1
|
Xu J, Yan ZC, Liu L, Qin L, Fan X, Zou Y, Zhang Q, Xu HJ. Copper-catalyzed highly switchable defluoroborylation and hydrodefluorination of 1-(trifluoromethyl)alkynes. Nat Commun 2024; 15:7079. [PMID: 39152133 PMCID: PMC11329652 DOI: 10.1038/s41467-024-51519-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024] Open
Abstract
CF2-containing compounds hold significant potential in drug discovery, organic synthesis, and materials science. However, synthesizing various CF2-containing building blocks from a single compound remains challenging. Here, we present a Cu-catalyzed, switchable defluoroborylation and hydrodefluorination of trifluoromethylated alkynes, yielding four types of CF2-containing compounds. The chemo- and regio-selective sp2/sp3 1,2-diborylation and sp2 monoborylation of 1-(trifluoromethyl)alkynes are controlled by adjusting the solvent and ligand quantity. Additionally, altering the base allows selective generation of gem-difluoroalkenes or difluoromethylalkenes. Notably, our method prevents over-defluorination of the CF3 group on unsaturated C-C bonds during nucleophilic additions, preserving the pharmaceutically valuable CF2 group. Experimental data and density functional theory (DFT) calculations elucidate the regioselectivities of Cu-Bpin addition and the regulatory role of the ligand in selective deborylation processes.
Collapse
Affiliation(s)
- Jun Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, China
| | - Zhao-Cheng Yan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, China
| | - Li Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, China
| | - Long Qin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xuan Fan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yu Zou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Qi Zhang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, China.
| | - Hua-Jian Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.
| |
Collapse
|
2
|
Lu Z, Wang L, Hughes M, Smith S, Shen Q. nBu 4N +[Ag I(CF 3) 2] -: Trifluoromethylated Argentate Derived from Fluoroform and Its Reaction with (Hetero)Aryl Diazonium Salts. Org Lett 2024; 26:2773-2777. [PMID: 37791681 DOI: 10.1021/acs.orglett.3c02804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The preparation of a well-defined trifluoromethylated argentate nBu4N+[Ag(CF3)2]- 1 from fluoroform was described. The complex was stable in the solid state and in solution under an inert atmosphere. Treatment of a variety of (hetero)aryl diazonium tetrafluoroborates with nBu4N+[Ag(CF3)2]- 1 generated trifluoromethylated (hetero)arenes in good to excellent yields. Preliminary experiments were conducted, and a reasonable mechanism of the reaction was proposed.
Collapse
Affiliation(s)
- Zehai Lu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Linhua Wang
- Syngenta Crop Protection, Product Technology and Engineering, 410 Swing Rd, Greensboro, North Carolina 27409, United States
| | - Matthew Hughes
- Syngenta Crop Protection, Manufacturing Centre, Huddersfield HD2 1FF, U.K
| | - Stephen Smith
- Syngenta Crop Protection, Jealotts Hill Research Centre, Bracknell RG42 6EY, U.K
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
3
|
Joven-Sancho D, Echeverri A, Saffon-Merceron N, Contreras-García J, Nebra N. An Organocopper(III) Fluoride Triggering C-CF 3 Bond Formation. Angew Chem Int Ed Engl 2024; 63:e202319412. [PMID: 38147576 DOI: 10.1002/anie.202319412] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
Copper(III) fluorides are catalytically competent, yet elusive, intermediates in cross-coupling. The synthesis of [PPh4 ][CuIII (CF3 )3 F] (2), the first stable (isolable) CuIII -F, was accomplished via chloride addition to [CuIII (CF3 )3 (py)] (1) yielding [PPh4 ][CuIII (CF3 )3 Cl(py)] (1⋅Cl), followed by treatment with AgF. The CuIII halides 1⋅Cl and 2 were fully characterized using nuclear magnetic resonance (NMR) spectroscopy, single crystal X-ray diffraction (Sc-XRD) and elemental analysis (EA). Complex 2 proved capable of forging C-CF3 bonds from silyl-capped alkynes. In-depth mechanistic studies combining probes, theoretical calculations, trapping of intermediate 4a ([PPh4 ][CuIII (CF3 )3 (C≡CPh)]) and radical tests unveil the key role of the CuIII acetylides that undergo facile 2e- reductive elimination furnishing the trifluoromethylated alkynes (RC≡CCF3 ), which are industrially relevant synthons in drug discovery, pharma and agrochemistry.
