1
|
Williams K, Szwalbe AJ, de Mattos-Shipley KMJ, Bailey AM, Cox RJ, Willis CL. Maleidride biosynthesis - construction of dimeric anhydrides - more than just heads or tails. Nat Prod Rep 2023; 40:128-157. [PMID: 36129067 PMCID: PMC9890510 DOI: 10.1039/d2np00041e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Covering: up to early 2022Maleidrides are a family of polyketide-based dimeric natural products isolated from fungi. Many maleidrides possess significant bioactivities, making them attractive pharmaceutical or agrochemical lead compounds. Their unusual biosynthetic pathways have fascinated scientists for decades, with recent advances in our bioinformatic and enzymatic understanding providing further insights into their construction. However, many intriguing questions remain, including exactly how the enzymatic dimerisation, which creates the diverse core structure of the maleidrides, is controlled. This review will explore the literature from the initial isolation of maleidride compounds in the 1930s, through the first full structural elucidation in the 1960s, to the most recent in vivo, in vitro, and in silico analyses.
Collapse
Affiliation(s)
- Katherine Williams
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol BS8 1TQ, UK.
| | | | | | - Andy M. Bailey
- School of Biological Sciences, Life Sciences Building, University of Bristol24 Tyndall AveBristol BS8 1TQUK
| | - Russell J. Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of HannoverSchneiderberg 3830167HannoverGermany
| | | |
Collapse
|
2
|
Yamamoto S, Matsuyama T, Ozaki T, Takino J, Sato H, Uchiyama M, Minami A, Oikawa H. Elucidation of Late-Stage Biosynthesis of Phomoidride: Proposal of Cyclization Mechanism Affording Characteristic Nine-Membered Ring of Fungal Dimeric Anhydride. J Am Chem Soc 2022; 144:20998-21004. [DOI: 10.1021/jacs.2c09308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Shintaro Yamamoto
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Taro Matsuyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taro Ozaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Junya Takino
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hajime Sato
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Innovation Center of Marine Biotechnology and Pharmaceuticals, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, Guangdong, China
| |
Collapse
|
3
|
Skellam E. Biosynthesis of fungal polyketides by collaborating and trans-acting enzymes. Nat Prod Rep 2022; 39:754-783. [PMID: 34842268 DOI: 10.1039/d1np00056j] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: 1999 up to 2021Fungal polyketides encompass a range of structurally diverse molecules with a wide variety of biological activities. The giant multifunctional enzymes that synthesize polyketide backbones remain enigmatic, as do many of the tailoring enzymes involved in functional modifications. Recent advances in elucidating biosynthetic gene clusters (BGCs) have revealed numerous examples of fungal polyketide synthases that require the action of collaborating enzymes to synthesize the carbon backbone. This review will discuss collaborating and trans-acting enzymes involved in loading, extending, and releasing polyketide intermediates from fungal polyketide synthases, and additional modifications introduced by trans-acting enzymes demonstrating the complexity encountered when investigating natural product biosynthesis in fungi.
Collapse
Affiliation(s)
- Elizabeth Skellam
- Department of Chemistry, BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA.
| |
Collapse
|
4
|
Williams K, de Mattos-Shipley KMJ, Willis CL, Bailey AM. In silico analyses of maleidride biosynthetic gene clusters. Fungal Biol Biotechnol 2022; 9:2. [PMID: 35177129 PMCID: PMC8851701 DOI: 10.1186/s40694-022-00132-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/23/2022] [Indexed: 01/09/2023] Open
Abstract
Maleidrides are a family of structurally related fungal natural products, many of which possess diverse, potent bioactivities. Previous identification of several maleidride biosynthetic gene clusters, and subsequent experimental work, has determined the 'core' set of genes required to construct the characteristic medium-sized alicyclic ring with maleic anhydride moieties. Through genome mining, this work has used these core genes to discover ten entirely novel putative maleidride biosynthetic gene clusters, amongst both publicly available genomes, and encoded within the genome of the previously un-sequenced epiheveadride producer Wicklowia aquatica CBS 125634. We have undertaken phylogenetic analyses and comparative bioinformatics on all known and putative maleidride biosynthetic gene clusters to gain further insights regarding these unique biosynthetic pathways.
