1
|
Aich S, Saha M, Ghosh D, Molla SA, Sarkar AK, Bag D, Rahaman R, Khamarui S, Maiti DK. Ru(III)-PhI(OAc) 2─A Combination for Generation of Isocyanate Intermediate from Benzimidate through a Rearrangement: Synthesis of Unsymmetrical Urea, Carbamate, and Chiral Analogues. Org Lett 2024; 26:10970-10975. [PMID: 39632083 DOI: 10.1021/acs.orglett.4c04131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Ru(III)-PhI(OAc)2, an unprecedented combination, is a highly efficient reagent system for the in situ generation of a valuable isocyanate intermediate from benzimidate synthons through a rearrangement. It unlocks a powerful platform for forming diverse C-N bonds, enabling the one-pot synthesis of an expansive array of valuable unsymmetrical ureas, carbamates, and their chiral analogues toward complex molecular structures with high selectivity and excellent yields. This new strategy not only exemplifies efficiency but also serves as a versatile tool for the construction of valuable molecular architectures, enhancing the scope and impact of modern synthetic chemistry.
Collapse
Affiliation(s)
- Shobhon Aich
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Mriganka Saha
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Debasish Ghosh
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Sabir Ali Molla
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Ankan Kumar Sarkar
- School of Material Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Debanjana Bag
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Rajjakfur Rahaman
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Saikat Khamarui
- Department of Chemistry, Government General Degree College at Kalna-1, Purba Bardhhaman-713405, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| |
Collapse
|
2
|
Spieß P, Brześkiewicz J, Maulide N. Deprotective Lossen rearrangement: a direct and general transformation of Nms-amides to unsymmetrical ureas. Chem Sci 2024:d4sc04974h. [PMID: 39268216 PMCID: PMC11385062 DOI: 10.1039/d4sc04974h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Ureas stand out as potent pharmacophores in drug development, rendering them a prime focus for synthesis. Herein, we present an appealing entry point for urea synthesis from protected amines (Nms-amides) and relying on a Lossen-type rearrangement process as an elegant example of deprotective functionalisation. The method developed exhibits an exceptionally broad tolerance towards various protected amines, encompassing numerous drug derivatives, and delivers high reaction yields.
Collapse
Affiliation(s)
- Philipp Spieß
- Institute of Organic Chemistry, University of Vienna Währinger Strasse 38 1090 Vienna Austria
| | - Jakub Brześkiewicz
- Institute of Organic Chemistry, University of Vienna Währinger Strasse 38 1090 Vienna Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna Währinger Strasse 38 1090 Vienna Austria
| |
Collapse
|
3
|
Luk J, Goodfellow AS, More ND, Bühl M, Kumar A. Exploiting decarbonylation and dehydrogenation of formamides for the synthesis of ureas, polyureas, and poly(urea-urethanes). Chem Sci 2024:d4sc03948c. [PMID: 39309078 PMCID: PMC11411599 DOI: 10.1039/d4sc03948c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Urea derivatives, polyureas, and poly(urea-urethanes) are materials of great interest. However, their current methods of synthesis involve toxic feedstocks - isocyanate and phosgene gas. There is significant interest in developing alternative methodologies for their synthesis from safer feedstocks. We report here new methods for the synthesis of urea derivatives, polyureas, and poly(urea-urethane) using a ruthenium pincer catalyst. In this approach, urea derivatives and polyureas are synthesized from the self-coupling of formamides and diformamides, respectively, whereas poly(urea-urethanes) are synthesized from the coupling of diformamides and diols. CO and H2 gases are eliminated in all these processes. Decarbonylation of formamides using such organometallic catalysts has not been reported before and therefore mechanistic insights have been provided using experiments and DFT computation to shed light on pathways of these processes.
Collapse
Affiliation(s)
- James Luk
- EaStCHEM, School of Chemistry, University of St. Andrews North Haugh, St. Andrews KY16 9ST UK
| | - Alister S Goodfellow
- EaStCHEM, School of Chemistry, University of St. Andrews North Haugh, St. Andrews KY16 9ST UK
| | - Nachiket Deepak More
- EaStCHEM, School of Chemistry, University of St. Andrews North Haugh, St. Andrews KY16 9ST UK
| | - Michael Bühl
- EaStCHEM, School of Chemistry, University of St. Andrews North Haugh, St. Andrews KY16 9ST UK
| | - Amit Kumar
- EaStCHEM, School of Chemistry, University of St. Andrews North Haugh, St. Andrews KY16 9ST UK
| |
Collapse
|
4
|
Kulyabin P, Magdysyuk OV, Naden AB, Dawson DM, Pancholi K, Walker M, Vassalli M, Kumar A. Manganese-Catalyzed Synthesis of Polyketones Using Hydrogen-Borrowing Approach. ACS Catal 2024; 14:10624-10634. [PMID: 39050896 PMCID: PMC11264210 DOI: 10.1021/acscatal.4c03019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024]
Abstract
We report here a method of making polyketones from the coupling of diketones and diols using a manganese pincer complex. The methodology allows us to access various polyketones (polyarylalkylketone) containing aryl, alkyl, and ether functionalities, bridging the gap between the two classes of commercially available polyketones: aliphatic polyketones and polyaryletherketones. Using this methodology, 12 polyketones have been synthesized and characterized using various analytical techniques to understand their chemical, physical, morphological, and mechanical properties. Based on previous reports and our studies, we suggest that the polymerization occurs via a hydrogen-borrowing mechanism that involves the dehydrogenation of diols to dialdehyde followed by aldol condensation of dialdehyde with diketones to form chalcone derivatives and their subsequent hydrogenation to form polyarylalkylketones.