Collapse
Affiliation(s)
- Daniel Joven-Sancho
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| | - Andrea Echeverri
- Laboratoire de Chimie Théorique (LCT), Sorbonne Université, CNRS, 4, Place Jussieu, 75005, Paris, France
| | - Nathalie Saffon-Merceron
- Institut de Chimie de Toulouse ICT-UAR2599, Université Paul Sabatier, CNRS, 31062, Toulouse Cedex, France
| | - Julia Contreras-García
- Laboratoire de Chimie Théorique (LCT), Sorbonne Université, CNRS, 4, Place Jussieu, 75005, Paris, France
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS, 118 Route de Narbonne, 31062, Toulouse, France
| |
Collapse
|
4
|
Shi X, Yu B, Zhou X, Yang Y. Photoinduced selective perfluoroalkylation of terminal alkynes via electron donor-acceptor complexes. Chem Commun (Camb) 2024; 60:2532-2535. [PMID: 38329183 DOI: 10.1039/d4cc00105b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Herein, we report a photoinduced selective perfluoroalkylation of terminal alkynes driven by the noncovalent interaction between a thymol anion and fluoroalkyl iodides. By precisely tuning the reaction solvent, a wide range of 37 structurally diverse perfluoroalkylated alkynes and alkenes, including ibuprofen, empagliflozin, galactose, isoxepac and indomethacin, were obtained in up to 92% yields. Mechanistic studies reveal the formation of EDA complexes between the thymol anion and fluoroalkyl iodides. This strategy may provide an important complement to traditional approaches to prepare useful perfluoroalkylated alkynes and alkenes.
Collapse
Affiliation(s)
- Xiaolin Shi
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Bo Yu
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Zhou
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Yong Yang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Koga A, Matsuda M, Tanaka R, Endo M, Yamada Y, Hanamoto T. Highly regio- and stereocontrolled preparation of α-(trifluoromethyl)-β-(phenylthio) enamines by the hydroamination of in situ-synthesized 1-(trifluoromethyl)-2-(phenylthio)ethyne. Org Biomol Chem 2023; 21:8528-8534. [PMID: 37840524 DOI: 10.1039/d3ob01473h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Various nitrogen nucleophiles were easily added to in situ-generated 1-(trifluoromethyl)-2-(phenylthio)ethyne to afford the corresponding trifluoromethyl enamines in good-to-high yields and with high regio- and stereocontrol under very mild conditions.
Collapse
Affiliation(s)
- Akihiro Koga
- Department of Chemistry and Applied Chemistry, Saga University, Honjyo-machi 1, Saga 840-8502, Japan.
| | - Maki Matsuda
- Department of Chemistry and Applied Chemistry, Saga University, Honjyo-machi 1, Saga 840-8502, Japan.
| | - Rin Tanaka
- Department of Chemistry and Applied Chemistry, Saga University, Honjyo-machi 1, Saga 840-8502, Japan.
| | - Minami Endo
- Department of Chemistry and Applied Chemistry, Saga University, Honjyo-machi 1, Saga 840-8502, Japan.
| | - Yasunori Yamada
- Department of Chemistry and Applied Chemistry, Saga University, Honjyo-machi 1, Saga 840-8502, Japan.
| | - Takeshi Hanamoto
- Department of Chemistry and Applied Chemistry, Saga University, Honjyo-machi 1, Saga 840-8502, Japan.
| |
Collapse
|
6
|
Karuo Y, Tarui A, Sato K, Kawai K, Omote M. Reactions Using Freons and Halothane as Halofluoroalkyl/Halofluoroalkenyl Building Blocks. CHEM REC 2023; 23:e202300029. [PMID: 37017496 DOI: 10.1002/tcr.202300029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/15/2023] [Indexed: 04/06/2023]
Abstract
In recent years, hydrofluorocarbon compounds such as chlorofluorocarbons, hydrochlorofluorocarbons, and 2-bromo-2-chloro-1,1,1-trifluoroethane (halothane) have been used as fluorine-containing building blocks to construct functional fluorine-containing compounds, e. g., polymers, liquid crystals, and medicines. Hydrofluorocarbons promote the formation of reactive fluoroalkyl or fluoroalkenyl species via anionic or radical processes, and these species can act as nucleophiles or electrophiles depending on the reaction conditions. Progress in fluorine chemistry using hydrofluorocarbons in the last 30 years is described in this review and diverse reactions are discussed, including the fluoroalkyl/alkenyl products and proposed mechanisms involved.
Collapse
Affiliation(s)
- Yukiko Karuo
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Atushi Tarui
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Kazuyuki Sato
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Kentaro Kawai
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| | - Masaaki Omote
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-0101, Japan
| |
Collapse
|
7
|
Seong CM, Roberts CC. Redox-Neutral Decarboxylative and Desulfonylative C(sp 3) Trifluoromethylation: Method Development and Mechanistic Inquiry. J Org Chem 2023. [PMID: 37467365 DOI: 10.1021/acs.joc.3c00872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Sodium triflinate (CF3SO2Na) is an inexpensive bench-stable radical CF3 source that is often activated by external oxidants such as peroxides. However, despite the commercial accessibility of CF3SO2Na, the salt has never been applied to decarboxylative trifluoromethylation due to challenges in controlled cross-radical coupling. We report a redox-neutral approach to decarboxylative C(sp3) trifluoromethylation of carboxylic acid derivatives. Mechanistic inquiry is performed to address the limitations in scope.
