1
|
Khose GM, Vagolu SK, Aesoy R, Stefánsson ÍM, Ríkharðsson SG, Ísleifsdóttir D, Xu M, Homberset H, Tønjum T, Rongved P, Herfindal L, Viktorsson EÖ. Functionalized regioisomers of the natural product phenazines myxin and iodinin as potent inhibitors of Mycobacterium tuberculosis and human acute myeloid leukemia cells. Eur J Med Chem 2025; 285:117244. [PMID: 39788066 DOI: 10.1016/j.ejmech.2025.117244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
The natural bioactive products myxin and iodinin are phenazine 5,10-dioxides possessing potent anti-bacterial and anti-cancer activity in vitro. This work describes the synthesis and derivatization of new myxin and iodinin regioisomers, developed from 1,3-dihydroxyphenazine 5,10-dioxide. Compounds were evaluated for activity towards M. tuberculosis (Mtb) strains, a human AML cell line (MOLM-13), and two non-cancerous mammalian cell lines (NRK and H9c2). Highly potent analogs were developed having IC50 values against MTB down to 20 nM and 1.4 μM for human AML cells. 1-OH-3-O-alkyl substituted derivatives demonstrated high efficacy against Mtb and low toxicity in normal cells. 2,3-substituted regioisomers of myxin and iodinin were shown to be inactive, highlighting the importance of oxygen substituent in position 1 of the scaffold. A strong positive correlation between anti-MTB and anti-AML activity was revealed, suggesting a common mechanism of action in bacteria and cancer cells. These findings demonstrate the therapeutic potential of 1,3-O-functionalized phenazine 5,10-dioxides in chemotherapy for Mtb and AML and contribute to the structure-activity understanding of phenazine 5,10-dioxides with respect to their biological activity.
Collapse
Affiliation(s)
- Goraksha Machhindra Khose
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavik, Iceland
| | - Siva Krishna Vagolu
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, N-0316, Oslo, Norway
| | - Reidun Aesoy
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, N-5021, Bergen, Norway
| | - Ísak Máni Stefánsson
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavik, Iceland
| | - Snorri Geir Ríkharðsson
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavik, Iceland
| | - Dagmar Ísleifsdóttir
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavik, Iceland
| | - Maonian Xu
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavik, Iceland
| | - Håvard Homberset
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, N-0316, Oslo, Norway
| | - Tone Tønjum
- Unit for Genome Dynamics, Department of Microbiology, University of Oslo, N-0316, Oslo, Norway; Unit for Genome Dynamics, Department of Microbiology, Oslo University Hospital, N-0424, Oslo, Norway
| | - Pål Rongved
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316, Oslo, Norway
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, N-5021, Bergen, Norway
| | - Elvar Örn Viktorsson
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavik, Iceland.
| |
Collapse
|
2
|
Li S, Xu S, Lin E, Wang T, Yang H, Han J, Zhao Y, Xue Q, Samorì P, Zhang Z, Zhang T. Synthesis of single-crystalline sp 2-carbon-linked covalent organic frameworks through imine-to-olefin transformation. Nat Chem 2025; 17:226-232. [PMID: 39762624 DOI: 10.1038/s41557-024-01690-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/31/2024] [Indexed: 02/06/2025]
Abstract
sp2-carbon-linked covalent organic frameworks (sp2c-COFs) are crystalline porous polymers with repeat organic units linked by sp2 carbons, and have attracted increasing interest due to their robust skeleton and tunable semiconducting properties. Single-crystalline sp2c-COFs with well-defined structures can represent an ideal platform for investigating fundamental physics properties and device performance. However, the robust olefin bonds inhibit the reversible-reaction-based crystal self-correction, thus yielding polycrystalline or amorphous polymers. Here we report an imine-to-olefin transformation strategy to form single-crystal sp2c-COFs. The isolated single crystals display rectangular nanotube-like domains with sizes up to approximately 24 μm × 0.8 μm × 0.8 μm, and permanent pore distribution around 1.1 nm. The highly conjugated olefin linkage endows the crystals with enhanced electronic connectivity which determines a remarkable room-temperature metal-free ferromagnetism (8.6 × 10-3 emu g-1). Our protocol is robust and generally applicable for the synthesis of single-crystalline sp2c-COFs for future spin-electron devices.
Collapse
Affiliation(s)
- Shengxu Li
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shunqi Xu
- University of Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, France
| | - En Lin
- Frontiers Science Center for New Organic Matter, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin, China
| | - Tonghai Wang
- Frontiers Science Center for New Organic Matter, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin, China
| | - Haoyong Yang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junyi Han
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Yuxiang Zhao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qunji Xue
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, France
| | - Zhenjie Zhang
- Frontiers Science Center for New Organic Matter, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, China.
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin, China.
| | - Tao Zhang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
| |
Collapse
|
3
|
Li X, Pan C, Wang H, Shen Y, Li Y, Du L. Heterologous Production of Phenazines in the Biocontrol Agent Lysobacter enzymogenes C3. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1345-1355. [PMID: 39743518 DOI: 10.1021/acs.jafc.4c09518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Lysobacter enzymogenes, an environmental bacterium, holds promise as a biocontrol agent due to its ability to produce bioactive compounds effective against plant pathogens, such as fungi, oomycetes, and Gram-positive bacteria. However, it lacks activity against Gram-negative bacteria. To address this, we applied new genetic tools to manipulate the phenazine biosynthetic gene cluster (LaPhz) from L. antibioticus, converting L. enzymogenes to a robust producer of phenazine antibiotics. Through transcriptomics, we identified potent promoters and constructed the first ΦC31-mediated site-specific recombination system for Lysobacter. Engineered strains C3-cophz and C3-phz retained the ability to produce antifungal/antioomycete and anti-Gram-positive compounds while also synthesizing the well-known phenazine antibiotics such as phenazine dicarboxylic acid and phenazine carboxylic acid, along with new derivatives 1,6-dimethoxyphenazine and 1-hydroxy-6-methoxyphenazine-N10-oxide. These strains demonstrated potent activity against Gram-negative bacteria, showing promise for the development of versatile biopesticides. The new tools will facilitate the exploration of silent biosynthetic gene clusters in Lysobacter genomes.
Collapse
Affiliation(s)
- Xue Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chen Pan
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Haoxin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
4
|
Kirk A, Davidson E, Stavrinides J. The expanding antimicrobial diversity of the genus Pantoea. Microbiol Res 2024; 289:127923. [PMID: 39368256 DOI: 10.1016/j.micres.2024.127923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/07/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
With the rise of antimicrobial resistance, there is high demand for novel antimicrobials to combat multi-drug resistant pathogens. The bacterial genus Pantoea produces a diversity of antimicrobial natural products effective against a wide range of bacterial and fungal targets. These antimicrobials are synthesized by specialized biosynthetic gene clusters that have unique distributions across Pantoea as well as several other genera outside of the Erwiniaceae. Phylogenetic and genomic evidence shows that these clusters can mobilize within and between species and potentially between genera. Pantoea antimicrobials belong to unique structural classes with diverse mechanisms of action, but despite their potential in antagonizing a wide variety of plant, human, and animal pathogens, little is known about many of these metabolites and how they function. This review will explore the known antimicrobials produced by Pantoea: agglomerins, andrimid, D-alanylgriseoluteic acid, dapdiamide, herbicolins, pantocins, and the various Pantoea Natural Products (PNPs). It will include information on the structure of each compound, their genetic basis, biosynthesis, mechanism of action, spectrum of activity, and distribution, highlighting the significance of Pantoea antimicrobials as potential therapeutics and for applications in biocontrol.