Collapse
Affiliation(s)
- Pavel
S. Kulyabin
- EaStCHEM,
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Oxana V. Magdysyuk
- EaStCHEM,
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Aaron B. Naden
- EaStCHEM,
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Daniel M. Dawson
- EaStCHEM,
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| | - Ketan Pancholi
- The
Sir Ian Wood Building, Robert Gordon University, Garthdee Rd, Garthdee, Aberdeen AB10 7GE, U.K.
| | - Matthew Walker
- Centre
for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow G116EW, U.K.
| | - Massimo Vassalli
- James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8QQ, U.K.
| | - Amit Kumar
- EaStCHEM,
School of Chemistry, University of St Andrews, North Haugh, St Andrews KY16 9ST, U.K.
| |
Collapse
|
5
|
Zhang Y, Yang X, Liu S, Liu J, Pang S. Catalytic dehydrogenative coupling and reversal of methanol-amines: advances and prospects. Chem Commun (Camb) 2024; 60:4121-4139. [PMID: 38533605 DOI: 10.1039/d4cc00653d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The development of efficient hydrogen release and storage processes to provide environmentally friendly hydrogen solutions for mobile energy storage systems (MESS) stands as one of the most challenging tasks in addressing the energy crisis and environmental degradation. The catalytic dehydrogenative coupling of methanol and amines (DCMA) and its reverse are featured by high capacity for hydrogen release and storage, enhanced capability to purify the produced hydrogen, avoidance of carbon emissions and singular product composition, offering the environmentally and operationally benign strategy of overcoming the challenges associated with MESS. Particularly, the cycle between these two processes within the same catalytic system eliminates the need for collecting and transporting spent fuel back to a central facility, significantly facilitating easy recharging. Despite the promising attributes of the above strategy for environmentally friendly hydrogen solutions, challenges persist, primarily due to the high thermodynamic barriers encountered in methanol dehydrogenation and amide hydrogenation. By systematically summarizing various reaction mechanisms and pathways involving Ru-, Mn-, Fe-, and Mo-based catalytic systems in the development of catalytic DCMA and its reverse and the cycling between the two, this review highlights the current research landscape, identifies gaps, and suggests directions for future investigations to overcome these challenges. Additionally, the critical importance of developing efficient catalytic systems that operate under milder conditions, thereby facilitating the practical application of DCMA in MESS, is also underscored.
Collapse
Affiliation(s)
- Yujing Zhang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Xiaomei Yang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Shimin Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu 730000, P. R. China
| | - Jiacheng Liu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China.
| | - Shaofeng Pang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730030, P. R. China.
| |
Collapse
|
6
|
Johnson ML, Fine RL, Stankowski DS, Koch CA, Limoges KA, Robertson NJ. Highly selective pressure-dependent (transfer) hydrogenative depolymerization of polybutylene succinate. Chem Commun (Camb) 2024; 60:702-705. [PMID: 38105706 DOI: 10.1039/d3cc05239g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Ru-MACHO®-BH is an effective catalyst for controlled depolymerization of polybutylene succinate. Under low pressure hydrogen the catalyst produces gamma-butyrolactone via a novel transfer hydrogenation wherein dehydrogenation and hydrogenation deconstruct the polymer chain. Simply increasing the hydrogen pressure selectively generates 1,4-butanediol.
Collapse
Affiliation(s)
- Mary L Johnson
- Northland College, 1411 Ellis Ave., Ashland, Wisconsin, 54806, USA.
| | - Rachel L Fine
- Northland College, 1411 Ellis Ave., Ashland, Wisconsin, 54806, USA.
| | | | - Casey A Koch
- Northland College, 1411 Ellis Ave., Ashland, Wisconsin, 54806, USA.
| | - Kylie A Limoges
- Northland College, 1411 Ellis Ave., Ashland, Wisconsin, 54806, USA.
| | | |
Collapse
|
7
|
McLuskie A, Brodie CN, Tricarico M, Gao C, Peters G, Naden AB, Mackay CL, Tan JC, Kumar A. Manganese catalysed dehydrogenative synthesis of polyureas from diformamide and diamines. Catal Sci Technol 2023; 13:3551-3557. [PMID: 37342794 PMCID: PMC10278093 DOI: 10.1039/d3cy00284e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
We report here the synthesis of polyureas from the dehydrogenative coupling of diamines and diformamides. The reaction is catalysed by a manganese pincer complex and releases H2 gas as the only by-product making the process atom-economic and sustainable. The reported method is greener in comparison to the current state-of-the-art production routes that involve diisocyanate and phosgene feedstock. We also report here the physical, morphological, and mechanical properties of synthesized polyureas. Based on our mechanistic studies, we suggest that the reaction proceeds via isocyanate intermediates formed by the manganese catalysed dehydrogenation of formamides.
