China; (H.L.); (J.L.)
| | - KH Ahammad Zaman
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i, Hilo, HI 96720, USA;
| | - Shugeng Cao
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai’i, Hilo, HI 96720, USA;
| |
Collapse
|
15
|
Qin Z, Devine R, Booth TJ, Farrar EHE, Grayson MN, Hutchings MI, Wilkinson B. Formicamycin biosynthesis involves a unique reductive ring contraction. Chem Sci 2020; 11:8125-8131. [PMID: 33033611 PMCID: PMC7504897 DOI: 10.1039/d0sc01712d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/08/2020] [Indexed: 11/24/2022] Open
Abstract
Using a combination of biomimetic chemistry and molecular genetics we demonstrate that formicamycin biosynthesis proceeds via reductive Favorskii-like reaction.
Fasamycin natural products are biosynthetic precursors of the formicamycins. Both groups of compounds are polyketide natural products that exhibit potent antibacterial activity despite displaying different three-dimensional topologies. We show here that transformation of fasamycin into formicamycin metabolites requires two gene products and occurs via a novel two-step ring expansion-ring contraction pathway. Deletion of forX, encoding a flavin dependent monooxygenase, abolished formicamycin production and leads to accumulation of fasamycin E. Deletion of the adjacent gene forY, encoding a flavin dependent oxidoreductase, also abolished formicamycin biosynthesis and led to the accumulation of new lactone metabolites that represent Baeyer–Villiger oxidation products of the fasamycins. These results identify ForX as a Baeyer–Villiger monooxygenase capable of dearomatizing ring C of the fasamycins. Through in vivo cross feeding and biomimetic semi-synthesis experiments we showed that these lactone products represent biosynthetic intermediates that are reduced to formicamycins in a unique reductive ring contraction reaction catalyzed by ForY.
Collapse
Affiliation(s)
- Zhiwei Qin
- Department of Molecular Microbiology , John Innes Centre , Norwich Research Park , Norwich , NR4 7UH , UK .
| | - Rebecca Devine
- School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK .
| | - Thomas J Booth
- Department of Molecular Microbiology , John Innes Centre , Norwich Research Park , Norwich , NR4 7UH , UK .
| | - Elliot H E Farrar
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , UK
| | - Matthew N Grayson
- Department of Chemistry , University of Bath , Claverton Down , Bath BA2 7AY , UK
| | - Matthew I Hutchings
- Department of Molecular Microbiology , John Innes Centre , Norwich Research Park , Norwich , NR4 7UH , UK . .,School of Biological Sciences , University of East Anglia , Norwich Research Park , Norwich , NR4 7TJ , UK .
| | - Barrie Wilkinson
- Department of Molecular Microbiology , John Innes Centre , Norwich Research Park , Norwich , NR4 7UH , UK .
| |
Collapse
|
16
|
Salib MN, Jamison MT, Molinski TF. Bromo-spiroisoxazoline Alkaloids, Including an Isoserine Peptide, from the Caribbean Marine Sponge Aplysina lacunosa. JOURNAL OF NATURAL PRODUCTS 2020; 83:1532-1540. [PMID: 32357010 DOI: 10.1021/acs.jnatprod.9b01286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Three new bromotyrosine spiroisoxazoline alkaloids, lacunosins A and B (1 and 2) and desaminopurealin (3), were isolated from a MeOH extract of the marine sponge Aplysina lacunosa that showed modest α-chymotrypsin inhibitory activity. The structures of 1-3 share the spirocyclohexadienyl-isoxazoline ring system found in purealidin-R and several other Verongid sponge secondary metabolites. Compounds 1 and 2 are coupled to a glycine and an isoserine methyl ester, respectively. Alkaloid 3 is linked, contiguously, to an O-1-aminopropyl 3,5-dibromotyrosyl ether and, finally, to histamine through an amide bond. The planar structures of all three compounds were obtained from analysis of MS and 1D and 2D NMR data. The absolute configuration of the SIO unit of 1-3 was assigned by electronic circular dichroism (ECD). The isoserine amino acid residue in 2 was found to be a 1:1 mixture of epimers using a new Marfey's type reagent, derived from Trp-NH2. Allylic O-naphthoylation of the SIO subunit enhances the ECD spectrum of SIOs and improves discrimination of enantiomorphs. A unifying hypothesis is proposed that links the biosynthesis of several of the new compounds with previously reported analogues.