Collapse
Affiliation(s)
- Katherine Williams
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK.
| | - Kate M J de Mattos-Shipley
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Andrew M Bailey
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, UK
| |
Collapse
|
5
|
Zhao Y, Sun C, Huang L, Zhang X, Zhang G, Che Q, Li D, Zhu T. Talarodrides A-F, Nonadrides from the Antarctic Sponge-Derived Fungus Talaromyces sp. HDN1820200. JOURNAL OF NATURAL PRODUCTS 2021; 84:3011-3019. [PMID: 34842422 DOI: 10.1021/acs.jnatprod.1c00203] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Six new nonadride derivatives, named talarodrides A-F (1-6), were isolated from the Antarctic sponge-derived fungus Talaromyces sp. HDN1820200. All structures including the absolute configurations were deduced by extensive spectroscopic analysis and computational ECD calculations. Compounds 1-4 share a rare caged bicyclo[4.3.1]-deca-1,6-diene with a bridgehead olefin and maleic anhydride core skeleton, while compounds 5 and 6 possess the first case of a naturally occurring 5/7/6 methanocyclonona[c]furan skeleton. Talarodride A (1) and talarodride B (2) showed selective inhibitory effects against Proteus mirabilis and Vibrio parahemolyticus with MICs of 3.13-12.5 μM.
Collapse
Affiliation(s)
- Yi Zhao
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Chunxiao Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Luyao Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xiao Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
6
|
Little RF, Hertweck C. Chain release mechanisms in polyketide and non-ribosomal peptide biosynthesis. Nat Prod Rep 2021; 39:163-205. [PMID: 34622896 DOI: 10.1039/d1np00035g] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Review covering up to mid-2021The structure of polyketide and non-ribosomal peptide natural products is strongly influenced by how they are released from their biosynthetic enzymes. As such, Nature has evolved a diverse range of release mechanisms, leading to the formation of bioactive chemical scaffolds such as lactones, lactams, diketopiperazines, and tetronates. Here, we review the enzymes and mechanisms used for chain release in polyketide and non-ribosomal peptide biosynthesis, how these mechanisms affect natural product structure, and how they could be utilised to introduce structural diversity into the products of engineered biosynthetic pathways.
Collapse
Affiliation(s)
- Rory F Little
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| |
Collapse
|
7
|
Kuhnert E, Navarro-Muñoz J, Becker K, Stadler M, Collemare J, Cox R. Secondary metabolite biosynthetic diversity in the fungal family Hypoxylaceae and Xylaria hypoxylon. Stud Mycol 2021; 99:100118. [PMID: 34527085 PMCID: PMC8403587 DOI: 10.1016/j.simyco.2021.100118] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To date little is known about the genetic background that drives the production and diversification of secondary metabolites in the Hypoxylaceae. With the recent availability of high-quality genome sequences for 13 representative species and one relative (Xylaria hypoxylon) we attempted to survey the diversity of biosynthetic pathways in these organisms to investigate their true potential as secondary metabolite producers. Manual search strategies based on the accumulated knowledge on biosynthesis in fungi enabled us to identify 783 biosynthetic pathways across 14 studied species, the majority of which were arranged in biosynthetic gene clusters (BGC). The similarity of BGCs was analysed with the BiG-SCAPE engine which organised the BGCs into 375 gene cluster families (GCF). Only ten GCFs were conserved across all of these fungi indicating that speciation is accompanied by changes in secondary metabolism. From the known compounds produced by the family members some can be directly correlated with identified BGCs which is highlighted herein by the azaphilone, dihydroxynaphthalene, tropolone, cytochalasan, terrequinone, terphenyl and brasilane pathways giving insights into the evolution and diversification of those compound classes. Vice versa, products of various BGCs can be predicted through homology analysis with known pathways from other fungi as shown for the identified ergot alkaloid, trigazaphilone, curvupallide, viridicatumtoxin and swainsonine BGCs. However, the majority of BGCs had no obvious links to known products from the Hypoxylaceae or other well-studied biosynthetic pathways from fungi. These findings highlight that the number of known compounds strongly underrepresents the biosynthetic potential in these fungi and that a tremendous number of unidentified secondary metabolites is still hidden. Moreover, with increasing numbers of genomes for further Hypoxylaceae species becoming available, the likelihood of revealing new biosynthetic pathways that encode new, potentially useful compounds will significantly improve. Reaching a better understanding of the biology of these producers, and further development of genetic methods for their manipulation, will be crucial to access their treasures.