Collapse
Affiliation(s)
- Angus McLuskie
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| | - Claire N Brodie
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| | - Michele Tricarico
- Department of Engineering Science, University of Oxford Parks Road Oxford OX13PJ UK
| | - Chang Gao
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| | - Gavin Peters
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| | - Aaron B Naden
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| | | | - Jin-Chong Tan
- Department of Engineering Science, University of Oxford Parks Road Oxford OX13PJ UK
| | - Amit Kumar
- School of Chemistry, University of St. Andrews North Haugh St. Andrews KY169ST UK
| |
Collapse
|
8
|
Sheetal, Mehara P, Das P. Methanol as a greener C1 synthon under non-noble transition metal-catalyzed conditions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Irfana Jesin CP, Padma Priya VR, Kataria R, Alisha V, Vimalkumar PS, Joseph AG, Nandi GC. A One‐Pot Tandem Synthesis of Sulfoximine‐Based Urea From Organic Acid via Curtius Rearrangement. ChemistrySelect 2022. [DOI: 10.1002/slct.202202898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- C. P. Irfana Jesin
- Department of Chemistry National Institute of Technology-Tiruchirappalli Trichy 620015 India
| | - V. R. Padma Priya
- Department of Chemistry National Institute of Technology-Tiruchirappalli Trichy 620015 India
| | - Ramesh Kataria
- Department of Chemistry & Centre for Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - V. Alisha
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - P. S. Vimalkumar
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Anuja G. Joseph
- Chemical Sciences and Technology Division CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram-695019 India Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ganesh Chandra Nandi
- Department of Chemistry National Institute of Technology-Tiruchirappalli Trichy 620015 India
| |
Collapse
|
10
|
Veligeti R, Anireddy JS, Madhu RB, Ramakrishna D. One pot, three component synthesis of fluoro and trifluoromethyl substituted unsymmetrical dihydropyrazine fused acridine-3-carboxamide using renewable 2-MeTHF solvent and their DFT studies. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Vinayagam V, Karre SK, Kasu SR, Srinath R, Naveen Babu Bathula HS, Sadhukhan SK. AlCl 3-Mediated CHF 2 Transfer and Cyclocondensation of Difluoromethoxy Functionalized o-Phenylenediamines to Access N-Substituted Benzimidazoles. Org Lett 2022; 24:6142-6147. [PMID: 35938941 DOI: 10.1021/acs.orglett.2c02231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report for the first time a transition-metal-free frustrated Lewis pair (FLP) catalyzed CHF2 group migration from an oxygen atom to the neighboring nitrogen atom, which led to the synthesis of N-substituted benzimidazoles at room temperature with excellent yields, broad functional group tolerance, and a short reaction time. The oxygen-attached difluoromethane acted as a C1 source in the synthesis of N-substituted benzimidazoles in the presence of AlCl3 by cleaving one C-O bond and two C-F bonds, resulting in formation of two new C-N bonds.
Collapse
Affiliation(s)
- Vinothkumar Vinayagam
- Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Shameerpet, RR District, Hyderabad 500078, India
| | - Satish Kumar Karre
- Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Shameerpet, RR District, Hyderabad 500078, India
| | - Sreenivasa Reddy Kasu
- Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Shameerpet, RR District, Hyderabad 500078, India
| | - Ravuri Srinath
- Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Shameerpet, RR District, Hyderabad 500078, India
| | - Hema Sundar Naveen Babu Bathula
- Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Shameerpet, RR District, Hyderabad 500078, India
| | - Subir Kumar Sadhukhan
- Curia India Pvt. Ltd (Formerly Albany Molecular Research, Hyderabad Research Centre), MN Park, Genome Valley, Shameerpet, RR District, Hyderabad 500078, India
| |
Collapse
|
12
|
Guo J, Tang J, Xi H, Zhao SY, Liu W. Manganese catalyzed urea and polyurea synthesis using methanol as C1 source. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Owen AE, Preiss A, McLuskie A, Gao C, Peters G, Bühl M, Kumar A. Manganese-Catalyzed Dehydrogenative Synthesis of Urea Derivatives and Polyureas. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Annika Preiss
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY169ST, U.K
| | - Angus McLuskie
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY169ST, U.K
| | - Chang Gao
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY169ST, U.K
| | - Gavin Peters
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY169ST, U.K
| | - Michael Bühl
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY169ST, U.K
| | - Amit Kumar
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY169ST, U.K
| |
Collapse
|
14
|
Wang Y, Yan L, Zhang X, Xiang F, Li X, Li S, Song X. Tandem [3 + 1 + 1 + 1] Heterocyclization of α‐Acyl Ketene Dithioacetals with Ammonia and Methanol: Rapid Assembly of Polysubstituted Pyrimidines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Youkun Wang