Collapse
|
17
|
Liu Z, Zhao JY, Sun SF, Li Y, Liu YB. Fungi: outstanding source of novel chemical scaffolds. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:99-120. [PMID: 30047298 DOI: 10.1080/10286020.2018.1488833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
A large number of remarkable studies on the secondary metabolites of fungi have been conducted in recent years. This review gives an overview of one hundred and sixty-seven molecules with novel skeletons and their bioactivities that have been reported in seventy-nine articles published from 2013 to 2017. Our statistical data showed that endophytic fungi and marine-derived fungi are the major sources of novel bioactive secondary metabolites.
Collapse
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing-Yi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Sen-Feng Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yun-Bao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
18
|
Ugai T, Minami A, Tanaka S, Ozaki T, Liu C, Shigemori H, Hashimoto M, Oikawa H. Biosynthetic Machinery of 6-Hydroxymellein Derivatives Leading to Cyclohelminthols and Palmaenones. Chembiochem 2019; 21:360-367. [PMID: 31298454 DOI: 10.1002/cbic.201900404] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Indexed: 01/04/2023]
Abstract
Oxygenated cyclopentene systems are unique structural motifs found in fungal polyketides such as terrein, cyclohelminthols, and palmaenones. Here we report the identification of the biosynthetic gene clusters for cyclohelminthols and palmaenones and the functional characterization of the polyketide synthases and halogenases involved in the construction of 6-hydroxymellein derivatives. Heterologous expression in Aspergillus oryzae demonstrated that 6-hydroxymellein is a common biosynthetic intermediate and that chlorination occurs in the early stages of its products' biosynthesis. This was further confirmed by in vitro enzymatic reactions conducted in the presence of recombinant proteins. Plausible means of biogenesis of fungal polyketides from 6-hydroxymellein derivatives, additionally supported by the reported labeling patterns of terrein and structurally related fungal polyketides, are also discussed. This study sets the stage for elucidation of the biosynthetic machinery of fungal polyketides of this type.
Collapse
Affiliation(s)
- Takahiro Ugai
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Shizuya Tanaka
- Faculty of Agriculture and Life Science, Hirosaki University, 3-Bunkyo-cho, Hirosaki, 036-8561, Japan
| | - Taro Ozaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Chengwei Liu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Hideyuki Shigemori
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1-Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Masaru Hashimoto
- Faculty of Agriculture and Life Science, Hirosaki University, 3-Bunkyo-cho, Hirosaki, 036-8561, Japan
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
19
|
Biofilm Inhibitory Abscisic Acid Derivatives from the Plant-Associated Dothideomycete Fungus, Roussoella sp. Molecules 2018; 23:molecules23092190. [PMID: 30200229 PMCID: PMC6225182 DOI: 10.3390/molecules23092190] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 12/19/2022] Open
Abstract
Roussoella species are well recorded from both monocotyledons and dicotyledons. As part of a research program to discover biologically active compounds from plant-associated Dothideomycetes in Thailand, the strain Roussoella sp. (MFLUCC 17-2059), which represents an undescribed species, was isolated from Clematis subumbellata Kurz, fermented in yeast-malt medium and explored for its secondary metabolite production. Bioassay-guided fractionation of the crude extract yielded the new abscisic acid derivative, roussoellenic acid (1), along with pestabacillin B (2), a related congener, and the cyclodipeptide, cyclo(S-Pro-S-Ile) (3). The structure of 1 was determined by 2D NMR spectroscopy and HR-ESIMS data analysis. Compounds 1 and 2 showed inhibitory activity on biofilm formation by Staphylococcus aureus. The biofilm formation of S. aureus was reduced to 34% at 16 µg/mL by roussoellenic acid (1), while pestabacillin B (2) only showed 36% inhibition at 256 µg/mL. In addition, compound 1 also had weak cytotoxic effects on L929 murine fibroblasts and human KB3-1 cancer cells.