Collapse
Affiliation(s)
- Ashlyn Kirk
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| | - Emma Davidson
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S0A2, Canada.
| |
Collapse
|
5
|
Vásquez-Castro F, Wicki-Emmenegger D, Fuentes-Schweizer P, Nassar-Míguez L, Rojas-Gätjens D, Rojas-Jimenez K, Chavarría M. Diversity pattern and antibiotic activity of microbial communities inhabiting a karst cave from Costa Rica. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001513. [PMID: 39530301 PMCID: PMC11555687 DOI: 10.1099/mic.0.001513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The studies of cave bacterial communities worldwide have revealed their potential to produce antibiotic molecules. In Costa Rica, ~400 caves have been identified; however, their microbial diversity and biotechnological potential remain unexplored. In this work, we studied the chemical composition and microbial diversity of a Costa Rican cave (known as the Amblipigida cave) located in Puntarenas, Costa Rica. Additionally, through culture-dependent methods, we evaluated the potential of its microbiota to produce antibiotic molecules. Mineralogical and elemental analyses revealed that the Amblipigida cave is primarily composed of calcite. However, small variations in chemical composition were observed as a result of specific conditions, such as light flashes or the input of organic matter. The 16S rRNA gene metabarcoding revealed an extraordinarily high microbial diversity (with an average Shannon index of ~6.5), primarily comprising bacteria from the phyla Pseudomonadota, Actinomycetota, Firmicutes and Acidobacteriota, with the family Pseudomonadaceae being the most abundant. A total of 93 bacteria were isolated, of which 15% exhibited antibiotic activity against at least one Gram-positive or yeast strain and were classified within the genera Lysobacter, Streptomyces, Pseudomonas, Brevundimonas and Bacillus. These findings underscore the highly diverse nature of cave microbiota and their significant biotechnological potential, particularly in the production of antibiotic compounds.
Collapse
Affiliation(s)
- Felipe Vásquez-Castro
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - Daniela Wicki-Emmenegger
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - Paola Fuentes-Schweizer
- Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- CELEQ, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Layla Nassar-Míguez
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
| | - Diego Rojas-Gätjens
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Keilor Rojas-Jimenez
- Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| | - Max Chavarría
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200, San José, Costa Rica
- Escuela de Química, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060, San José, Costa Rica
| |
Collapse
|
6
|
Huang W, Wan Y, Zhang S, Wang C, Zhang Z, Su H, Xiong P, Hou F. Recent Advances in Phenazine Natural Products: Chemical Structures and Biological Activities. Molecules 2024; 29:4771. [PMID: 39407699 PMCID: PMC11477647 DOI: 10.3390/molecules29194771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Phenazine natural products are a class of colored nitrogen-containing heterocycles produced by various microorganisms mainly originating from marine and terrestrial sources. The tricyclic ring molecules show various chemical structures and the decorating groups dedicate extensive pharmacological activities, including antimicrobial, anticancer, antiparasitic, anti-inflammatory, and insecticidal. These secondary metabolites provide natural materials for screening and developing medicinal compounds in the field of medicine and agriculture due to biological activities. The review presents a systematic summary of the literature on natural phenazines in the past decade, including over 150 compounds, such as hydroxylated, O-methylated, N-methylated, N-oxide, terpenoid, halogenated, glycosylated phenazines, saphenic acid derivatives, and other phenazine derivatives, along with their characterized antimicrobial and anticancer activities. This review may provide guidance for the investigation of phenazines in the future.
Collapse
Affiliation(s)
- Wei Huang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
- Shandong Freda Biotech Co., Ltd., Jinan 250101, China;
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.W.); (Z.Z.)
| | - Yupeng Wan
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.W.); (Z.Z.)
| | - Shuo Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China;
| | - Chaozhi Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
| | - Zhe Zhang
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.W.); (Z.Z.)
| | - Huai Su
- Shandong Freda Biotech Co., Ltd., Jinan 250101, China;
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
| | - Feifei Hou
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; (W.H.); (C.W.)
| |
Collapse
|
7
|
Huang W, Wan Y, Su H, Zhang Z, Liu Y, Sadeeq M, Xian M, Feng X, Xiong P, Hou F. Recent Advances in Phenazine Natural Products: Biosynthesis and Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21364-21379. [PMID: 39300971 DOI: 10.1021/acs.jafc.4c05294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Phenazine natural products are a class of nitrogen-containing heterocyclic compounds produced by microorganisms. The tricyclic ring molecules show various chemical structures and extensive pharmacological activities, such as antimicrobial, anticancer, antiparasitic, anti-inflammatory, and insecticidal activities, with low toxicity to the environment. Since phenazine-1-carboxylic acid has been developed as a registered biopesticide, the application of phenazine natural products will be promising in the field of agriculture pathogenic fungi control based on broad-spectrum antifungal activity, minimal toxicity to the environment, and improvement of crop production. Currently, there are still plenty of intriguing hidden biosynthetic pathways of phenazine natural products to be discovered, and the titer of naturally occurring phenazine natural products is insufficient for agricultural applications. In this review, we spotlight the progress regarding biosynthesis and metabolic engineering research of phenazine natural products in the past decade. The review provides useful insights concerning phenazine natural products production and more clues on new phenazine derivatives biosynthesis.
Collapse
Affiliation(s)
- Wei Huang
- Shandong Freda Biotech Co., Ltd, 250101 Jinan, China
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Yupeng Wan
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Huai Su
- Shandong Freda Biotech Co., Ltd, 250101 Jinan, China
| | - Zhe Zhang
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Yingjie Liu
- Shandong Freda Biotech Co., Ltd, 250101 Jinan, China
| | - Mohd Sadeeq
- Shandong University of Technology, School of Life Sciences and Medicine, 255000 Zibo, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Xinjun Feng
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Peng Xiong
- Shandong University of Technology, School of Life Sciences and Medicine, 255000 Zibo, China
| | - Feifei Hou
- Shandong University of Technology, School of Life Sciences and Medicine, 255000 Zibo, China
| |
Collapse
|
8
|
Deng RX, Li HL, Sheng CL, Wang W, Hu HB, Zhang XH. Characterization of Lomofungin Gene Cluster Enables the Biosynthesis of Related Phenazine Derivatives. ACS Synth Biol 2024; 13:2982-2991. [PMID: 39250825 DOI: 10.1021/acssynbio.4c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Phenazine-based small molecules are nitrogen-containing heterocyclic compounds with diverse bioactivities and electron transfer properties that exhibit promising applications in pharmaceutical and electrochemical industries. However, the biosynthetic mechanism of highly substituted natural phenazines remains poorly understood. In this study, we report the direct cloning and heterologous expression of the lomofungin biosynthetic gene cluster (BGC) from Streptomyces lomondensis S015. Reconstruction and overexpression of the BGCs in Streptomyces coelicolor M1152 resulted in eight phenazine derivatives including two novel hybrid phenazine metabolites, and the biosynthetic pathway of lomofungin was proposed. Furthermore, gene deletion suggested that NAD(P)H-dependent oxidoreductase gene lomo14 is a nonessential gene in the biosynthesis of lomofungin. Cytotoxicity evaluation of the isolated phenazines and lomofungin was performed. Specifically, lomofungin shows substantial inhibition against two human cancer cells, HCT116 and 5637. These results provide insights into the biosynthetic mechanism of lomofungin, which will be useful for the directed biosynthesis of natural phenazine derivatives.
Collapse
Affiliation(s)
- Ru-Xiang Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui-Ling Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao-Lan Sheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Bo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Hong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Fernandes GFS, Kim SH, Castagnolo D. Harnessing biocatalysis as a green tool in antibiotic synthesis and discovery. RSC Adv 2024; 14:30396-30410. [PMID: 39318457 PMCID: PMC11420778 DOI: 10.1039/d4ra04824e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
Biocatalysis offers a sustainable approach to drug synthesis, leveraging the high selectivity and efficiency of enzymes. This review explores the application of biocatalysis in the early-stage synthesis of antimicrobial compounds, emphasizing its advantages over traditional chemical methods. We discuss various biocatalysts, including enzymes and whole-cell systems, and their role in the selective functionalization and preparation of antimicrobials and antibacterial building blocks. The review underscores the potential of biocatalysis to advance the development of new antibiotics and suggests directions and potential applications of enzymes in drug development.