Collapse
Affiliation(s)
- Chris M Seong
- University of Minnesota, Department of Chemistry, Minneapolis, Minnesota 55455, United States
| | - Courtney C Roberts
- University of Minnesota, Department of Chemistry, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Shi X, Song T, Li Q, Guo X, Yang Y. Mesoporous Graphitic Carbon Nitride Photocatalyzed Switchable Divergent Perfluoroalkylation of Terminal Alkynes. Org Lett 2022; 24:8724-8728. [DOI: 10.1021/acs.orglett.2c03814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Xiaolin Shi
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao, Shandong 266101, People’s Republic of China
| | - Tao Song
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao, Shandong 266101, People’s Republic of China
- Shandong Energy Institute, Qingdao, Shandong 266101, People’s Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, People’s Republic of China
| | - Qinglin Li
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao, Shandong 266101, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xiuling Guo
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao, Shandong 266101, People’s Republic of China
| | - Yong Yang
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences (CAS), Qingdao, Shandong 266101, People’s Republic of China
- Shandong Energy Institute, Qingdao, Shandong 266101, People’s Republic of China
- Qingdao New Energy Shandong Laboratory, Qingdao, Shandong 266101, People’s Republic of China
| |
Collapse
|
9
|
Tang L, Yang F, Zhang S, Lv G, Zhou Q, Zheng L. Fe-Catalyzed Radical Trifluoromethyl-Alkenylation of Alkenes or Alkynes with 2-Amino-1,4-naphthoquinones. J Org Chem 2022; 87:7274-7290. [PMID: 35594549 DOI: 10.1021/acs.joc.2c00477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first Fe-catalyzed three-component radical trifluoromethyl-alkenylation of alkenes with 2-amino-1,4-naphthoquinones and CF3SO2Na is reported. The developed reaction enables the highly regioselective preparation of a variety of valuable CF3-substituted 1,4-naphthoquinones in acceptable yields. In the light of the catalytic system, alkynes smoothly afford the corresponding three- or four-component trifluoromethyl-alkenylation products. This protocol features use of easily available and inexpensive reagents, broad substrate scope, and simple reaction conditions.
Collapse
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Fang Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Shuai Zhang
- Nanjing Harris Bio-Pharmaceutical Technology Co. LTD, Nanjing, Jiangsu 211100, China
| | - Ge Lv
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Lingyun Zheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, Henan 464000, China
| |
Collapse
|
10
|
Mandal D, Maji S, Pal T, Sinha SK, Maiti D. Recent Advances in Transition-Metal Mediated Trifluoromethylation Reactions. Chem Commun (Camb) 2022; 58:10442-10468. [DOI: 10.1039/d2cc04082d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorine compounds are known for their abundance in more than 20% of pharmaceutical and agrochemical products mainly due to the enhanced lipophilicity, metabolic stability and pharmacokinetic properties of organofluorides. Consequently,...