- Hebei University of Technology School of Chemical Engineering and Technology 300401 Tianjin CHINA
| | - Linlin Yan
- Hebei Chemical and Pharmaceutical College Department of Pharmaceutical Engineering 88 Fangxing Road 050026 Shijiazhuang CHINA
| | - Xiaoxuan Zhang
- Hebei University of Technology School of Chemical Engineering and Technology 300401 Tianjin CHINA
| | - Fengrui Xiang
- Hebei University of Technology School of Chemical Engineering and Technology 300401 Tianjin CHINA
| | - Xiaojun Li
- Hebei University of Technology School of Chemical Engineering and Technology 300401 Tianjin CHINA
| | - Shengnan Li
- Hebei University of Technology School of Chemical Engineering and Technology 300401 Tianjin CHINA
| | - Xiaoning Song
- Hebei University of Technology School of Chemical Engineering and Technology 300401 Tianjin CHINA
| |
Collapse
|
15
|
Curley JB, Townsend TM, Bernskoetter WH, Hazari N, Mercado BQ. Iron, Cobalt, and Nickel Complexes Supported by a iPrPNPhP Pincer Ligand. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Julia B. Curley
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Tanya M. Townsend
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Wesley H. Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Nilay Hazari
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q. Mercado
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| |
Collapse
|
16
|
Half‐Sandwich Ruthenium Complexes Bearing Hemilabile κ
2
‐(
C
,
S
)−Thioether‐Functionalized NHC Ligands: Application to Amide Synthesis from Alcohol and Amine. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Langsted CR, Paulson SW, Bomann BH, Suhail S, Aguirre JA, Saumer EJ, Baclasky AR, Salmon KH, Law AC, Farmer RJ, Furchtenicht CJ, Stankowski DS, Johnson ML, Corcoran LG, Dolan CC, Carney MJ, Robertson NJ. Isocyanate‐free
synthesis of ureas and polyureas via ruthenium catalyzed dehydrogenation of amines and formamides. J Appl Polym Sci 2021. [DOI: 10.1002/app.52088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Blake H. Bomann
- Department of Chemistry and Biochemistry University of Wisconsin‐Eau Claire Eau Claire Wisconsin USA
| | - Shanzay Suhail
- Department of Chemistry and Biochemistry University of Wisconsin‐Eau Claire Eau Claire Wisconsin USA
| | | | | | | | | | | | | | | | | | | | | | - Connor C. Dolan
- Department of Chemistry and Biochemistry University of Wisconsin‐Eau Claire Eau Claire Wisconsin USA
| | - Michael J. Carney
- Department of Chemistry and Biochemistry University of Wisconsin‐Eau Claire Eau Claire Wisconsin USA
| | | |
Collapse
|
18
|
Curley JB, Hert C, Bernskoetter WH, Hazari N, Mercado BQ. Control of Catalyst Isomers Using an N-Phenyl-Substituted RN(CH 2CH 2P iPr 2) 2 Pincer Ligand in CO 2 Hydrogenation and Formic Acid Dehydrogenation. Inorg Chem 2021; 61:643-656. [PMID: 34955015 DOI: 10.1021/acs.inorgchem.1c03372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A novel pincer ligand, iPrPNPhP [PhN(CH2CH2PiPr2)2], which is an analogue of the versatile MACHO ligand, iPrPNHP [HN(CH2CH2PiPr2)2], was synthesized and characterized. The ligand was coordinated to ruthenium, and a series of hydride-containing complexes were isolated and characterized by NMR and IR spectroscopies, as well as X-ray diffraction. Comparisons to previously published analogues ligated by iPrPNHP and iPrPNMeP [CH3N(CH2CH2PiPr2)2] illustrate that there are large changes in the coordination chemistry that occur when the nitrogen substituent of the pincer ligand is altered. For example, ruthenium hydrides supported by the iPrPNPhP ligand always form the syn isomer (where syn/anti refer to the relative orientation of the group on nitrogen and the hydride ligand on ruthenium), whereas complexes supported by iPrPNHP form the anti isomer and complexes supported by iPrPNMeP form a mixture of syn and anti isomers. We evaluated the impact of the nitrogen substituent of the pincer ligand in catalysis by comparing a series of iPrPNRP (R = H, Me, Ph)-ligated ruthenium hydride complexes as catalysts for formic acid dehydrogenation and carbon dioxide (CO2) hydrogenation to formate. The iPrPNPhP-ligated species is the most active for formic acid dehydrogenation, and mechanistic studies suggest that this is likely because there are kinetic advantages for catalysts that operate via the syn isomer. In CO2 hydrogenation, the iPrPNPhP-ligated species is again the most active under our optimal conditions, and we report some of the highest turnover frequencies for homogeneous catalysts. Experimental and theoretical insights into the turnover-limiting step of catalysis provide a basis for the observed trends in catalytic activity. Additionally, the stability of our complexes enabled us to detect a previously unobserved autocatalytic effect involving the base that is added to drive the reaction. Overall, by modifying the nitrogen substituent on the MACHO ligand, we have developed highly active catalysts for formic acid dehydrogenation and CO2 hydrogenation and also provided a framework for future catalyst development.