Collapse
Affiliation(s)
- Guilherme F S Fernandes
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
- School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK
| | - Seong-Heun Kim
- Institute of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King's College London 150 Stamford Street London SE1 9NH UK
| | - Daniele Castagnolo
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
10
|
Jung Y, Chhetri G, Kim I, So Y, Park S, Woo H, Seo T. Lysobacter stagni sp. nov. and Limnohabitans lacus sp. nov., isolated from a pond. Int J Syst Evol Microbiol 2024; 74. [PMID: 38805031 DOI: 10.1099/ijsem.0.006400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Two Gram-negative bacteria, designated as strains LF1T and HM2-2T, were isolated from an artificial pond in a honey farm at Hoengseong-gun, Gangwon-do, Republic of Korea. The 16S rRNA sequence analysis results revealed that strain LF1T belonged to the genus Lysobacter and had the highest sequence similarity to Lysobacter niastensis GH41-7T (99.0 %), Lysobacter panacisoli CJ29T (98.9 %), and Lysobacter prati SYSU H10001T (98.2 %). Its growth occurred at 20-37 °C, at pH 5.0-12.0, and in the presence of 0-2% NaCl. The major fatty acids were iso-C15 : 0, iso-C16 : 0, and summed feature 9 (iso-C17 : 1 ω9c and/or C16 : 0 10-methyl). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The DNA G+C content was 67.5 mol%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain LF1T and species of the genus Lysobacter were 79.1-84.4% and 22.0-27.5 %, respectively. The 16S rRNA sequence analysis results revealed that strain HM2-2T belonged to the genus Limnohabitans and was most closely related to Limnohabitans planktonicus II-D5T (98.9 %), Limnohabitans radicicola JUR4T (98.4%), and Limnohabitans parvus II-B4T (98.4 %). Its growth occurred at 10-35 °C, at pH 5.0-11.0, and in the presence of 0-2% NaCl. The major fatty acids were C16 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c). The major polar lipid was phosphatidylethanolamine. The DNA G+C content was 59.9 mol%. The ANI and dDDH values between strain HM2-2T and its closely related strains were 75.1-83.0% and 20.4-26.4 %, respectively. Phenotypic, genomic, and phylogenetic data revealed that strains LF1T and HM2-2T represent novel species in the genera Lysobacter and Limnohabitans, for which the names Lysobacter stagni sp. nov. and Limnohabitans lacus sp. nov. are proposed, respectively. The type strain of Lys. stagni is LF1T (=KACC 23251T=TBRC 17648T), and that of Lim. lacus is HM2-2T (=KACC 23250T=TBRC 17649T).
Collapse
Affiliation(s)
- Yonghee Jung
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Geeta Chhetri
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Inhyup Kim
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Yoonseop So
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Sunho Park
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Haejin Woo
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Taegun Seo
- Department of Life Science, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| |
Collapse
|
11
|
Jiang YH, Liu T, Shi XC, Herrera-Balandrano DD, Xu MT, Wang SY, Laborda P. p-Aminobenzoic acid inhibits the growth of soybean pathogen Xanthomonas axonopodis pv. glycines by altering outer membrane integrity. PEST MANAGEMENT SCIENCE 2023; 79:4083-4093. [PMID: 37291956 DOI: 10.1002/ps.7608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND p-Aminobenzoic acid (pABA) is an environmentally friendly bioactive metabolite synthesized by Lysobacter antibioticus. This compound showed an unusual antifungal mode of action based on cytokinesis inhibition. However, the potential antibacterial properties of pABA remain unexplored. RESULTS In this study, pABA showed antibacterial activity against Gram-negative bacteria. This metabolite inhibited growth (EC50 = 4.02 mM), and reduced swimming motility, extracellular protease activity, and biofilm formation in the soybean pathogen Xanthomonas axonopodis pv. glycines (Xag). Although pABA was previously reported to inhibit fungal cell division, no apparent effect was observed on Xag cell division genes. Instead, pABA reduced the expression of various membrane integrity-related genes, such as cirA, czcA, czcB, emrE, and tolC. Consistently, scanning electron microscopy observations revealed that pABA caused major alternations in Xag morphology and blocked the formation of bacterial consortiums. In addition, pABA reduced the content and profile of outer membrane proteins and lipopolysaccharides in Xag, which may explain the observed effects. Preventive and curative applications of 10 mM pABA reduced Xag symptoms in soybean plants by 52.1% and 75.2%, respectively. CONCLUSIONS The antibacterial properties of pABA were studied for the first time, revealing new insights into its potential application for the management of bacterial pathogens. Although pABA was previously reported to show an antifungal mode of action based on cytokinesis inhibition, this compound inhibited Xag growth by altering the outer membrane's integrity. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yong-Hui Jiang
- School of Life Sciences, Nantong University, Nantong, China
| | - Ting Liu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xin-Chi Shi
- School of Life Sciences, Nantong University, Nantong, China
| | | | - Mei-Ting Xu
- School of Life Sciences, Nantong University, Nantong, China
| | - Su-Yan Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| |
Collapse
|
12
|
Zhao D, Wang J, Wang H, Zhu X, Han C, Liu A. The Transcription Regulator GntR/HutC Regulates Biofilm Formation, Motility and Stress Tolerance in Lysobacter capsici X2-3. Curr Microbiol 2023; 80:281. [PMID: 37439829 DOI: 10.1007/s00284-023-03390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
Lysobacter capsici X2-3, a plant growth-promoting rhizobacteria (PGPR), was isolated from wheat rhizosphere and has inhibitory effects against a wide range of pathogens. One important characteristic of L. capsici is its ability to produce diverse antibiotics and lytic enzymes. The GntR family of transcription factors is a common transcription factor superfamily in bacteria that has fundamental roles in bacterial metabolism regulation. However, the GntR family transcription factor in Lysobacter has not been identified. In this study, to obtain an understanding of the GntR/HutC gene function in L. capsici X2-3, a random Tn5-insertion mutant library of X2-3 was constructed to select genes showing pleiotropic effects on phenotype. We identified a Tn5 mutant with an insertion in LC4356 that showed reduced biofilm levels, and sequence analysis indicated that the inserted gene encodes a GntR/HutC family transcription regulator. Furthermore, the LC4356 mutant showed reduced extracellular polysaccharide (EPS) production, diminished twitching motility and decreased survival under UV radiation and high-temperature. The RT‒qPCR results indicated that the pentose phosphate pathway-related genes G6PDH, 6PGL and PGDH were upregulated in the LC4356 mutant. Thus, since L. capsici is an efficient biocontrol agent for crop protection, our findings provide fundamental insights into GntR/HutC and will be worthwhile to improve PGPR biocontrol efficacy.
Collapse
Affiliation(s)
- Dan Zhao
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Jing Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Hong Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaoping Zhu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Chao Han
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| | - Aixin Liu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
13
|
Zhao Y, Xu G, Xu Z, Guo B, Liu F. LexR Positively Regulates the LexABC Efflux Pump Involved in Self-Resistance to the Antimicrobial Di- N-Oxide Phenazine in Lysobacter antibioticus. Microbiol Spectr 2023; 11:e0487222. [PMID: 37166326 PMCID: PMC10269722 DOI: 10.1128/spectrum.04872-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/21/2023] [Indexed: 05/12/2023] Open
Abstract
Myxin, a di-N-oxide phenazine isolated from the soil bacterium Lysobacter antibioticus, exhibits potent activity against various microorganisms and has the potential to be developed as an agrochemical. Antibiotic-producing microorganisms have developed self-resistance mechanisms to protect themselves from autotoxicity. Antibiotic efflux is vital for such protection. Recently, we identified a resistance-nodulation-division (RND) efflux pump, LexABC, involved in self-resistance against myxin in L. antibioticus. Expression of its genes, lexABC, was induced by myxin and was positively regulated by the LysR family transcriptional regulator LexR. The molecular mechanisms, however, have not been clear. Here, LexR was found to bind to the lexABC promoter region to directly regulate expression. Moreover, myxin enhanced this binding. Molecular docking and surface plasmon resonance analysis showed that myxin bound LexR with valine and lysine residues at positions 146 (V146) and 195 (K195), respectively. Furthermore, mutation of K195 in vivo led to downregulation of the gene lexA. These results indicated that LexR sensed and bound with myxin, thereby directly activating the expression of the LexABC efflux pump and increasing L. antibioticus resistance against myxin. IMPORTANCE Antibiotic-producing bacteria exhibit various sophisticated mechanisms for self-protection against their own secondary metabolites. RND efflux pumps that eliminate antibiotics from cells are ubiquitous in Gram-negative bacteria. Myxin is a heterocyclic N-oxide phenazine with potent antimicrobial and antitumor activities produced by the soil bacterium L. antibioticus. The RND pump LexABC contributes to the self-resistance of L. antibioticus against myxin. Herein, we report a mechanism involving the LysR family regulator LexR that binds to myxin and directly activates the LexABC pump. Further study on self-resistance mechanisms could help the investigation of strategies to deal with increasing bacterial antibiotic resistance and enable the discovery of novel natural products with resistance genes as selective markers.