Collapse
|
11
|
Li Y, Liu Y, Hao D, Li C, Liu Y, Gu Y, Vaccaro L, Liu P. Cu-catalyzed direct C1–H trifluoromethylation of pyrrolo[1,2-a]quinoxalines. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Tsui GC, Yang X. New Avenues in Copper-Mediated Trifluoromethylation Reactions Using Fluoroform as the CF3 Source. Synlett 2021. [DOI: 10.1055/a-1709-3098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractOrganic molecules containing the trifluoromethyl (CF3) group play a vital role in pharmaceuticals, agrochemicals, and materials. New trifluoromethylation methods should encompass capabilities to address issues in efficiency, selectivity, and CF3 source all at once. Fluoroform (CF3H), an industrial byproduct, has emerged as an attractive CF3 source. The reaction profile of the [CuCF3] reagent derived from fluoroform has surpassed its original applications in cross-coupling-type trifluoromethylation. We have discovered a host of unique copper-mediated trifluoromethylation reactions using [CuCF3] from fluoroform, especially under oxidative conditions, to deliver efficient and selective synthesis of trifluoromethylated compounds.1 Introduction2 Construction of C–CF3 Bonds for the Synthesis of Trifluoromethylated Building Blocks2.1 C(sp)–CF3 Bond Formation2.2 C(sp2)–CF3 Bond Formation2.3 C(sp3)–CF3 Bond Formation3 Domino Synthesis of Trifluoromethylated Heterocycles3.1 3-(Trifluoromethyl)indoles3.2 3-(Trifluoromethyl)benzofurans3.3 2-(Trifluoromethyl)indoles4 Trifluoromethylative Difunctionalization of Arynes4.1 Trifluoromethylation–Allylation of Arynes4.2 1,2-Bis(trifluoromethylation) of Arynes5 Pentafluoroethylation of Unactivated Alkenes6 Conclusion
Collapse
|
13
|
Novel multi-functionalized fluorine-containing organometallics: Preparation and applications of tetrafluoroethylenated zinc reagent. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Hassanpour A, Poor Heravi MR, Ebadi A, Hosseinian A, Vessally E. Oxidative trifluoromethyl(thiol/selenol)ation of terminal alkynes: An overview. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109762] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
Fan S, Zheng C, Zheng K, Li J, Liu Y, Yan F, Xiao H, Feng YS, Zhu YY. Copper-Catalyzed Perfluoroalkylation of Alkynyl Bromides and Terminal Alkynes. Org Lett 2021; 23:3190-3194. [PMID: 33792322 DOI: 10.1021/acs.orglett.1c00906] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A copper-catalyzed one-pot perfluoroalkylation of alkynyl bromides and terminal alkynes has been disclosed, and the corresponding perfluoroalkylated alkynes could be attained in good to excellent yields. The new straightforward transformation shows high efficiency (0.01-0.5 mol % catalyst loading), broad substrate scope, and remarkable functional group tolerance and provides a facile approach for useful application in life and material sciences.
Collapse
Affiliation(s)
- Shilu Fan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chenggong Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
| | - Kaiting Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
| | - Junlan Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
| | - Yaomei Liu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
| | - Fangpei Yan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
| | - Hua Xiao
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
| | - Yi-Si Feng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
| | - Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, China
| |
Collapse
|
16
|
Fujihira Y, Liang Y, Ono M, Hirano K, Kagawa T, Shibata N. Synthesis of trifluoromethyl ketones by nucleophilic trifluoromethylation of esters under a fluoroform/KHMDS/triglyme system. Beilstein J Org Chem 2021; 17:431-438. [PMID: 33633811 PMCID: PMC7884878 DOI: 10.3762/bjoc.17.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
A straightforward method that enables the formation of biologically attractive trifluoromethyl ketones from readily available methyl esters using the potent greenhouse gas fluoroform (HCF3, HFC-23) was developed. The combination of fluoroform and KHMDS in triglyme at −40 °C was effective for this transformation, with good yields as high as 92%. Substrate scope of the trifluoromethylation procedure was explored for aromatic, aliphatic, and conjugated methyl esters. This study presents a straightforward trifluoromethylation process of various methyl esters that convert well to the corresponding trifluoromethyl ketones. The tolerance of various pharmacophores under the reaction conditions was also explored.
Collapse
Affiliation(s)
- Yamato Fujihira
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan
| | - Yumeng Liang
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan
| | - Makoto Ono
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan
| | - Kazuki Hirano
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan
| | - Takumi Kagawa
- Tosoh Finechem Corporation, 4988, Kaiseicho, Shunan, 746-0006, Japan
| | - Norio Shibata
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan.,Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan.,Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, 321004 Jinhua, China
| |
Collapse
|
17
|
Luo Z, Yang X, Tsui GC. Perfluoroalkylation of Thiosulfonates: Synthesis of Perfluoroalkyl Sulfides. Org Lett 2020; 22:6155-6159. [PMID: 32648444 DOI: 10.1021/acs.orglett.0c02235] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A practical synthesis of perfluoroalkyl sulfides is described. The method employs stable and readily accessible thiosulfonates as new electrophiles with commercial nucleophilic perfluoroalkylating reagents. The mild reaction conditions allow access to a wide variety of both aryl- and alkyl-substituted perfluoroalkyl sulfides amenable to pharmaceutical development. Furthermore, the reaction operation is straightforward, odorless, does not produce toxic wastes, and, therefore should appeal to practitioners in industrial-scale productions.
Collapse
Affiliation(s)
- Ziwei Luo
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Xinkan Yang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
18
|
Li J, Liu L, Zheng K, Zheng C, Xiao H, Fan S. Silver-Mediated Perfluoroalkylation of Terminal Alkynes with Perfluoroalkyl Iodides. J Org Chem 2020; 85:8723-8731. [PMID: 32508092 DOI: 10.1021/acs.joc.0c00894] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The incorporation of a perfluoroalkyl group (RF) into drug candidates has become an increasingly important strategy in drug molecule design. In this study, the silver-mediated perfluoroalkylation reaction based on the addition-elimination process of terminal alkynes which was initiated by a perfluoroalkyl radical to form a C(sp)-RF bond has been developed. The reaction proceeds under mild conditions using readily available, low-cost perfluoroalkyl iodides as the sources of the RF group. This method allows access to a variety of perfluoroalkylated alkynes.