Collapse
Affiliation(s)
- E. Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - J.C. Navarro-Muñoz
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - K. Becker
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - M. Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - J. Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - R.J. Cox
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| |
Collapse
|
8
|
Yin S, Friedrich S, Hrupins V, Cox RJ. In vitro studies of maleidride-forming enzymes. RSC Adv 2021; 11:14922-14931. [PMID: 35424071 PMCID: PMC8697804 DOI: 10.1039/d1ra02118d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
In vitro assays of enzymes involved in the biosynthesis of maleidrides from polyketides in fungi were performed. The results show that the enzymes are closely related to primary metabolism enzymes of the citric acid cycle in terms of stereochemical preferences, but with an expanded substrate selectivity. A key citrate synthase can react both saturated and unsaturated acyl CoA substrates to give solely anti substituted citrates. This undergoes anti-dehydration to afford an unsaturated precursor which is cyclised in vitro by ketosteroid-isomerase-like enzymes to give byssochlamic acid.
Collapse
Affiliation(s)
- Sen Yin
- OCI, BMWZ, Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
| | - Steffen Friedrich
- OCI, BMWZ, Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
| | - Vjaceslavs Hrupins
- OCI, BMWZ, Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
| | - Russell J Cox
- OCI, BMWZ, Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
| |
Collapse
|
9
|
Liu J, Liu A, Hu Y. Enzymatic dimerization in the biosynthetic pathway of microbial natural products. Nat Prod Rep 2021; 38:1469-1505. [PMID: 33404031 DOI: 10.1039/d0np00063a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Covering: up to August 2020The dramatic increase in the identification of dimeric natural products generated by microorganisms and plants has played a significant role in drug discovery. The biosynthetic pathways of these products feature inherent dimerization reactions, which are valuable for biosynthetic applications and chemical transformations. The extraordinary mechanisms of the dimerization of secondary metabolites should advance our understanding of the uncommon chemical rules for natural product biosynthesis, which will, in turn, accelerate the discovery of dimeric reactions and molecules in nature and provide promising strategies for the total synthesis of natural products through dimerization. This review focuses on the enzymes involved in the dimerization in the biosynthetic pathway of microbial natural products, with an emphasis on cytochrome P450s, laccases, and intermolecular [4 + 2] cyclases, along with other atypical enzymes. The identification, characterization, and catalytic landscapes of these enzymes are also introduced.
Collapse
Affiliation(s)
- Jiawang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | | | | |
Collapse
|
10
|
Zhang L, Wang Y, Zhang L, Liu B, Zhang C, Yan D, Bai J, Hu Y. Phomoidrides E–G, three dimeric anhydrides from the fungus Pleosporales sp. give new insight to the biosynthesis of phomoidrides. Org Chem Front 2021. [DOI: 10.1039/d1qo01119g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Three novel dimeric anhydrides with unprecedented skeletons, phomoidrides E–G, were isolated from the fungus Pleosporales sp. A new biosynthetic strategy for dimerization with a key Claisen-like intermediate M1 is proposed.