Collapse
Affiliation(s)
- Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- School of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| | - Gaoge Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Zhizhou Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- College of Plant Protection, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, Nanjing, China
| | - Baodian Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety, State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
- School of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
| |
Collapse
|
14
|
Yang Y, Kessler MGC, Marchán-Rivadeneira MR, Han Y. Combating Antimicrobial Resistance in the Post-Genomic Era: Rapid Antibiotic Discovery. Molecules 2023; 28:molecules28104183. [PMID: 37241928 DOI: 10.3390/molecules28104183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Constantly evolving drug-resistant "superbugs" have caused an urgent demand for novel antimicrobial agents. Natural products and their analogs have been a prolific source of antimicrobial agents, even though a high rediscovery rate and less targeted research has made the field challenging in the pre-genomic era. With recent advancements in technology, natural product research is gaining new life. Genome mining has allowed for more targeted excavation of biosynthetic potential from natural sources that was previously overlooked. Researchers use bioinformatic algorithms to rapidly identify and predict antimicrobial candidates by studying the genome before even entering the lab. In addition, synthetic biology and advanced analytical instruments enable the accelerated identification of novel antibiotics with distinct structures. Here, we reviewed the literature for noteworthy examples of novel antimicrobial agents discovered through various methodologies, highlighting the candidates with potent effectiveness against antimicrobial-resistant pathogens.
Collapse
Affiliation(s)
- Yuehan Yang
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
| | - Mara Grace C Kessler
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Honors Tutorial College, Ohio University, Athens, OH 45701, USA
| | - Maria Raquel Marchán-Rivadeneira
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
- Center for Research on Health in Latinamerica (CISeAL)-Biological Science Department, Pontificia Universidad Católica del Ecuador (PUCE), Quito 170143, Ecuador
| | - Yong Han
- Translational Biomedical Sciences Program, Ohio University, Athens, OH 45701, USA
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
15
|
Miller AL, Li S, Eichhorn CD, Zheng Y, Du L. Identification and Biosynthetic Study of the Siderophore Lysochelin in the Biocontrol Agent Lysobacter enzymogenes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7418-7426. [PMID: 37158236 DOI: 10.1021/acs.jafc.3c01250] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Lysobacter is a genus of bacteria emerging as new biocontrol agents in agriculture. Although iron acquisition is essential for the bacteria, no siderophore has been identified from any Lysobacter. Here, we report the identification of the first siderophore, N1,N8-bis(2,3-dihydroxybenzoyl)spermidine (lysochelin), and its biosynthetic gene cluster from Lysobacter enzymogenes. Intriguingly, the deletion of the spermidine biosynthetic gene encoding arginine decarboxylase or SAM decarboxylase eliminated lysochelin and the antifungals, HSAF and its analogues, which are key to the disease control activity and to the survival of Lysobacter under oxidative stresses caused by excess iron. The production of lysochelin and the antifungals is greatly affected by iron concentration. Together, the results revealed a previously unrecognized system, in which L. enzymogenes produces a group of small molecules, lysochelin, spermidine, and HSAF and its analogues, that are affected by iron concentration and critical to the growth and survival of the biocontrol agent.
Collapse
Affiliation(s)
- Amanda Lynn Miller
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Shanren Li
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Catherine D Eichhorn
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| | - Yongbiao Zheng
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
16
|
Xu S, Zhang Z, Xie X, Shi Y, Chai A, Fan T, Li B, Li L. Comparative genomics provides insights into the potential biocontrol mechanism of two Lysobacter enzymogenes strains with distinct antagonistic activities. Front Microbiol 2022; 13:966986. [PMID: 36033849 PMCID: PMC9410377 DOI: 10.3389/fmicb.2022.966986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/27/2022] [Indexed: 11/29/2022] Open
Abstract
Lysobacter enzymogenes has been applied as an abundant beneficial microorganism to control plant disease; however, most L. enzymogenes strains have been mainly reported to control fungal diseases, not bacterial diseases. In this study, two L. enzymogenes strains were characterized, of which CX03 displayed a broad spectrum of antagonistic activities toward multiple bacteria, while CX06 exhibited a broad spectrum of antagonistic activities toward diverse fungi and oomycete, and the whole genomes of the two strains were sequenced and compared. The genome annotation showed that the CX03 genome comprised a 5,947,018 bp circular chromosome, while strain CX06 comprised a circular 6,206,196 bp chromosome. Phylogenetic analysis revealed that CX03 had a closer genetic relationship with L. enzymogenes ATCC29487T and M497-1, while CX06 was highly similar to L. enzymogenes C3. Functional gene annotation analyses of the two L. enzymogenes strains showed that many genes or gene clusters associated with the biosynthesis of different secondary metabolites were found in strains CX03 and CX06, which may be responsible for the different antagonistic activities against diverse plant pathogens. Moreover, comparative genomic analysis revealed the difference in bacterial secretory systems between L. enzymogenes strains CX03 and CX06. In addition, numerous conserved genes related to siderophore biosynthesis, quorum sensing, two-component systems, flagellar biosynthesis and chemotaxis were also identified in the genomes of strains CX03 and CX06. Most reported L. enzymogenes strains were proven mainly to suppress fungi, while CX03 exhibited direct inhibitory activities toward plant bacterial pathogens and showed an obvious role in managing bacterial disease. This study provides a novel understanding of the biocontrol mechanisms of L. enzymogenes, and reveals great potential for its application in plant disease control.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
17
|
Wang Z, Yang FX, Liu C, Wang L, Qi Y, Cao M, Guo X, Li J, Huang X, Yang J, Huang SX. Isolation and Biosynthesis of Phenazine-Polyketide Hybrids from Streptomyces sp. KIB-H483. JOURNAL OF NATURAL PRODUCTS 2022; 85:1324-1331. [PMID: 35574837 DOI: 10.1021/acs.jnatprod.2c00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A phenazine-polyketide hybrid compound, nexphenazine A (1), was isolated from Streptomyces sp. KIB-H483. The bioinformatic analysis of the draft genome of the producing strain and gene inactivation experiments revealed that the biosynthesis of 1 involves a phenazine-polyketide hybrid gene cluster. The abolished production of 1 as well as the accumulation of shunt metabolites 4-7 in mutant strain ΔnpzI revealed the key role of the npzI gene, which encodes an NAD(P)H-dependent ketoreductase, in nexphenazine biosynthesis. The structures and absolute configurations of the isolated intermediates were established on the basis of spectroscopic data analysis, single-crystal X-ray diffraction, chiral chromatography, and chemical conversion experiments. NpzI exhibited stereochemical selectivity in reducing the carbonyl group of 4. Nexphenazine biosynthesis is proposed to involve a condensation of the carboxyl group of phenazine with one molecule of methylmalonyl-CoA by a type I PKS, followed by a ketone reduction by NpzI and an unknown methylation reaction.