Collapse
|
20
|
Metabolites of the Marine Fungus Aspergillus candidus KMM 4676 Associated with a Kuril Colonial Ascidian. Chem Nat Compd 2017. [DOI: 10.1007/s10600-017-2108-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Abstract
Covering: 2015. Previous review: Nat. Prod. Rep., 2016, 33, 382-431This review covers the literature published in 2015 for marine natural products (MNPs), with 1220 citations (792 for the period January to December 2015) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1340 in 429 papers for 2015), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Murray H G Munro
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
22
|
de Castro MV, Ióca LP, Williams DE, Costa BZ, Mizuno CM, Santos MFC, de Jesus K, Ferreira ÉLF, Seleghim MHR, Sette LD, Pereira Filho ER, Ferreira AG, Gonçalves NS, Santos RA, Patrick BO, Andersen RJ, Berlinck RGS. Condensation of Macrocyclic Polyketides Produced by Penicillium sp. DRF2 with Mercaptopyruvate Represents a New Fungal Detoxification Pathway. JOURNAL OF NATURAL PRODUCTS 2016; 79:1668-1678. [PMID: 27227682 DOI: 10.1021/acs.jnatprod.6b00295] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Application of a refined procedure of experimental design and chemometric analysis to improve the production of curvularin-related polyketides by a marine-derived Penicillium sp. DRF2 resulted in the isolation and identification of cyclothiocurvularins 6-8 and cyclosulfoxicurvularins 10 and 11, novel curvularins condensed with a mercaptolactate residue. Two additional new curvularins, 3 and 4, are also reported. The structures of the sulfur-bearing curvularins were unambiguously established by analysis of spectroscopic data and by X-ray diffraction analysis. Analysis of stable isotope feeding experiments with [U-(13)C3(15)N]-l-cysteine confirmed the presence of the 2-hydroxy-3-mercaptopropanoic acid residue in 6-8 and the oxidized sulfoxide in 10 and 11. Cyclothiocurvularins A (6) and B (7) are formed by spontaneous reaction between 10,11-dehydrocurvularin (2) and mercaptopyruvate (12) obtained by transamination of cysteine. High ratios of [U-(13)C3(15)N]-l-cysteine incorporation into cyclothiocurvularin B (7), the isolation of two diastereomers of cyclothiocurvularins, the lack of cytotoxicity of cyclothiocurvularin B (7) and its methyl ester (8), and the spontaneous formation of cyclothiocurvularins from 10,11-dehydrocurvularin and mercaptopyruvate provide evidence that the formation of cyclothiocurvularins may well correspond to a 10,11-dehydrocurvularin detoxification process by Penicillium sp. DRF2.
Collapse
Affiliation(s)
- Marcos V de Castro
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Laura P Ióca
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - David E Williams
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Bruna Z Costa
- Instituto de Quimica, Universidade Estadual de Campinas , Caixa Postal 6154, CEP 13083-970, Campinas, SP, Brazil
| | - Carolina M Mizuno
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos , São Carlos, SP, Brazil
| | - Mario F C Santos
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Karen de Jesus
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Éverton L F Ferreira
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Mirna H R Seleghim
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos , São Carlos, SP, Brazil
| | - Lara D Sette
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho" , Campus Rio Claro, Avenida 24-A, 1515, Rio Claro, SP, Brazil
| | - Edenir R Pereira Filho
- Departamento de Química, Universidade Federal de São Carlos , CEP 13565-905, São Carlos, SP, Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos , CEP 13565-905, São Carlos, SP, Brazil
| | - Natália S Gonçalves
- Laboratório de Genética e Biologia Molecular, Universidade de Franca , Avenida Dr. Armando Salles Oliveira, 201. Pq. Universitário, Franca, SP, Brazil
| | - Raquel A Santos
- Laboratório de Genética e Biologia Molecular, Universidade de Franca , Avenida Dr. Armando Salles Oliveira, 201. Pq. Universitário, Franca, SP, Brazil
| | - Brian O Patrick
- Department of Chemistry, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Raymond J Andersen
- Departments of Chemistry and Earth, Ocean & Atmospheric Sciences, University of British Columbia , Vancouver, BC V6T 1Z1, Canada
| | - Roberto G S Berlinck
- Instituto de Quimica de São Carlos, Universidade de São Paulo , CP 780, CEP 13560-970, São Carlos, SP, Brazil
| |
Collapse
|
23
|
Honmura Y, Uesugi S, Maeda H, Tanaka K, Nehira T, Kimura KI, Okazaki M, Hashimoto M. Isolation, absolute structures, and biological properties of cyclohelminthols I–IV from Helminthosporium velutinum yone96. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.01.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Abstract
A personal selection of 33 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as pseudellone A from Pseudallescheria ellipsoidea.
Collapse
|