Collapse
Affiliation(s)
- Lihua Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Yanan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Le Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Bingyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Chen Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Daojiang Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Jian Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China
| |
Collapse
|
11
|
de Mattos-Shipley KMJ, Spencer CE, Greco C, Heard DM, O'Flynn DE, Dao TT, Song Z, Mulholland NP, Vincent JL, Simpson TJ, Cox RJ, Bailey AM, Willis CL. Uncovering biosynthetic relationships between antifungal nonadrides and octadrides. Chem Sci 2020; 11:11570-11578. [PMID: 34094403 PMCID: PMC8162798 DOI: 10.1039/d0sc04309e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022] Open
Abstract
Maleidrides are a class of bioactive secondary metabolites unique to filamentous fungi, which contain one or more maleic anhydrides fused to a 7-, 8- or 9- membered carbocycle (named heptadrides, octadrides and nonadrides respectively). Herein structural and biosynthetic studies on the antifungal octadride, zopfiellin, and nonadrides scytalidin, deoxyscytalidin and castaneiolide are described. A combination of genome sequencing, bioinformatic analyses, gene disruptions, biotransformations, isotopic feeding studies, NMR and X-ray crystallography revealed that they share a common biosynthetic pathway, diverging only after the nonadride deoxyscytalidin. 5-Hydroxylation of deoxyscytalidin occurs prior to ring contraction in the zopfiellin pathway of Diffractella curvata. In Scytalidium album, 6-hydroxylation - confirmed as being catalysed by the α-ketoglutarate dependent oxidoreductase ScyL2 - converts deoxyscytalidin to scytalidin, in the final step in the scytalidin pathway. Feeding scytalidin to a zopfiellin PKS knockout strain led to the production of the nonadride castaneiolide and two novel ring-open maleidrides.
Collapse
Affiliation(s)
- Kate M J de Mattos-Shipley
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
- School of Biological Sciences, University of Bristol 24 Tyndall Avenue Bristol BS8 1TQ UK
| | - Catherine E Spencer
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Claudio Greco
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - David M Heard
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Daniel E O'Flynn
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Trong T Dao
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Zhongshu Song
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | | | - Jason L Vincent
- Syngenta, Jealott's Hill International Research Centre Bracknell RG42 6EY UK
| | - Thomas J Simpson
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| | - Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover Schneiderberg 38 30167 Hannover Germany
| | - Andrew M Bailey
- School of Biological Sciences, University of Bristol 24 Tyndall Avenue Bristol BS8 1TQ UK
| | - Christine L Willis
- School of Chemistry, University of Bristol Cantock's Close Bristol BS8 1TS UK
| |
Collapse
|
12
|
Palys S, Pham TTM, Tsang A. Biosynthesis of Alkylcitric Acids in Aspergillus niger Involves Both Co-localized and Unlinked Genes. Front Microbiol 2020; 11:1378. [PMID: 32695080 PMCID: PMC7338620 DOI: 10.3389/fmicb.2020.01378] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023] Open
Abstract
Filamentous fungi are an abundant source of bioactive secondary metabolites (SMs). In many cases, the biosynthetic processes of SMs are not well understood. This work focuses on a group of SMs, the alkylcitric acids, each of which contains a saturated alkyl "tail," and a citrate-derived "head." We initially identified their biosynthetic gene cluster and the transcriptional regulator (akcR) involved in the biosynthesis of alkylcitrates in the filamentous fungus Aspergillus niger by examining the functional annotation of SM gene clusters predicted from genomic data. We overexpressed the transcription regulator gene akcR and obtained from one liter of culture filtrate 8.5 grams of extract, which are represented by seven alkylcitric acids as determined by NMR. Hexylaconitic acid A comprised 94.1% of the total production, and four of the seven identified alkylcitrates have not been reported previously. Analysis of orthologous alkylcitrate gene clusters in the Aspergilli revealed that in A. oryzae and A. flavus an in-cluster gene displays sequence similarity to cis-aconitate decarboxylase, the orthologue of which in A. niger, NRRL3_00504, is located on a different chromosome. Overexpression of the A. niger NRRL3_00504 and akcR genes together shifted the profile of alkylcitrates production from primarily hexylaconitic acids to mainly hexylitaconic acids, suggesting that NRRL3_00504 encodes an enzyme with hexyl aconitate decarboxylase activity. We also detected two additional, previously unreported, alkylcitric acids in the double overexpression strain. This study shows that phylogenomic analysis together with experimental manipulations can be used to reconstruct a more complete biosynthetic pathway in generating a broader spectrum of alkylcitric compounds. The approach adopted here has the potential of elucidating the complexity of other SM biosynthetic pathways in fungi.