Collapse
Affiliation(s)
- Zhiyan Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Feng-Xian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Chongxi Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yuxin Qi
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, People's Republic of China
| | - Minghang Cao
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Xiaowei Guo
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Jie Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xueshuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, People's Republic of China
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| |
Collapse
|
18
|
Genome mining of Burkholderia ambifaria strain T16, a rhizobacterium able to produce antimicrobial compounds and degrade the mycotoxin fusaric acid. World J Microbiol Biotechnol 2022; 38:114. [PMID: 35578144 DOI: 10.1007/s11274-022-03299-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
Burkholderia ambifaria T16 is a bacterium isolated from the rhizosphere of barley plants that showed a remarkable antifungal activity. This strain was also able to degrade fusaric acid (5-Butylpyridine-2-carboxylic acid) and detoxify this mycotoxin in inoculated barley seedlings. Genes and enzymes responsible for fusaric acid degradation have an important biotechnological potential in the control of fungal diseases caused by fusaric acid producers, or in the biodegradation/bio catalysis processes of pyridine derivatives. In this study, the complete genome of B. ambifaria T16 was sequenced and analyzed to identify genes involved in survival and competition in the rhizosphere, plant growth promotion, fungal growth inhibition, and degradation of aromatic compounds. The genomic analysis revealed the presence of several operons for the biosynthesis of antimicrobial compounds, such as pyrrolnitrin, ornibactin, occidiofungin and the membrane-associated AFC-BC11. These compounds were also detected in bacterial culture supernatants by mass spectrometry analysis. In addition, this strain has multiple genes contributing to its plant growth-promoting profile, including those for acetoin, 2,3-butanediol and indole-3-acetic acid production, siderophores biosynthesis, and solubilisation of organic and inorganic phosphate. A pan-genomic analysis demonstrated that the genome of strain T16 possesses large gene clusters that are absent in the genomes of B. ambifaria reference strains. According to predictions, most of these clusters would be involved in aromatic compounds degradation. One genomic region, encoding flavin-dependent monooxygenases of unknown function, is proposed as a candidate responsible for fusaric acid degradation.
Collapse
|
19
|
Exploiting the antibacterial mechanism of phenazine substances from Lysobacter antibioticus 13-6 against Xanthomonas oryzae pv. oryzicola. J Microbiol 2022; 60:496-510. [PMID: 35362894 DOI: 10.1007/s12275-022-1542-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 10/18/2022]
Abstract
Bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most destructive diseases affecting rice production worldwide. In this study, we extracted and purified phenazine substances from the secondary metabolites of Lysobacter antibioticus 13-6. The bacteriostatic mechanism of phenazine substances against Xoc was investigated through physiological response and transcriptomic analysis. Results showed that phenazine substances affects the cell membrane permeability of Xoc, which causes cell swelling and deformation, blockage of flagellum synthesis, and imbalance of intracellular environment. The changes in intracellular environment affect the physiological and metabolic functions of Xoc, which reduces the formation of pathogenic factors and pathogenicity. Through transcriptomic analysis, we found that among differentially expressed genes, the expression of 595 genes was induced significantly (275 up-regulated and 320 down-regulated). In addition, we observed that phenazine substances affects three main functions of Xoc, i.e., transmembrane transporter activity, DNA-mediated transposition, and structural molecular activity. Phenazine substances also inhibits the potassium ion transport system that reduces Xoc resistance and induces the phosphate ion transport system to maintain the stability of the internal environment. Finally, we conclude that phenazine substances could retard cell growth and reduce the pathogenicity of Xoc by affecting cell structure and physiological metabolism. Altogether, our study highlights latest insights into the antibacterial mechanism of phenazine substances against Xoc and provides basic guidance to manage the incidence of bacterial leaf streak of rice.
Collapse
|
20
|
Wan Y, Liu H, Xian M, Huang W. Biosynthetic Pathway Construction and Production Enhancement of 1-Hydroxyphenazine Derivatives in Pseudomonas chlororaphis H18. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1223-1231. [PMID: 35057615 DOI: 10.1021/acs.jafc.1c07760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
1-Hydroxyphenazine derivatives are phenazine family chemicals with broad-spectrum antibacterial and potential biological activities. However, the lack of variety and low titer hinder their applications. In this research, three enzymes PhzS (monooxygenase), NaphzNO1 (N-monooxygenase), and LaphzM (methyltransferase) were heterologously expressed in a phenazine-1-carboxylic acid generating strain Pseudomonas chlororaphis H18. Four phenazines, 1-hydroxyphenazine, 1-methoxyphenazine, 1-hydroxyphenazine N' 10-oxide, and a novel phenazine derivative 1-methoxyphenazine N' 10-oxide, were isolated, characterized in the genetically modified strains, and exhibited excellent antimicrobial activities. Next, we verified the hydroxyl methylation activity of LaphzM and elucidated the biosynthetic pathway of 1-methoxyphenazine N' 10-oxide in vitro. Moreover, the titer of 1-hydroxyphenazine derivatives was engineered. The three compounds 1-methoxyphenazine, 1-hydroxyphenazine N' 10-oxide, and 1-methoxyphenazine N' 10-oxide all reach the highest titer reported to date. This work provides a promising platform for phenazine derivatives' combinatorial biosynthesis and engineering.
Collapse
Affiliation(s)
- Yupeng Wan
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongchen Liu
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Wei Huang
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Yue H, Miller AL, Khetrapal V, Jayaseker V, Wright S, Du L. Biosynthesis, regulation, and engineering of natural products from Lysobacter. Nat Prod Rep 2022; 39:842-874. [PMID: 35067688 DOI: 10.1039/d1np00063b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Covering: up to August 2021Lysobacter is a genus of Gram-negative bacteria that was classified in 1987. Several Lysobacter species are emerging as new biocontrol agents for crop protection in agriculture. Lysobacter are prolific producers of new bioactive natural products that are largely underexplored. So far, several classes of structurally interesting and biologically active natural products have been isolated from Lysobacter. This article reviews the progress in Lysobacter natural product research over the past ten years, including molecular mechanisms for biosynthesis, regulation and mode of action, genome mining of cryptic biosynthetic gene clusters, and metabolic engineering using synthetic biology tools.
Collapse
Affiliation(s)
- Huan Yue
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Amanda Lynn Miller
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Vimmy Khetrapal
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Vishakha Jayaseker
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Stephen Wright
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA.
| |
Collapse
|
22
|
Wu Q, Wang B, Shen X, Shen D, Wang B, Guo Q, Li T, Shao X, Qian G. Unlocking the bacterial contact-dependent antibacterial activity to engineer a biocontrol alliance of two species from natural incompatibility to artificial compatibility. STRESS BIOLOGY 2021; 1:19. [PMID: 37676524 PMCID: PMC10441968 DOI: 10.1007/s44154-021-00018-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 09/08/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) contain various biocontrol bacteria with broad-spectrum antimicrobial activity, and their single species has been extensively applied to control crop diseases. The development of complex biocontrol community by mixing two or more PGPR members together is a promising strategy to enlarge the efficacy and scope of biocontrol. However, an effective method to assess the natural compatibility of PGPR members has not yet been established to date. Here, we developed such a tool by using the bacterial contact-dependent antibacterial activity (CDAA) as a probe. We showed that the CDAA events are common in two-species interactions in the four selected representative PGPRs, represented by the incompatible interaction of Lysobacter enzymogenes strain OH11 (OH11) and Lysobacter antibioticus strain OH13 (OH13). We further showed that the CDAA between OH11 and OH13 is jointly controlled by a contact-dependent killing device, called the type IV secretion system (T4SS). By deleting the respective T4SS synthesis genes, the T4SS in both strains was co-inactivated and this step unlocked their natural CDAA, resulting in an engineered, compatible mutant alliance that co-displayed antibacterial and antifungal activity. Therefore, this study reveals that releasing bacterial CDAA is effective to rationally engineer the biocontrol community.