Collapse
Affiliation(s)
- Junlan Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, People's Republic of China
| | - Lihua Liu
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230009, China
| | - Kaiting Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, People's Republic of China
| | - Chenggong Zheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, People's Republic of China
| | - Hua Xiao
- School of Food and Biological Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230009, China
| | - Shilu Fan
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Anhui 230000, People's Republic of China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
19
|
Hirano K, Saito T, Fujihira Y, Sedgwick DM, Fustero S, Shibata N. Diastereoselective Synthesis of Enantioenriched Trifluoromethylated Ethylenediamines and Isoindolines Containing Two Stereogenic Carbon Centers by Nucleophilic Trifluoromethylation Using HFC-23. J Org Chem 2020; 85:7976-7985. [DOI: 10.1021/acs.joc.0c00796] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kazuki Hirano
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan
| | - Takuya Saito
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan
| | - Yamato Fujihira
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan
| | - Daniel M. Sedgwick
- Departmento de Química Orgánica, Universitat de València, Burjassot 46100, Spain
| | - Santos Fustero
- Departmento de Química Orgánica, Universitat de València, Burjassot 46100, Spain
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-5888, Japan
- Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Avenue, Jinhua 321004, China
| |
Collapse
|
20
|
Zhang S, Weniger F, Kreyenschulte CR, Lund H, Bartling S, Neumann H, Ellinger S, Taeschler C, Beller M. Towards a practical perfluoroalkylation of (hetero)arenes with perfluoroalkyl bromides using cobalt nanocatalysts. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02460c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper report a convenient methodology for perfluoroalkylation including trifluoromethylation of (hetero)arenes with perfluoroalkyl bromides using a specific cobalt-based nanocatalyst.
Collapse
Affiliation(s)
- Shaoke Zhang
- Leibniz-Institut für Katalyse an der Universität Rostock e.V
- 18059 Rostock
- Germany
| | - Florian Weniger
- Leibniz-Institut für Katalyse an der Universität Rostock e.V
- 18059 Rostock
- Germany
| | | | - Henrik Lund
- Leibniz-Institut für Katalyse an der Universität Rostock e.V
- 18059 Rostock
- Germany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse an der Universität Rostock e.V
- 18059 Rostock
- Germany
| | - Helfried Neumann
- Leibniz-Institut für Katalyse an der Universität Rostock e.V
- 18059 Rostock
- Germany
| | | | | | - Matthias Beller
- Leibniz-Institut für Katalyse an der Universität Rostock e.V
- 18059 Rostock
- Germany
| |
Collapse
|
21
|
Xiang J, Ouyang Y, Xu X, Qing F. Argentination of Fluoroform: Preparation of a Stable AgCF
3
Solution with Diverse Reactivities. Angew Chem Int Ed Engl 2019; 58:10320-10324. [DOI: 10.1002/anie.201905782] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Jia‐Xiang Xiang
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Yao Ouyang
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiu‐Hua Xu
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Feng‐Ling Qing
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Key Laboratory of Science and Technology of Eco-TextilesMinistry of EducationCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 China
| |
Collapse
|
22
|
Zhao M, Yang X, Tsui GC, Miao Q. Trifluoromethylation of Anthraquinones for n-Type Organic Semiconductors in Field Effect Transistors. J Org Chem 2019; 85:44-51. [DOI: 10.1021/acs.joc.9b01263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mengna Zhao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xinkan Yang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qian Miao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
23
|
Xiang J, Ouyang Y, Xu X, Qing F. Argentination of Fluoroform: Preparation of a Stable AgCF
3
Solution with Diverse Reactivities. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jia‐Xiang Xiang
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Yao Ouyang
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiu‐Hua Xu
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Feng‐Ling Qing
- Key Laboratory of Organofluorine ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Key Laboratory of Science and Technology of Eco-TextilesMinistry of EducationCollege of Chemistry, Chemical Engineering and BiotechnologyDonghua University 2999 North Renmin Lu Shanghai 201620 China
| |
Collapse
|
24
|
Iqbal N, Iqbal N, Han SS, Cho EJ. Synthesis of fluoroalkylated alkynes via visible-light photocatalysis. Org Biomol Chem 2019; 17:1758-1762. [DOI: 10.1039/c8ob02486c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fluoroalkylated alkynes, which are versatile building blocks for the synthesis of various biologically active organofluorine compounds, were synthesized from easily available alkynyl halides and fluoroalkyl halides by visible-light photocatalysis.