Collapse
Affiliation(s)
- Julia B Curley
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Clayton Hert
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Wesley H Bernskoetter
- The Department of Chemistry, The University of Missouri, Columbia, Missouri 65211, United States
| | - Nilay Hazari
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- The Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| |
Collapse
|
19
|
Rodríguez-Huerto PA, Peña-Solórzano D, Ochoa-Puentes C. Nitroarenes as versatile building blocks for the synthesis of unsymmetrical urea derivatives and N-Arylmethyl-2-substituted benzimidazoles. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01785-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Yang J, Chen L, Dong Y, Zhang J, Wu Y. Di-tert-butyl peroxide (DTBP)-mediated synthesis of symmetrical N,N′-disubstituted urea/thiourea motifs from isothiocyanates in water. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.2001017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jinchen Yang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhenzhou, China
| | - Ling Chen
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhenzhou, China
| | - Yibo Dong
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhenzhou, China
| | - Jinli Zhang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhenzhou, China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry, Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhenzhou, China
| |
Collapse
|
21
|
Karimi F, Shariatipour M, Heydari A. Deep Eutectic Solvent Mediated Carbonylation of Amines and Alcohols by Using Dimethyl Carbonate: Selective Symmetrical Urea and Organic Carbonate Synthesis. ChemistrySelect 2021. [DOI: 10.1002/slct.202103076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Farzaneh Karimi
- Chemistry Department Tarbiat Modares University Tehran Iran E-mail: heydar
| | | | - Akbar Heydari
- Chemistry Department Tarbiat Modares University Tehran Iran E-mail: heydar
| |
Collapse
|
22
|
Trincado M, Bösken J, Grützmacher H. Homogeneously catalyzed acceptorless dehydrogenation of alcohols: A progress report. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213967] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Biswas N, Srimani D. Ru-Catalyzed Selective Catalytic Methylation and Methylenation Reaction Employing Methanol as the C1 Source. J Org Chem 2021; 86:10544-10554. [PMID: 34263597 DOI: 10.1021/acs.joc.1c01185] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Methanol can be employed as a green and sustainable methylating agent to form C-C and C-N bonds via borrowing hydrogen (BH) methodology. Herein we explored the activity of the acridine-derived SNS-Ru pincer for the activation of methanol to apply it as a C1 building block in different reactions. Our catalytic system shows great success toward the β-C(sp3)-methylation reaction of 2-phenylethanols to provide good to excellent yields of the methylated products. We investigated the mechanistic details, kinetic progress, and temperature-dependent product distribution, which revealed the slow and steady generation of in situ formed aldehyde, is the key factor to get the higher yield of the β-methylated product. To establish the environmental benefit of this reaction, green chemistry metrics are calculated. Furthermore, dimerization of 2-naphthol via methylene linkage and formation of N-methylation of amine are also described in this study, which offers a wide range of substrate scope with a good to excellent yield.
Collapse
Affiliation(s)
- Nandita Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
24
|
Kumar A, Armstrong D, Peters G, Nagala M, Shirran S. Direct synthesis of polyureas from the dehydrogenative coupling of diamines and methanol. Chem Commun (Camb) 2021; 57:6153-6156. [PMID: 34042925 DOI: 10.1039/d1cc01121a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report here the first example of the direct synthesis of polyureas from the dehydrogenative coupling of diamines and methanol using a ruthenium pincer catalyst. The present methodology replaces the use of toxic diisocyanates, conventionally used for the production of polyureas, with methanol, which is renewable, less toxic, and cheaper, making the overall process safer and more sustainable. Further advantages of the current method have been demonstrated by the synthesis of a renewable, a chiral, and the first 13C-labelled polyurea.
Collapse
Affiliation(s)
- Amit Kumar
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, KY169ST, UK.
| | - Daniel Armstrong
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, KY169ST, UK.
| | - Gavin Peters
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, KY169ST, UK.
| | - Manjula Nagala
- BSRC Mass Spectrometry and Proteomics Facility, University of St. Andrews, North Haugh, St. Andrews, KY169ST, UK
| | - Sally Shirran
- BSRC Mass Spectrometry and Proteomics Facility, University of St. Andrews, North Haugh, St. Andrews, KY169ST, UK
| |
Collapse
|
25
|
Kalita T, Dev D, Mondal S, Giri RS, Mandal B. Ethyl‐2‐Cyano‐2‐(2‐Nitrophenylsulfonyloximino)Acetate (
ortho
‐NosylOXY) Mediated One‐Pot Racemization Free Synthesis of Ureas, Carbamates, and Thiocarbamates via Curtius Rearrangement. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tapasi Kalita
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| | - Dharm Dev
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| | - Sandip Mondal
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| | - Rajat Subhra Giri
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| | - Bhubaneswar Mandal
- Department of Chemistry Indian Institute of Technology Guwahati 781039 Guwahati Assam India
| |
Collapse
|
26
|
Smolobochkin AV, Gazizov AS, Burilov AR, Pudovik MA, Sinyashin OG. Advances in the synthesis of heterocycles bearing an endocyclic urea moiety. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Watson RB, Butler TW, DeForest JC. Preparation of Carbamates, Esters, Amides, and Unsymmetrical Ureas via Brønsted Acid-Activated N-Acyl Imidazoliums. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rebecca B. Watson
- Groton Laboratories, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Todd W. Butler
- Groton Laboratories, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Jacob C. DeForest
- Groton Laboratories, Pfizer Worldwide Research and Development, 558 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
28
|
Wang WQ, Wang ZQ, Sang W, Zhang R, Cheng H, Chen C, Peng DY. Dehydrogenative amide synthesis from alcohols and amines utilizing N-heterocyclic carbene-based ruthenium complexes as efficient catalysts: The influence of catalyst loadings, ancillary and added ligands. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Laha JK, Singh N, Hunjan MK. Synthesis of unsymmetrical urea from aryl- or pyridyl carboxamides and aminopyridines using PhI(OAc) 2via in situ formation of aryl- or pyridyl isocyanates. NEW J CHEM 2021. [DOI: 10.1039/d1nj03160k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of unsymmetrical ureas (N-aryl-N′-pyridylurea and N,N′-bipyridylurea) from aryl- or pyridyl carboxamides and aminopyridines in the presence of PhI(OAc)2 has been reported. The formation of pyridylisocyanates from their corresponding carboxamides via Hofmann rearrangement is confirmed.