Collapse
Affiliation(s)
- Qianhua Wu
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Bozhen Wang
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Xi Shen
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Danyu Shen
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Bingxin Wang
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Qinggang Guo
- Institute of Plant Protection, Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs of China, Baoding, 071000, People's Republic of China
| | - Tao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Xiaolong Shao
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Guoliang Qian
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu, 210095, People's Republic of China.
| |
Collapse
|
23
|
Ke J, Zhao Z, Coates CR, Hadjithomas M, Kuftin A, Louie K, Weller D, Thomashow L, Mouncey NJ, Northen TR, Yoshikuni Y. Development of platforms for functional characterization and production of phenazines using a multi-chassis approach via CRAGE. Metab Eng 2021; 69:188-197. [PMID: 34890798 DOI: 10.1016/j.ymben.2021.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 02/08/2023]
Abstract
Phenazines (Phzs), a family of chemicals with a phenazine backbone, are secondary metabolites with diverse properties such as antibacterial, anti-fungal, or anticancer activity. The core derivatives of phenazine, phenazine-1-carboxylic acid (PCA) and phenazine-1,6-dicarboxylic acid (PDC), are themselves precursors for various other derivatives. Recent advances in genome mining tools have enabled researchers to identify many biosynthetic gene clusters (BGCs) that might produce novel Phzs. To characterize the function of these BGCs efficiently, we performed modular construct assembly and subsequent multi-chassis heterologous expression using chassis-independent recombinase-assisted genome engineering (CRAGE). CRAGE allowed rapid integration of a PCA BGC into 23 diverse γ-proteobacteria species and allowed us to identify top PCA producers. We then used the top five chassis hosts to express four partially refactored PDC BGCs. A few of these platforms produced high levels of PDC. Specifically, Xenorhabdus doucetiae and Pseudomonas simiae produced PDC at a titer of 293 mg/L and 373 mg/L, respectively, in minimal media. These titers are significantly higher than those previously reported. Furthermore, selectivity toward PDC production over PCA production was improved by up to 9-fold. The results show that these strains are promising chassis for production of PCA, PDC, and their derivatives, as well as for function characterization of Phz BGCs identified via bioinformatics mining.
Collapse
Affiliation(s)
- Jing Ke
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhiying Zhao
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Cameron R Coates
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michalis Hadjithomas
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrea Kuftin
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Katherine Louie
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David Weller
- USDA Agricultural Research Service, Wheat Health, Genetics and Quality, Washington State University, Pullman, WA, USA; Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Linda Thomashow
- USDA Agricultural Research Service, Wheat Health, Genetics and Quality, Washington State University, Pullman, WA, USA; Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Nigel J Mouncey
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trent R Northen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Global Center for Food, Land, and Water Resources, Hokkaido University, Hokkaido, 060-8589, Japan.
| |
Collapse
|
24
|
Liu J, Zhao Y, Fu ZQ, Liu F. Monooxygenase LaPhzX is Involved in Self-Resistance Mechanisms during the Biosynthesis of N-Oxide Phenazine Myxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13524-13532. [PMID: 34735148 DOI: 10.1021/acs.jafc.1c05206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-resistance genes are deployed by many microbial producers of bioactive natural products to avoid self-toxicity. Myxin, a di-N-oxide phenazine produced by Lysobacter antibioticus OH13, is toxic to many microorganisms and tumor cells. Here, we uncovered a self-defense strategy featuring the antibiotic biosynthesis monooxygenase (ABM) family protein LaPhzX for myxin degradation. The gene LaPhzX is located in the myxin biosynthetic gene cluster (LaPhz), and its deletion resulted in bacterial mutants that are more sensitive to myxin. In addition, the LaPhzX mutants showed increased myxin accumulation and reduction of its derivative, compound 4, compared to the wild-type strain. Meanwhile, in vitro biochemical assays demonstrated that LaPhzX significantly degraded myxin in the presence of nicotinamide adenine dinucleotide phosphate (NADPH), nicotinamide adenine dinucleotide (NADH), flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD). In addition, heterologous expression of LaPhzX in Xanthomonas oryzae pv. oryzae and Escherichia coli increased their resistance to myxin. Overall, our work illustrates a monooxygenase-mediated self-resistance mechanism for phenazine antibiotic biosynthesis.
Collapse
Affiliation(s)
- Jiayu Liu
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety─State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety─State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Fengquan Liu
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing 210095, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety─State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China
- College of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|
25
|
Lin L, Xu K, Shen D, Chou SH, Gomelsky M, Qian G. Antifungal weapons of Lysobacter, a mighty biocontrol agent. Environ Microbiol 2021; 23:5704-5715. [PMID: 34288318 DOI: 10.1111/1462-2920.15674] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/27/2022]
Abstract
Bacteria interact with fungi in a variety of ways to inhibit fungal growth, while the underlying mechanisms remain only partially characterized. The plant-beneficial Bacillus and Pseudomonas species are well-known antifungal biocontrol agents, whereas Lysobacter are far less studied. Members of Lysobacter are easy to grow in fermenters and are safe to humans, animals and plants. These environmentally ubiquitous bacteria use a diverse arsenal of weapons to prey on other microorganisms, including fungi and oomycetes. The small molecular toxins secreted by Lysobacter represent long-range weapons effective against filamentous fungi. The secreted hydrolytic enzymes act as intermediate-range weapons against non-filamentous fungi. The contact-dependent killing devices are proposed to work as short-range weapons. We describe here the structure, biosynthetic pathway, action mode and applications of one of the best-characterized long-range weapons, the heat-stable antifungal factor (HSAF) produced by Lysobacter enzymogenes. We discuss how the flagellar type III secretion system has evolved into an enzyme secretion machine for the intermediate-range antifungal weapons. We highlight an intricate mechanism coordinating the production of the long-range weapon, HSAF and the proposed contact-dependent killing device, type VI secretion system. We also overview the regulatory mechanisms of HSAF production involving specific transcription factors and the bacterial second messenger c-di-GMP.
Collapse
Affiliation(s)
- Long Lin
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Kangwen Xu
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Danyu Shen
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Mark Gomelsky
- Department of Molecular Biology, University of Wyoming, Laramie, WY, 82071, USA
| | - Guoliang Qian
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No. 1 Weigang, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
26
|
Brescia F, Vlassi A, Bejarano A, Seidl B, Marchetti-Deschmann M, Schuhmacher R, Puopolo G. Characterisation of the Antibiotic Profile of Lysobacter capsici AZ78, an Effective Biological Control Agent of Plant Pathogenic Microorganisms. Microorganisms 2021; 9:microorganisms9061320. [PMID: 34204563 PMCID: PMC8235233 DOI: 10.3390/microorganisms9061320] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023] Open
Abstract
Determining the mode of action of microbial biocontrol agents plays a key role in their development and registration as commercial biopesticides. The biocontrol rhizobacterium Lysobacter capsici AZ78 (AZ78) is able to inhibit a vast array of plant pathogenic oomycetes and Gram-positive bacteria due to the release of antimicrobial secondary metabolites. A combination of MALDI-qTOF-MSI and UHPLC-HRMS/M was applied to finely dissect the AZ78 metabolome and identify the main secondary metabolites involved in the inhibition of plant pathogenic microorganisms. Under nutritionally limited conditions, MALDI-qTOF-MSI revealed that AZ78 is able to release a relevant number of antimicrobial secondary metabolites belonging to the families of 2,5-diketopiperazines, cyclic lipodepsipeptides, macrolactones and macrolides. In vitro tests confirmed the presence of secondary metabolites toxic against Pythium ultimum and Rhodococcus fascians in AZ78 cell-free extracts. Subsequently, UHPLC-HRMS/MS was used to confirm the results achieved with MALDI-qTOF-MSI and investigate for further putative antimicrobial secondary metabolites known to be produced by Lysobacter spp. This technique confirmed the presence of several 2,5-diketopiperazines in AZ78 cell-free extracts and provided the first evidence of the production of the cyclic depsipeptide WAP-8294A2 in a member of L. capsici species. Moreover, UHPLC-HRMS/MS confirmed the presence of dihydromaltophilin/Heat Stable Antifungal Factor (HSAF) in AZ78 cell-free extracts. Due to the production of HSAF by AZ78, cell-free supernatants were effective in controlling Plasmopara viticola on grapevine leaf disks after exposure to high temperatures. Overall, our work determined the main secondary metabolites involved in the biocontrol activity of AZ78 against plant pathogenic oomycetes and Gram-positive bacteria. These results might be useful for the future development of this bacterial strain as the active ingredient of a microbial biopesticide that might contribute to a reduction in the chemical input in agriculture.