Collapse
Affiliation(s)
- Naila Iqbal
- Department of Chemistry
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Naeem Iqbal
- Department of Chemistry
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Sung Su Han
- Department of Chemistry
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry
- Chung-Ang University
- Seoul 06974
- Republic of Korea
| |
Collapse
|
25
|
Ma Q, Tsui GC. Trifluoromethylation of α-diazoesters and α-diazoketones with fluoroform-derived CuCF3: synergistic effects of co-solvent and pyridine as a promoter. Org Chem Front 2019. [DOI: 10.1039/c8qo00834e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluoroform-derived CuCF3 can efficiently trifluoromethylate α-diazoesters and α-diazoketones. The key is the use of co-solvent and pyridine as a promoter.
Collapse
Affiliation(s)
- Qiao Ma
- Department of Chemistry
- The Chinese University of Hong Kong
- New Territories
- Hong Kong SAR
| | - Gavin Chit Tsui
- Department of Chemistry
- The Chinese University of Hong Kong
- New Territories
- Hong Kong SAR
| |
Collapse
|
26
|
Li M, Ye Y, He L, Hui M, Ng TB, Wong JH, Tsui GC. Domino Cyclization/Trifluoromethylation of 2‐Alknylphenols for the Synthesis of 3‐(Trifluoromethyl)benzofurans and Evaluation of their Antibacterial and Antifungal Activities. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Mengwan Li
- Department of ChemistryThe Chinese University of Hong Kong
| | - Yibin Ye
- Department of ChemistryThe Chinese University of Hong Kong
| | - Lisi He
- Department of ChemistryThe Chinese University of Hong Kong
| | - Mamie Hui
- Department of MicrobiologyThe Chinese University of Hong Kong
| | - Tzi Bun Ng
- School of Biomedical SciencesThe Chinese University of Hong Kong
| | - Jack Ho Wong
- School of Biomedical SciencesThe Chinese University of Hong Kong
- Shenzhen Research InstituteThe Chinese University of Hong Kong
| | | |
Collapse
|
27
|
Mestre J, Lishchynskyi A, Castillón S, Boutureira O. Trifluoromethylation of Electron-Rich Alkenyl Iodides with Fluoroform-Derived "Ligandless" CuCF 3. J Org Chem 2018; 83:8150-8160. [PMID: 29916255 DOI: 10.1021/acs.joc.8b00927] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We herein present a flexible approach for the incorporation of CF3 units into a predefined site of electron-rich alkenes that exploits the regiocontrolled introduction of an iodine handle and subsequent trifluoromethylation of the C(sp2)-I bond using fluoroform-derived "ligandless" CuCF3. The broad substrate scope and functional group tolerance together with the scalability and purity of the resulting products enabled the controlled, late-stage synthesis of single regioisomers of complex CF3-scaffolds, such as sugars, nucleosides (antivirals), and heterocycles (indoles and chromones), with potential for academic and industrial applications.
Collapse
Affiliation(s)
- Jordi Mestre
- Departament de Química Analítica i Química Orgànica , Universitat Rovira i Virgili , C/Marcel·lí Domingo 1 , 43007 Tarragona , Spain.,Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology (BIST) , Av. Països Catalans 16 , 43007 Tarragona , Spain
| | - Anton Lishchynskyi
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology (BIST) , Av. Països Catalans 16 , 43007 Tarragona , Spain
| | - Sergio Castillón
- Departament de Química Analítica i Química Orgànica , Universitat Rovira i Virgili , C/Marcel·lí Domingo 1 , 43007 Tarragona , Spain
| | - Omar Boutureira
- Departament de Química Analítica i Química Orgànica , Universitat Rovira i Virgili , C/Marcel·lí Domingo 1 , 43007 Tarragona , Spain
| |
Collapse
|
28
|
Konik YA, Kudrjashova M, Konrad N, Kaabel S, Järving I, Lopp M, Kananovich DG. Two-step conversion of carboxylic esters into distally fluorinated ketones via ring cleavage of cyclopropanol intermediates: application of sulfinate salts as fluoroalkylating reagents. Org Biomol Chem 2018; 15:4635-4643. [PMID: 28513753 DOI: 10.1039/c7ob00680b] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tertiary cyclopropanols easily available from carboxylic esters have been used in the synthesis of distally fluorinated ketones. Cyclopropane ring cleavage reactions in methanol with aqueous tert-butyl hydroperoxide in the presence of a copper(ii) acetate catalyst and sodium triflinate (Langlois reagent) afford β-trifluoromethyl ketones in 16-74% isolated yields. Sodium triflinate serves as a precursor of reactive trifluoromethyl copper species, enabling ring-opening trifluoromethylation, as evidenced by mechanistic studies. We also demonstrate here that other sulfinate salts, such as sodium 1,1-difluoroethanesulfinate, sodium 2-(4-bromophenyl)-1,1-difluoroethanesulfinate and sodium 1-(trifluoromethyl)cyclopropanesulfinate, can be used as fluoroalkylation reagents, resulting in the corresponding fluorinated ketones.