Collapse
Affiliation(s)
| | | | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| |
Collapse
|
13
|
Shiina T, Ozaki T, Matsu Y, Nagamine S, Liu C, Hashimoto M, Minami A, Oikawa H. Oxidative Ring Contraction by a Multifunctional Dioxygenase Generates the Core Cycloocatadiene in the Biosynthesis of Fungal Dimeric Anhydride Zopfiellin. Org Lett 2020; 22:1997-2001. [DOI: 10.1021/acs.orglett.0c00340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tetsuya Shiina
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Taro Ozaki
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yusuke Matsu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shota Nagamine
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Chengwei Liu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masaru Hashimoto
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | - Atsushi Minami
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hideaki Oikawa
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
14
|
Heard DM, Tayler ER, Cox RJ, Simpson TJ, Willis CL. Structural and synthetic studies on maleic anhydride and related diacid natural products. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
OIKAWA H. Heterologous production of fungal natural products: Reconstitution of biosynthetic gene clusters in model host Aspergillus oryzae. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:420-430. [PMID: 33177296 PMCID: PMC7725655 DOI: 10.2183/pjab.96.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
While exploring phytotoxic metabolites from phytopathogenic fungi in the 1970s, we became interested in biosynthetic enzymes that catalyze Diels-Alder reactions involving biosynthesis of several phytotoxins that we isolated. Target enzymes were successfully characterized, and this triggered the identification of various Diels-Alderases in a recent decade. Through our Diels-Alderase project in 1990s, we recognized a highly efficient expression system of various biosynthetic genes with Aspergillus oryzae as a host. With the development of tools such as genomic data and bioinformatics analysis to identify biosynthetic gene clusters for natural products, we developed a highly reliable methodology such as hot spot knock-in to elucidate the biosynthetic pathways of representative fungal metabolites including phytotoxic substances. This methodology allows total biosynthesis of natural products and genome mining using silent biosynthetic gene clusters to obtain novel bioactive metabolites. Further applications of this technology are discussed.
Collapse
Affiliation(s)
- Hideaki OIKAWA
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
- Correspondence should be addressed: H. Oikawa, Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Jo Nishi 8-Chome, Kita-ku, Sapporo 060-0810, Japan (e-mail: )
| |
Collapse
|
16
|
Tang MC, Fischer CR, Chari JV, Tan D, Suresh S, Chu A, Miranda M, Smith J, Zhang Z, Garg NK, St Onge RP, Tang Y. Thioesterase-Catalyzed Aminoacylation and Thiolation of Polyketides in Fungi. J Am Chem Soc 2019; 141:8198-8206. [PMID: 31051070 DOI: 10.1021/jacs.9b01083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fungal highly reducing polyketide synthases (HRPKSs) biosynthesize polyketides using a single set of domains iteratively. Product release is a critical step in HRPKS function to ensure timely termination and enzyme turnover. Nearly all of the HRPKSs characterized to date employ a separate thioesterase (TE) or acyltransferase enzyme for product release. In this study, we characterized two fungal HRPKSs that have fused C-terminal TE domains, a new domain architecture for fungal HRPKSs. We showed that both HRPKS-TEs synthesize aminoacylated polyketides in an ATP-independent fashion. The KU42 TE domain selects cysteine and homocysteine and catalyzes transthioesterification using the side-chain thiol group as the nucleophile. In contrast, the KU43 TE domain selects leucine methyl ester and performs a direct amidation of the polyketide, a reaction typically catalyzed by nonribosomal peptide synthetase (NRPS) domains. The characterization of these HRPKS-TE enzymes showcases the functional diversity of HRPKS enzymes and provides potential TE domains as biocatalytic tools to diversify HRPKS structures.