Collapse
Affiliation(s)
- Joydev K. Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| | - Neha Singh
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| | - Mandeep Kaur Hunjan
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India
| |
Collapse
|
30
|
Fan A, Peng J, Zhou D, Li X, Chen C. Palladium-catalyzed decarbonylative C–N coupling to convert arylcarbamoyl chlorides to urea derivatives. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1793207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Aihong Fan
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Jinsong Peng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Dun Zhou
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Xiang Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, PR China
| |
Collapse
|
31
|
Abstract
Our planet urgently needs sustainable solutions to alleviate the anthropogenic global warming and climate change. Homogeneous catalysis has the potential to play a fundamental role in this process, providing novel, efficient, and at the same time eco-friendly routes for both chemicals and energy production. In particular, pincer-type ligation shows promising properties in terms of long-term stability and selectivity, as well as allowing for mild reaction conditions and low catalyst loading. Indeed, pincer complexes have been applied to a plethora of sustainable chemical processes, such as hydrogen release, CO2 capture and conversion, N2 fixation, and biomass valorization for the synthesis of high-value chemicals and fuels. In this work, we show the main advances of the last five years in the use of pincer transition metal complexes in key catalytic processes aiming for a more sustainable chemical and energy production.
Collapse
|
32
|
Wang L, Wang H, Wang Y, Shen M, Li S. Photocatalyzed synthesis of unsymmetrical ureas via the oxidative decarboxylation of oxamic acids with PANI-g-C3N4-TiO2 composite under visible light. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Biswas N, Sharma R, Srimani D. Ruthenium Pincer Complex Catalyzed Selective Synthesis of C‐3 Alkylated Indoles and Bisindolylmethanes Directly from Indoles and Alcohols. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000326] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nandita Biswas
- Department of ChemistryIndian Institute of Technology Guwahati Assam India 781039
| | - Rahul Sharma
- Department of ChemistryIndian Institute of Technology Guwahati Assam India 781039
| | - Dipankar Srimani
- Department of ChemistryIndian Institute of Technology Guwahati Assam India 781039
| |
Collapse
|
34
|
Kerdphon S, Sanghong P, Chatwichien J, Choommongkol V, Rithchumpon P, Singh T, Meepowpan P. Commercial Copper-Catalyzed Aerobic Oxidative Synthesis of Quinazolinones from 2-Aminobenzamide and Methanol. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000257] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sutthichat Kerdphon
- Department of Chemistry; Faculty of Science; Naresuan University; 65000 Phitsanulok Thailand
| | - Patthadon Sanghong
- Department of Chemistry; Faculty of Science; Naresuan University; 65000 Phitsanulok Thailand
| | - Jaruwan Chatwichien
- Program in Chemical Sciences; Chulabhorn Graduate Institute; Chulabhorn Royal Academy; 10210 Bangkok Thailand
| | - Vachira Choommongkol
- Department of Chemistry; Faculty of Science; Maejo University; 50290 Chiang Mai Thailand
| | - Puracheth Rithchumpon
- Department of Chemistry; Faculty of Science, and Graduate School; Chiang Mai University; 50200 Chiang Mai Thailand
| | - Thishana Singh
- School of Chemistry and Physics; University of Kwazulu-Natal; Private Bag X54001 4000 Durban South Africa
| | - Puttinan Meepowpan
- Department of Chemistry; Faculty of Science, and Graduate School; Chiang Mai University; 50200 Chiang Mai Thailand
- Center of Excellence in Materials Science and Technology; Chiang Mai University; 239 Huay Kaew Road 50200 Chiang Mai Thailand
| |
Collapse
|
35
|
Yoo K, Lee J, Park MH, Kim Y, Kim HJ, Kim M. Ir-Catalyzed C–H Amidation Using Carbamoyl Azides for the Syntheses of Unsymmetrical Ureas. J Org Chem 2020; 85:6233-6241. [DOI: 10.1021/acs.joc.0c00659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kwangho Yoo
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Jooyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Myung Hwan Park
- Department of Chemistry Education, Chungbuk National University, Cheongju 28644, Korea
| | - Youngjo Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Hyun Jin Kim
- Innovative Therapeutic Research Center, Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
- Department of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Korea
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
36
|
Ran X, Long Y, Yang S, Peng C, Zhang Y, Qian S, Jiang Z, Zhang X, Yang L, Wang Z, Yu X. A novel route to unsymmetrical disubstituted ureas and thioureas by HMPA catalyzed reductive alkylation with trichlorosilane. Org Chem Front 2020. [DOI: 10.1039/c9qo01321k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A HMPA catalyzed reductive alkylation of ureas and thioureas with trichlorosilane under mild reaction conditions has been developed.
Collapse
Affiliation(s)
- Xiaoyun Ran
- Department of Chemistry
- Xihua University
- Chengdu
- China
| | - Yan Long
- Department of Chemistry
- Xihua University
- Chengdu
- China
| | - Sheng Yang
- Department of Chemistry
- Xihua University
- Chengdu
- China
| | | | | | - Shan Qian
- Department of Pharmaceutics Engineering
- Xihua University
- Chengdu
- China
| | - Zhenju Jiang
- Department of Chemistry
- Xihua University
- Chengdu
- China
| | | | - Lingling Yang
- Department of Pharmaceutics Engineering
- Xihua University
- Chengdu
- China
| | - Zhouyu Wang
- Department of Chemistry
- Xihua University
- Chengdu
- China
| | - Xiaoqi Yu
- Department of Chemistry
- Xihua University
- Chengdu
- China
| |
Collapse
|
37
|
Meng XJ, Pan YZ, Mo SK, Wang HS, Tang HT, Pan YM. Electrochemical α-methoxymethylation and aminomethylation of propiophenones using methanol as a green C1 source. Org Chem Front 2020. [DOI: 10.1039/d0qo00593b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have developed an efficient and convenient strategy for the straightforward α-methoxymethylation and aminomethylation of a series of propiophenones.