Collapse
Affiliation(s)
- Francesca Brescia
- Research and Innovation Centre, Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy; (F.B.); (A.B.)
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Anthi Vlassi
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (A.V.); (B.S.); (R.S.)
| | - Ana Bejarano
- Research and Innovation Centre, Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy; (F.B.); (A.B.)
- Center of Agriculture, Food, Environment, University of Trento, 38098 San Michele all’Adige, Italy
| | - Bernard Seidl
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (A.V.); (B.S.); (R.S.)
| | - Martina Marchetti-Deschmann
- Institute of Chemical Technologies and Analytics, TU Wien (Vienna University of Technology), 1060 Vienna, Austria;
| | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences Vienna (BOKU), 3430 Tulln, Austria; (A.V.); (B.S.); (R.S.)
| | - Gerardo Puopolo
- Research and Innovation Centre, Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy; (F.B.); (A.B.)
- Center of Agriculture, Food, Environment, University of Trento, 38098 San Michele all’Adige, Italy
- Correspondence:
| |
Collapse
|
27
|
Xu K, Lin L, Shen D, Chou SH, Qian G. Clp is a "busy" transcription factor in the bacterial warrior, Lysobacter enzymogenes. Comput Struct Biotechnol J 2021; 19:3564-3572. [PMID: 34257836 PMCID: PMC8246147 DOI: 10.1016/j.csbj.2021.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cyclic AMP receptor protein (CRP) is a well-characterized group of global transcription factors in bacteria. They are known to regulate numerous cellular processes by binding DNA and/or cAMP (a ligand called bacterial second messenger) to control target gene expression. Gram-negative Lysobacter enzymogenes is a soilborne, plant-beneficial bacterium without flagella that can fight against filamentous fungi and oomycete. Driven by the type IV pilus (T4P) system, this bacterium moves to nearby pathogens and uses a “mobile-attack” antifungal strategy to kill them via heat-stable antifungal factor (HSAF) and abundant lyases. This strategy is controlled by a unique “busy” transcription factor Clp, which is a CRP-like protein that is inactivated by binding of c-di-GMP, another ubiquitous second messenger of bacteria. In this review, we summarize the current progress in how Clp initiates a “mobile-attack” strategy through a series of previously uncharacterized mechanisms, including binding to DNA in a unique pattern, directly interacting with or responding to various small molecules, and interacting specifically with proteins adopting distinct structure. Together, these characteristics highlight the multifunctional roles of Clp in L. enzymogenes, a powerful bacterial warrior against fungal pathogens.
Collapse
Affiliation(s)
- Kangwen Xu
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Long Lin
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Danyu Shen
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| | - Shan-Ho Chou
- Institute of Biochemistry, and NCHU Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Guoliang Qian
- College of Plant Protection, Laboratory of Plant Immunity, Key Laboratory of Integrated Management of Crop Diseases and Pests, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
28
|
Effects of Different Continuous Cropping Years on Bacterial Community and Diversity of Cucumber Rhizosphere Soil in Solar-Greenhouse. Curr Microbiol 2021; 78:2380-2390. [PMID: 33871692 DOI: 10.1007/s00284-021-02485-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
The rhizosphere soils from 1, 3, 5, and 7 years of cucumber continuous cropping in solar-greenhouse were used as the research objects. The region of bacterial 16S rRNA was analyzed by Illumina MiSeq high-throughput sequencing technology. The effect of continuous cropping years on the microbial community structure and diversity in cucumber soil in the greenhouse was investigated. The physical and chemical properties of soil and the activities of urease and catalase were determined. The results showed that cucumber crop succession for different years affected the community composition of the bacteria at the phylum level, and the abundance of Proteobacteria, Chloroflexi, Gemmatimonadetes, Patescibacteria and Firmicutes gradually increased, while Actinobacteria in the soil significantly decreased. Among the top 15 significantly different genera, with the extension of successive years, the relative abundance of most genera in bacteria decreased after a small increase in year 3. The diversity results indicated that soil samples from continuous cropping for 7 years had the lowest community diversity. PICRUSt analysis showed a decreasing trend in soil bacterial function as the cucumber crop succession age increased. In environmental factor clustering analysis, the soil bacterial community was significantly correlated with pH, available nitrogen (AN), soil urease (SUR) and available phosphorus (AP), and the effect on the bacterial community was expressed as SUR > AP > AN > pH.
Collapse
|
29
|
Viktorsson EÖ, Aesoy R, Støa S, Lekve V, Døskeland SO, Herfindal L, Rongved P. New prodrugs and analogs of the phenazine 5,10-dioxide natural products iodinin and myxin promote selective cytotoxicity towards human acute myeloid leukemia cells. RSC Med Chem 2021; 12:767-778. [PMID: 34124675 PMCID: PMC8152588 DOI: 10.1039/d1md00020a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
Novel chemotherapeutic strategies for acute myeloid leukemia (AML) treatment are called for. We have recently demonstrated that the phenazine 5,10-dioxide natural products iodinin (3) and myxin (4) exhibit potent and hypoxia-selective cell death on MOLM-13 human AML cells, and that the N-oxide functionalities are pivotal for the cytotoxic activity. Very few structure-activity relationship studies dedicated to phenazine 5,10-dioxides exist on mammalian cell lines and the present work describes our efforts regarding in vitro lead optimizations of the natural compounds iodinin (3) and myxin (4). Prodrug strategies reveal carbamate side chains to be the optimal phenol-attached group. Derivatives with no oxygen-based substituent (-OH or -OCH3) in the 6th position of the phenazine skeleton upheld potency if alkyl or carbamate side chains were attached to the phenol in position 1. 7,8-Dihalogenated- and 7,8-dimethylated analogs of 1-hydroxyphenazine 5,10-dioxide (21) displayed increased cytotoxic potency in MOLM-13 cells compared to all the other compounds studied. On the other hand, dihalogenated compounds displayed high toxicity towards the cardiomyoblast H9c2 cell line, while MOLM-13 selectivity of the 7,8-dimethylated analogs were less affected. Further, a parallel artificial membrane permeability assay (PAMPA) demonstrated the majority of the synthesized compounds to penetrate cell membranes efficiently, which corresponded to their cytotoxic potency. This work enhances the understanding of the structural characteristics essential for the activity of phenazine 5,10-dioxides, rendering them promising chemotherapeutic agents.
Collapse
Affiliation(s)
- Elvar Örn Viktorsson
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo PO Box 1068 Blindern N0316 Oslo Norway
- School of Health Sciences, Faculty of Pharmaceutical Sciences, University of Iceland Hofsvallagata 53 IS-107 Reykjavik Iceland
| | - Reidun Aesoy
- Centre for Pharmacy, Department of Clinical Science, University of Bergen Jonas Lies vei 87 N-5021 Bergen Norway
| | - Sindre Støa
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo PO Box 1068 Blindern N0316 Oslo Norway
| | - Viola Lekve
- Centre for Pharmacy, Department of Clinical Science, University of Bergen Jonas Lies vei 87 N-5021 Bergen Norway
| | - Stein Ove Døskeland
- Department of Biomedicine, University of Bergen Jonas Lies vei 91 N-5021 Bergen Norway
| | - Lars Herfindal
- Centre for Pharmacy, Department of Clinical Science, University of Bergen Jonas Lies vei 87 N-5021 Bergen Norway
| | - Pål Rongved
- School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo PO Box 1068 Blindern N0316 Oslo Norway
| |
Collapse
|
30
|
Chen XB, Huang ST, Li J, Yang Q, Yang L, Yu F. Highly Regioselective and Chemoselective [3 + 3] Annulation of Enaminones with ortho-Fluoronitrobenzenenes: Divergent Synthesis of Aposafranones and Their N-Oxides. Org Lett 2021; 23:3032-3037. [PMID: 33792341 DOI: 10.1021/acs.orglett.1c00710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A base-promoted unprecedented strategy for the regioselective and chemoselective divergent synthesis of highly functionalized aposafranones and their N-oxides has been developed from the [3 + 3] annulation of enaminones with o-fluoronitrobenzenenes. This novel synthetic strategy offers an alternative method for the construction of aposafranones and their N-oxides are meaningful in the fields of both biology and organic synthesis. The established protocol explores the annulation scope of enaminones, and it expands the application of nitro-based cyclization.