Collapse
|
17
|
|
18
|
He Y, Wang B, Chen W, Cox RJ, He J, Chen F. Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp. Biotechnol Adv 2018; 36:739-783. [DOI: 10.1016/j.biotechadv.2018.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/28/2022]
|
19
|
Williams K, Szwalbe AJ, Dickson C, Desson TR, Mulholland NP, Vincent JL, Clough JM, Bailey AM, Butts CP, Willis CL, Simpson TJ, Cox RJ. Genetic and chemical characterisation of the cornexistin pathway provides further insight into maleidride biosynthesis. Chem Commun (Camb) 2018; 53:7965-7968. [PMID: 28660939 DOI: 10.1039/c7cc03303f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biosynthesis of the herbicide cornexistin in the fungus Paecilomyces variotii was investigated by full sequencing of its genome, knockout of key genes within its biosynthetic gene cluster and isolation and identification of intermediate compounds. The general biosynthetic pathway resembles that of byssochlamic acid and other nonadrides in the early stages, but differs in requiring fewer enzymes in the key nonadride dimerisation step, and in the removal of one maleic anhydride moiety.
Collapse
Affiliation(s)
- Katherine Williams
- Institute for Organic Chemistry, and BMWZ, Leibniz University of Hannover, Schneiderberg 1B, 30167, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schor R, Cox R. Classic fungal natural products in the genomic age: the molecular legacy of Harold Raistrick. Nat Prod Rep 2018. [PMID: 29537034 DOI: 10.1039/c8np00021b] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 1893 to 2017Harold Raistrick was involved in the discovery of many of the most important classes of fungal metabolites during the 20th century. This review focusses on how these discoveries led to developments in isotopic labelling, biomimetic chemistry and the discovery, analysis and exploitation of biosynthetic gene clusters for major classes of fungal metabolites including: alternariol; geodin and metabolites of the emodin pathway; maleidrides; citrinin and the azaphilones; dehydrocurvularin; mycophenolic acid; and the tropolones. Key recent advances in the molecular understanding of these important pathways, including the discovery of biosynthetic gene clusters, the investigation of the molecular and chemical aspects of key biosynthetic steps, and the reengineering of key components of the pathways are reviewed and compared. Finally, discussion of key relationships between metabolites and pathways and the most important recent advances and opportunities for future research directions are given.
Collapse
Affiliation(s)
- Raissa Schor
- Institut für Organische Chemie, BMWZ, Leibniz Universität Hannover, Germany.
| | - Russell Cox
- Institut für Organische Chemie, BMWZ, Leibniz Universität Hannover, Germany.
| |
Collapse
|
21
|
Leung JC, Bedermann AA, Njardarson JT, Spiegel DA, Murphy GK, Hama N, Twenter BM, Dong P, Shirahata T, McDonald IM, Inoue M, Taniguchi N, McMahon TC, Schneider CM, Tao N, Stoltz BM, Wood JL. Total Synthesis of (±)-Phomoidride D. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201712369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Joyce C. Leung
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Aaron A. Bedermann
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Jón T. Njardarson
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - David A. Spiegel
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Graham K. Murphy
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Naoto Hama
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Barry M. Twenter
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Ping Dong
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Tatsuya Shirahata
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Ivar M. McDonald
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Munenori Inoue
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Nobuaki Taniguchi
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Travis C. McMahon
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Christopher M. Schneider
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Nancy Tao
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Brian M. Stoltz
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - John L. Wood
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| |
Collapse
|
22
|
Leung JC, Bedermann AA, Njardarson JT, Spiegel DA, Murphy GK, Hama N, Twenter BM, Dong P, Shirahata T, McDonald IM, Inoue M, Taniguchi N, McMahon TC, Schneider CM, Tao N, Stoltz BM, Wood JL. Total Synthesis of (±)-Phomoidride D. Angew Chem Int Ed Engl 2018; 57:1991-1994. [DOI: 10.1002/anie.201712369] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Joyce C. Leung
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Aaron A. Bedermann
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Jón T. Njardarson
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - David A. Spiegel
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Graham K. Murphy
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Naoto Hama
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Barry M. Twenter
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Ping Dong
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Tatsuya Shirahata
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Ivar M. McDonald
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Munenori Inoue
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Nobuaki Taniguchi