Collapse
Affiliation(s)
- Xiu-Jin Meng
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- People's Republic of China
| | - Yong-Zhou Pan
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- People's Republic of China
| | - Shi-Kun Mo
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- People's Republic of China
| | - Heng-Shan Wang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- People's Republic of China
| | - Hai-Tao Tang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- People's Republic of China
| | - Ying-Ming Pan
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University
- Guilin 541004
- People's Republic of China
| |
Collapse
|
38
|
Paul B, Maji M, Chakrabarti K, Kundu S. Tandem transformations and multicomponent reactions utilizing alcohols following dehydrogenation strategy. Org Biomol Chem 2020; 18:2193-2214. [DOI: 10.1039/c9ob02760b] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this review, the progress of tandem transformation of nitro, nitrile and azide functionalities is summarised to develop new C–C and C–N bonds as well as multi-component reactions using alcohols.
Collapse
Affiliation(s)
- Bhaskar Paul
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Milan Maji
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Kaushik Chakrabarti
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sabuj Kundu
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
39
|
He X, Yang C, Wu Y, Xie M, Li R, Duan J, Shang Y. Synthesis of unsymmetrical urea derivatives via one-pot sequential three-component reactions of cyclic 2-diazo-1,3-diketones, carbodiimides, and 1,2-dihaloethanes. Org Biomol Chem 2020; 18:4178-4182. [DOI: 10.1039/d0ob00683a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An effective and operationally simple one-pot strategy has been developed for the synthesis of unsymmetrical urea derivatives via sequential three-component reactions of cyclic 2-dizao-1,3-diketones with carbodiimides and 1,2-dihaloethane.
Collapse
Affiliation(s)
- Xinwei He
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Cheng Yang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Yinsong Wu
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Mengqing Xie
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Ruxue Li
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Jiahui Duan
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base)
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
40
|
Wang W, Yuan Y, Miao Y, Yu B, Wang H, Wang Z, Sang W, Chen C, Verpoort F. Well‐defined N‐heterocyclic carbene/ruthenium complexes for the alcohol amidation with amines: The dual role of cesium carbonate and improved activities applying an added ligand. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Wan‐Qiang Wang
- Department of Chemical Engineering and Food ScienceHubei University of Arts and Science 296 Longzhong Road Xiangyang 441053 P. R. China
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Yang Miao
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
- School of Materials Science and EngineeringWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Bao‐Yi Yu
- Key Laboratory of Urban Agriculture (North China), Ministry of AgricultureBeijing University of Agriculture Beinong Road 7 Beijing 102206 P. R. China
| | - Hua‐Jing Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
- School of Chemistry, Chemical Engineering and Life SciencesWuhan University of Technology Wuhan 430070 P. R. China
| | - Zhi‐Qin Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
- School of Materials Science and EngineeringWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Wei Sang
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
- School of Materials Science and EngineeringWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
- School of Materials Science and EngineeringWuhan University of Technology 122 Luoshi Road Wuhan 430070 P. R. China
- National Research Tomsk Polytechnic University Lenin Avenue 30 Tomsk 634050 Russian Federation
- Ghent University Global Campus 119 Songdomunhwa‐Ro, Yeonsu‐Gu Incheon 21985 South Korea
| |
Collapse
|
41
|
Abstract
The urea functionality is inherent to numerous bioactive compounds, including a variety of clinically approved therapies. Urea containing compounds are increasingly used in medicinal chemistry and drug design in order to establish key drug-target interactions and fine-tune crucial drug-like properties. In this perspective, we highlight physicochemical and conformational properties of urea derivatives. We provide outlines of traditional reagents and chemical procedures for the preparation of ureas. Also, we discuss newly developed methodologies mainly aimed at overcoming safety issues associated with traditional synthesis. Finally, we provide a broad overview of urea-based medicinally relevant compounds, ranging from approved drugs to recent medicinal chemistry developments.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Margherita Brindisi
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Excellence of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
42
|
Bruffaerts J, von Wolff N, Diskin-Posner Y, Ben-David Y, Milstein D. Formamides as Isocyanate Surrogates: A Mechanistically Driven Approach to the Development of Atom-Efficient, Selective Catalytic Syntheses of Ureas, Carbamates, and Heterocycles. J Am Chem Soc 2019; 141:16486-16493. [PMID: 31532664 DOI: 10.1021/jacs.9b08942] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Despite the hazardous nature of isocyanates, they remain key building blocks in bulk and fine chemical synthesis. By surrogating them with less potent and readily available formamide precursors, we herein demonstrate an alternative, mechanistic approach to selectively access a broad range of ureas, carbamates, and heterocycles via ruthenium-based pincer complex catalyzed acceptorless dehydrogenative coupling reactions. The design of these highly atom-efficient procedures was driven by the identification and characterization of the relevant organometallic complexes, uniquely exhibiting the trapping of an isocyanate intermediate. Density functional theory (DFT) calculations further contributed to shed light on the remarkably orchestrated chain of catalytic events, involving metal-ligand cooperation.