Collapse
Affiliation(s)
- Yulia A Konik
- Department of Organic Chemistry, Belarusian State University, Leningradskaya 14, 220050, Minsk, Belarus
| | | | | | | | | | | | | |
Collapse
|
29
|
Ye Y, Cheung KPS, He L, Tsui GC. Synthesis of 2-(Trifluoromethyl)indoles via Domino Trifluoromethylation/Cyclization of 2-Alkynylanilines. Org Lett 2018; 20:1676-1679. [PMID: 29489379 DOI: 10.1021/acs.orglett.8b00509] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new method for the synthesis of 2-(trifluoromethyl)indoles using easily accessible 2-alkynylanilines and a well-established fluoroform-derived CuCF3 reagent is described. This method utilizes a domino trifluoromethylation/cyclization strategy to construct the indole cores with no ambiguity of the CF3 position. The intriguing 3-formyl-2-(trifluoromethyl)indoles can also be synthesized by this protocol, which are useful intermediates for the preparation of trifluoromethylated drug analogues. The ultimate CF3 source is the inexpensive industrial byproduct fluoroform.
Collapse
Affiliation(s)
- Yibin Ye
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong SAR
| | - Kelvin Pak Shing Cheung
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong SAR
| | - Lisi He
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong SAR
| | - Gavin Chit Tsui
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong SAR
| |
Collapse
|
30
|
Wang Q, Tsui GC. Copper-Mediated Domino Cyclization/Trifluoromethylation of Propargylic N-Hydroxylamines: Synthesis of 4-Trifluoromethyl-4-isoxazolines. J Org Chem 2018; 83:2971-2979. [DOI: 10.1021/acs.joc.7b03191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Quande Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
31
|
Affiliation(s)
- Xinkan Yang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
32
|
Ye Y, Cheung KPS, He L, Tsui GC. Domino cyclization/trifluoromethylation of 2-alkynylanilines using fluoroform-derived CuCF3: synthesis of 3-(trifluoromethyl)indoles. Org Chem Front 2018. [DOI: 10.1039/c8qo00191j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A domino cyclization/trifluoromethylation strategy for the construction of indole cores with concomitant installation of a CF3 group is described.
Collapse
Affiliation(s)
- Yibin Ye
- Department of Chemistry
- The Chinese University of Hong Kong
- New Territories
- Hong Kong SAR
| | | | - Lisi He
- Department of Chemistry
- The Chinese University of Hong Kong
- New Territories
- Hong Kong SAR
| | - Gavin Chit Tsui
- Department of Chemistry
- The Chinese University of Hong Kong
- New Territories
- Hong Kong SAR
| |
Collapse
|
33
|
Zhang SL, Xiao C, Wan HX. Diverse copper(iii) trifluoromethyl complexes with mono-, bi- and tridentate ligands and their versatile reactivity. Dalton Trans 2018. [DOI: 10.1039/c8dt00291f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel square planar (L)CuIII(CF3)3 (L = pyridine, 2,4,6-trimethylpyridine) complexes, which are fluxional in solution and versatile to enable various transformations, are isolated and characterized for the first time.