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Travis C. McMahon
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Christopher M. Schneider
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Nancy Tao
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - Brian M. Stoltz
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| | - John L. Wood
- Department of Chemistry and Biochemistry; Baylor University; One Bear Place 97348 Waco TX 76798 USA
| |
Collapse
|
23
|
Liu N, Hung YS, Gao SS, Hang L, Zou Y, Chooi YH, Tang Y. Identification and Heterologous Production of a Benzoyl-Primed Tricarboxylic Acid Polyketide Intermediate from the Zaragozic Acid A Biosynthetic Pathway. Org Lett 2017; 19:3560-3563. [PMID: 28605916 PMCID: PMC5673471 DOI: 10.1021/acs.orglett.7b01534] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Zaragozic acid A (1) is a potent cholesterol lowering, polyketide natural product made by various filamentous fungi. The reconstitution of enzymes responsible for the initial steps of the biosynthetic pathway of 1 is accomplished using an engineered fungal heterologous host. These initial steps feature the priming of a benzoic acid starter unit onto a highly reducing polyketide synthase (HRPKS), followed by oxaloacetate extension and product release to generate a tricarboxylic acid containing product 2. The reconstitution studies demonstrated that only three enzymes, HRPKS, citrate synthase, and hydrolase, are needed in A. nidulans to produce the structurally complex product.
Collapse
Affiliation(s)
- Nicholas Liu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
| | - Yiu-Sun Hung
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
| | - Shu-Shan Gao
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
| | - Leibniz Hang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Yi Zou
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| |
Collapse
|
24
|
Bai J, Yan D, Zhang T, Guo Y, Liu Y, Zou Y, Tang M, Liu B, Wu Q, Yu S, Tang Y, Hu Y. A Cascade of Redox Reactions Generates Complexity in the Biosynthesis of the Protein Phosphatase-2 Inhibitor Rubratoxin A. Angew Chem Int Ed Engl 2017; 56:4782-4786. [DOI: 10.1002/anie.201701547] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Jian Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Daojiang Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Tao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yongzhi Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yunbao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yi Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Mancheng Tang
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry; University of California; Los Angeles CA 90095 USA
| | - Bingyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Qiong Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Shishan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yi Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry; University of California; Los Angeles CA 90095 USA
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| |
Collapse
|
25
|
Bai J, Yan D, Zhang T, Guo Y, Liu Y, Zou Y, Tang M, Liu B, Wu Q, Yu S, Tang Y, Hu Y. A Cascade of Redox Reactions Generates Complexity in the Biosynthesis of the Protein Phosphatase-2 Inhibitor Rubratoxin A. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701547] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jian Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Daojiang Yan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Tao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yongzhi Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yunbao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yi Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Mancheng Tang
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry; University of California; Los Angeles CA 90095 USA
| | - Bingyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Qiong Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Shishan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| | - Yi Tang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
- Department of Chemical and Biomolecular Engineering; Department of Chemistry and Biochemistry; University of California; Los Angeles CA 90095 USA
| | - Youcai Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100050 China
| |
Collapse
|
26
|
Williams K, Szwalbe AJ, Mulholland NP, Vincent JL, Bailey AM, Willis CL, Simpson TJ, Cox RJ. Heterologous Production of Fungal Maleidrides Reveals the Cryptic Cyclization Involved in their Biosynthesis. Angew Chem Int Ed Engl 2016; 55:6784-8. [PMID: 27099957 PMCID: PMC4982102 DOI: 10.1002/anie.201511882] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/16/2015] [Indexed: 11/12/2022]
Abstract
Fungal maleidrides are an important family of bioactive secondary metabolites that consist of 7, 8, or 9-membered carbocycles with one or two fused maleic anhydride moieties. The biosynthesis of byssochlamic acid (a nonadride) and agnestadride A (a heptadride) was investigated through gene disruption and heterologous expression experiments. The results reveal that the precursors for cyclization are formed by an iterative highly reducing fungal polyketide synthase supported by a hydrolase, together with two citrate-processing enzymes. The enigmatic ring formation is catalyzed by two proteins with homology to ketosteroid isomerases, and assisted by two proteins with homology to phosphatidylethanolamine-binding proteins.