Collapse
Affiliation(s)
- Jeffrey Bruffaerts
- Department of Organic Chemistry , The Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Niklas von Wolff
- Department of Organic Chemistry , The Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Yael Diskin-Posner
- Department of Organic Chemistry , The Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Yehoshoa Ben-David
- Department of Organic Chemistry , The Weizmann Institute of Science , Rehovot 76100 , Israel
| | - David Milstein
- Department of Organic Chemistry , The Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|
43
|
Abstract
Amide bonds are amongst the most fundamental groups in organic synthesis, and they are widely found in natural products, pharmaceuticals and material science. Over the past decade, methods for the direct amination of aldehydes have received much attention as they represent atom- and step-economic routes for amide synthesis from readily available starting materials. Herein, the research advances on the direct amination of aldehydes are reviewed and categorized by the types of catalyst system. Detailed reaction scopes and mechanisms will be discussed, as well as the limitations of current procedures and the prospects for the future.
Collapse
Affiliation(s)
- Yaorui Ma
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Junfei Luo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
44
|
Patil M, Poyil AN, Joshi SD, Patil SA, Patil SA, Bugarin A. Synthesis, molecular docking studies, and antimicrobial evaluation of new structurally diverse ureas. Bioorg Chem 2019; 87:302-311. [DOI: 10.1016/j.bioorg.2019.03.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/09/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
|
45
|
Smolobochkin AV, Gazizov AS, Burilov AR, Pudovik MA. Ureas bearing alkylaromatic moieties: their synthesis and biological activity. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2473-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
|
47
|
Yu H, Wu Z, Wei Z, Zhai Y, Ru S, Zhao Q, Wang J, Han S, Wei Y. N-formylation of amines using methanol as a potential formyl carrier by a reusable chromium catalyst. Commun Chem 2019. [DOI: 10.1038/s42004-019-0109-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
48
|
Satish G, Polu A, Kota L, Ilangovan A. Copper-catalyzed oxidative amination of methanol to access quinazolines. Org Biomol Chem 2019; 17:4774-4782. [DOI: 10.1039/c9ob00392d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel method for the copper-catalyzed oxidative amination of 2′-aminoarylketones with methanol as a C1 carbon source and ammonium acetate as an amine source to construct quinazolines was established in a one-pot manner.
Collapse
Affiliation(s)
| | - Ashok Polu
- School of Chemistry
- Bharathidasan University
- Tiruchirappalli
- India
| | - Laxman Kota
- School of Chemistry
- Bharathidasan University
- Tiruchirappalli
- India
| | | |
Collapse
|
49
|
Wu XJ, Wang HJ, Yang ZQ, Tang XS, Yuan Y, Su W, Chen C, Verpoort F. Efficient and phosphine-free bidentate N-heterocyclic carbene/ruthenium catalytic systems for the dehydrogenative amidation of alcohols and amines. Org Chem Front 2019. [DOI: 10.1039/c8qo00902c] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient and phosphine-free bidentate NHC/Ru catalytic system was discovered for the dehydrogenative amide synthesis from alcohols and amines.
Collapse
Affiliation(s)
- Xuan-Jun Wu
- School of Chemistry
- Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Hua-Jing Wang
- School of Chemistry
- Chemical Engineering and Life Sciences
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Zhao-Qi Yang
- School of Pharmaceutical Sciences
- Jiangnan University
- Jiangsu 214122
- China
| | - Xiao-Sheng Tang
- Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education) College of Optoelectronic Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Ye Yuan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Wei Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Cheng Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
| | - Francis Verpoort
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing
- Wuhan University of Technology
- Wuhan 430070
- P. R. China
- National Research Tomsk Polytechnic University
| |
Collapse
|
50
|
Wang L, Wang H, Li G, Min S, Xiang F, Liu S, Zheng W. Pd/C-Catalyzed Domino Synthesis of Urea Derivatives Using Chloroform as the Carbon Monoxide Source in Water. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800954] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Liang Wang
- School of Petrochemical Engineering; Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology; Changzhou University, Gehu Raod 1, Wujin, Changzhou; 213164 People's Republic of China
| | - Hao Wang
- School of Petrochemical Engineering; Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology; Changzhou University, Gehu Raod 1, Wujin, Changzhou; 213164 People's Republic of China
| | - Guiqing Li
- School of Petrochemical Engineering; Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology; Changzhou University, Gehu Raod 1, Wujin, Changzhou; 213164 People's Republic of China
| | - Shuliang Min
- School of Petrochemical Engineering; Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology; Changzhou University, Gehu Raod 1, Wujin, Changzhou; 213164 People's Republic of China
| | - Fangyuan Xiang
- School of Petrochemical Engineering; Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology; Changzhou University, Gehu Raod 1, Wujin, Changzhou; 213164 People's Republic of China
| | - Shiqi Liu
- School of Petrochemical Engineering; Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology; Changzhou University, Gehu Raod 1, Wujin, Changzhou; 213164 People's Republic of China
| | - Waigang Zheng
- School of Petrochemical Engineering; Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology; Changzhou University, Gehu Raod 1, Wujin, Changzhou; 213164 People's Republic of China
| |
Collapse
|