Collapse
Affiliation(s)
- Song-Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Chang Xiao
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Hai-Xing Wan
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
34
|
Advances in trifluoromethylation or trifluoromethylthiolation with copper $$\hbox {CF}_{3}$$ CF 3 or $$\hbox {SCF}_{3}$$ SCF 3 complexes. J CHEM SCI 2017. [DOI: 10.1007/s12039-017-1380-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Doumandji L, Matondo H, Estaran S, Hamada B, Lagneau C, Devillers J, Yébakima A, Doucet-Panaye A, Doucet JP, Lattes A. Synthesis of retinoid analogues of juvenile hormones. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lotfi Doumandji
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, UMR 5623; Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex France
- UER de Chimie appliquée, Ecole Militaire Polytechnique; BP 17, Bordj-El-Bahri; 16046 Alger Algeria
| | - Hubert Matondo
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, UMR 5623; Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex France
| | - Sébastien Estaran
- EID Méditerranée; 165 avenue Paul-Rimbaud 34184 Montpellier Cedex 4 France
| | | | - Christophe Lagneau
- EID Méditerranée; 165 avenue Paul-Rimbaud 34184 Montpellier Cedex 4 France
| | - James Devillers
- CTIS; 3 Chemin de la Gravière; 69140 Rillieux La Pape France
| | - André Yébakima
- BP 679; Centre de Démoustication/LAV (ARS-Collectivité Territoriale) de la Martinique; 97200 Fort de France Martinique
| | - Annick Doucet-Panaye
- Université Paris 7, Paris Diderot; ITODYS, UMR 7086; 15 rue Jean de Baïf 75013 Paris France
| | - Jean-Pierre Doucet
- Université Paris 7, Paris Diderot; ITODYS, UMR 7086; 15 rue Jean de Baïf 75013 Paris France
| | - Armand Lattes
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, UMR 5623; Université Paul Sabatier; 118 route de Narbonne 31062 Toulouse Cedex France
| |
Collapse
|
36
|
He L, Yang X, Tsui GC. Domino Hydroboration/Trifluoromethylation of Alkynes Using Fluoroform-Derived [CuCF3]. J Org Chem 2017; 82:6192-6201. [DOI: 10.1021/acs.joc.7b00755] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lisi He
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Xinkan Yang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
37
|
Cheung KPS, Tsui GC. Copper(I)-Catalyzed Interrupted Click Reaction with TMSCF3: Synthesis of 5-Trifluoromethyl 1,2,3-Triazoles. Org Lett 2017; 19:2881-2884. [DOI: 10.1021/acs.orglett.7b01116] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
38
|
Yang X, He L, Tsui GC. Hydroxytrifluoromethylation of Alkenes Using Fluoroform-Derived CuCF3. Org Lett 2017; 19:2446-2449. [DOI: 10.1021/acs.orglett.7b01085] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xinkan Yang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Lisi He
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
39
|
Kim OS, Jang JH, Kim HT, Han SJ, Tsui GC, Joo JM. Synthesis of Fluorescent Indazoles by Palladium-Catalyzed Benzannulation of Pyrazoles with Alkynes. Org Lett 2017; 19:1450-1453. [DOI: 10.1021/acs.orglett.7b00410] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Og Soon Kim
- Department
of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jin Hyeok Jang
- Department
of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Hyun Tae Kim
- Department
of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Su Jin Han
- Department
of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Gavin Chit Tsui
- Department
of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jung Min Joo
- Department
of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
40
|
Wang Q, He L, Li KK, Tsui GC. Copper-Mediated Domino Cyclization/Trifluoromethylation/Deprotection with TMSCF 3: Synthesis of 4-(Trifluoromethyl)pyrazoles. Org Lett 2017; 19:658-661. [PMID: 28080073 DOI: 10.1021/acs.orglett.6b03822] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A copper-mediated synthesis of 4-(trifluoromethyl)pyrazoles is described. In one step from readily accessible α,β-alkynic tosylhydrazones, a remarkable domino sequence of cyclization, trifluoromethylation, and detosylation takes place to furnish the 4-CF3 N-H pyrazole cores with good functional group compatibility. The reaction conditions are mild and convenient, at room temperature in air, using the commercially available trifluoromethyltrimethylsilane (TMSCF3) as the CF3 source. The method can be applied to the synthesis of a 4-CF3 analogue of the anti-inflammatory drug celecoxib.
Collapse
Affiliation(s)
- Quande Wang
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong, China
| | - Lisi He
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong, China
| | - Kin Keung Li
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong, China
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong, China
| |
Collapse
|
41
|
Zhang C. Recent Developments in Trifluoromethylation or Difluoroalkylation by Use of Difluorinated Phosphonium Salts. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201601011] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cai Zhang
- Department of Architecture and Environment; Chongqing Vocational Institute of Safety Technology, Wanzhou District; Chongqing People's Republic of China
| |
Collapse
|
42
|
Jin LK, Lu GP, Cai C. Copper-catalyzed 8-amido chelation-induced regioselective C–H fluoroalkylation of quinolines. Org Chem Front 2016. [DOI: 10.1039/c6qo00369a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An effective and regioselective approach for C–H fluoroalkylation of 8-aminoquinoline amides with RfSO2Na is demonstrated herein.
Collapse
Affiliation(s)
- Li-Kun Jin
- Chemical Engineering College
- Nanjing University of Science and Technology
- Nanjing 210094
- People's Republic of China
| | - Guo-Ping Lu
- Chemical Engineering College
- Nanjing University of Science and Technology
- Nanjing 210094
- People's Republic of China
| | - Chun Cai
- Chemical Engineering College
- Nanjing University of Science and Technology
- Nanjing 210094
- People's Republic of China
- Key Laboratory of Organofluorine Chemistry
| |
Collapse
|