Collapse
Affiliation(s)
- Katherine Williams
- Institute for Organic Chemistry, Leibniz University of Hannover, Schneiderberg 1B, 30167, Germany.
| | - Agnieszka J Szwalbe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | | | - Jason L Vincent
- Syngenta, Jealott's Hill, Bracknell, Berkshire, RG42 6EY, UK
| | - Andrew M Bailey
- School of Biological Sciences, Bristol Life Sciences Building, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TH, UK
| | - Christine L Willis
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Thomas J Simpson
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Russell J Cox
- Institute for Organic Chemistry, Leibniz University of Hannover, Schneiderberg 1B, 30167, Germany.
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
27
|
Williams K, Szwalbe AJ, Mulholland NP, Vincent JL, Bailey AM, Willis CL, Simpson TJ, Cox RJ. Heterologe Produktion pilzlicher Maleidride enthüllt die kryptische Cyclisierung in ihrer Biosynthese. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Katherine Williams
- Institut für Organische Chemie; Leibniz Universität Hannover; Schneiderberg 1B 30167 Deutschland
| | - Agnieszka J. Szwalbe
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS Großbritannien
| | | | - Jason L. Vincent
- Syngenta; Jealott's Hill Bracknell Berkshire RG42 6EY Großbritannien
| | - Andrew M. Bailey
- School of Biological Sciences; Bristol Life Sciences Building; University of Bristol; 24 Tyndall Ave Bristol BS8 1TH Großbritannien
| | - Christine L. Willis
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS Großbritannien
| | - Thomas J. Simpson
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS Großbritannien
| | - Russell J. Cox
- Institut für Organische Chemie; Leibniz Universität Hannover; Schneiderberg 1B 30167 Deutschland
- School of Chemistry; University of Bristol; Cantock's Close Bristol BS8 1TS Großbritannien
| |
Collapse
|
28
|
Abstract
A personal selection of 33 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as pseudellone A from Pseudallescheria ellipsoidea.
Collapse
|
29
|
Bonsch B, Belt V, Bartel C, Duensing N, Koziol M, Lazarus CM, Bailey AM, Simpson TJ, Cox RJ. Identification of genes encoding squalestatin S1 biosynthesis and in vitro production of new squalestatin analogues. Chem Commun (Camb) 2016; 52:6777-80. [DOI: 10.1039/c6cc02130a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biosynthetic gene clusters encoding the production of squalestatin S1 have been discovered and exploited to produce new analogs.
Collapse
Affiliation(s)
- B. Bonsch
- Institut für Organische Chemie
- Leibniz Universität Hannover
- 30167 Hannover
- Germany
| | - V. Belt
- Institut für Organische Chemie
- Leibniz Universität Hannover
- 30167 Hannover
- Germany
| | - C. Bartel
- Institut für Organische Chemie
- Leibniz Universität Hannover
- 30167 Hannover
- Germany
| | - N. Duensing
- Institut für Organische Chemie
- Leibniz Universität Hannover
- 30167 Hannover
- Germany
| | - M. Koziol
- School of Biological Sciences
- Bristol BS8 1TQ
- UK
| | | | | | | | - R. J. Cox
- Institut für Organische Chemie
- Leibniz Universität Hannover
- 30167 Hannover
- Germany
- School of Chemistry
| |
Collapse
|