Collapse
Affiliation(s)
- Xue-Bing Chen
- College of Science, Honghe University, Mengzi, 661199, Yunnan, China
| | - Shun-Tao Huang
- College of Science, Honghe University, Mengzi, 661199, Yunnan, China
| | - Jie Li
- College of Science, Honghe University, Mengzi, 661199, Yunnan, China
| | - Qi Yang
- College of Science, Honghe University, Mengzi, 661199, Yunnan, China
| | - Li Yang
- College of Science, Honghe University, Mengzi, 661199, Yunnan, China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650504, People's Republic of China
| |
Collapse
|
31
|
Zhao Y, Liu J, Jiang T, Hou R, Xu G, Xu H, Liu F. Resistance-Nodulation-Division Efflux Pump, LexABC, Contributes to Self-Resistance of the Phenazine Di- N-Oxide Natural Product Myxin in Lysobacter antibioticus. Front Microbiol 2021; 12:618513. [PMID: 33679640 PMCID: PMC7927275 DOI: 10.3389/fmicb.2021.618513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Antibiotic-producing microorganisms have developed several self-resistance mechanisms to protect them from autotoxicity. Transporters belonging to the resistance- nodulation-division (RND) superfamily commonly confer multidrug resistance in Gram-negative bacteria. Phenazines are heterocyclic, nitrogen-containing and redox-active compounds that exhibit diverse activities. We previously identified six phenazines from Lysobacter antibioticus OH13, a soil bacterium emerging as a potential biocontrol agent. Among these phenazines, myxin, a di-N-oxide phenazine, exhibited potent activity against a variety of microorganisms. In this study, we identified a novel RND efflux pump gene cluster, designated lexABC, which is located far away in the genome from the myxin biosynthesis gene cluster. We found a putative LysR-type transcriptional regulator encoding gene lexR, which was adjacent to lexABC. Deletion of lexABC or lexR gene resulted in significant increasing susceptibility of strains to myxin and loss of myxin production. The results demonstrated that LexABC pump conferred resistance against myxin. The myxin produced at lower concentrations in these mutants was derivatized by deoxidation and O-methylation. Furthermore, we found that the abolishment of myxin with deletion of LaPhzB, which is an essential gene in myxin biosynthesis, resulted in significant downregulation of the lexABC. However, exogenous supplementation with myxin to LaPhzB mutant could efficiently induce the expression of lexABC genes. Moreover, lexR mutation also led to decreased expression of lexABC, which indicates that LexR potentially positively modulated the expression of lexABC. Our findings reveal a resistance mechanism against myxin of L. antibioticus, which coordinates regulatory pathways to protect itself from autotoxicity.
Collapse
Affiliation(s)
- Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Jiayu Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, China
| | - Tianping Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Rongxian Hou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, China
| | - Gaoge Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Huiyong Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
32
|
Liu Q, Yang J, Wang X, Wei L, Ji G. Effect of culture medium optimization on the secondary metabolites activity of Lysobacter antibioticus 13-6. Prep Biochem Biotechnol 2021; 51:1008-1017. [PMID: 33656401 DOI: 10.1080/10826068.2021.1888298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Fermentation products of Lysobacter antibioticus 13-6 have antagonistic activity against devastating phytopathogenic bacerium Xanthomonas oryzae pv. oryzicola. The production of Lysobacter antibioticus 13-6 secondary metabolites was increased by optimizing the fermentation medium; using a single-factor screening test, Plackett-Burman Design, and Box-Behnken Design. The medium's final formulation for active secondary metabolites high-yield included peptone 5 g/L, glucose 4.73 g/L, MgSO4·7H2O 2.33 g/L, and K2HPO4 2.21 g/L. We compared phenazine-1-carboxylic acid (PCA) contents of L. antibioticus 13-6 in the initial and optimized mediums through HPLC. It was found PCA contents of the optimized medium are two folds more than in the initial medium. We also detected the relative expression of five phenazine genes of L. antibioticus 13-6 via RT-qPCR, and it was found that genes: phzB, C, S, and NO1 have more significant expression compared with the initial medium, while gene phzD has found just significant. Further, we revealed that the optimal fermentation conditions for secondary metabolites were: fermentation time 60 hours, shaking speed 160 rpm, inoculum size 3%, and the initial pH = 7.0. In the end, it was determined that the antimicrobial activity and quality of L. antibioticus 13-6 secondary metabolites were increased by about 41.75% and 2-times, respectively, after the optimization of the fermentation medium.
Collapse
Affiliation(s)
- Qi Liu
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jun Yang
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xing Wang
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lanfang Wei
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Guanghai Ji
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
33
|
Wang Y, Zhu S, Liu T, Guo B, Li F, Bai X. Identification of the rhizospheric microbe and metabolites that led by the continuous cropping of ramie (Boehmeria nivea L. Gaud). Sci Rep 2020; 10:20408. [PMID: 33230149 PMCID: PMC7683709 DOI: 10.1038/s41598-020-77475-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
Continuous cropping lowers the production and quality of ramie (Boehmeria nivea L. Gaud). This study aimed to reveal the metagenomic and metabolomic changes between the healthy- and obstacle-plant after a long period of continuous cropping. After 10 years of continuous cropping, ramie planted in some portions of the land exhibited weak growth and low yield (Obstacle-group), whereas, ramie planted in the other portion of the land grew healthy (Health-group). We collected rhizosphere soil and root samples from which measurements of soil chemical and plant physiochemical properties were taken. All samples were subjected to non-targeted gas chromatograph-mass spectrometer (GS/MS) metabolome analysis. Further, metagenomics was performed to analyze the functional genes in rhizospheric soil organisms. Based on the findings, ramie in Obstacle-group were characterized by shorter plant height, smaller stem diameter, and lower fiber production than that in Health-group. Besides, the Obstacle-group showed a lower relative abundance of Rhizobiaceae, Lysobacter antibioticus, and Bradyrhizobium japonicum, but a higher relative abundance of Azospirillum lipoferum and A. brasilense compared to the Health-group. Metabolomic analysis results implicated cysteinylglycine (Cys-Gly), uracil, malonate, and glycerol as the key differential metabolites between the Health- and Obstacle-group. Notably, this work revealed that bacteria such as Rhizobia potentially synthesize IAA and are likely to reduce the biotic stress of ramie. L. antibioticus also exerts a positive effect on plants in the fight against biotic stress and is mediated by metabolites including orthophosphate, uracil, and Cys-Gly, which may serve as markers for disease risk. These bacterial effects can play a key role in plant resistance to biotic stress via metabolic and methionine metabolism pathways.
Collapse
Affiliation(s)
- Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, People's Republic of China
| | - Siyuan Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, People's Republic of China.
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, People's Republic of China
| | - Bing Guo
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, People's Republic of China
| | - Fu Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, People's Republic of China
| | - Xuehua Bai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, People's Republic of China
| |
Collapse
|
34
|
Elhady HA, El-Mekawy RE, Fadda AA. Valuable Chemistry of Phenazine Derivatives: Synthesis, Reactions and, Applications. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1833051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Heba A. Elhady
- Department of Chemistry, Faculty of Science, Al-Azhar University (Girls Branch), Youssef Abbas Str. Cairo, Egypt
| | - Rasha E. El-Mekawy
- Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Petrochemicals, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - A. A. Fadda
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
35
|
Zhao Y, Jiang T, Xu H, Xu G, Qian G, Liu F. Characterization of Lysobacter spp. strains and their potential use as biocontrol agents against pear anthracnose. Microbiol Res 2020; 242:126624. [PMID: 33189074 DOI: 10.1016/j.micres.2020.126624] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
Colletotrichum fructicola, is an important fungal pathogen that has been reported to cause pear (Pyrus) anthracnose in China, resulting in substantial economic losses due to severe defoliation and decreased fruit quality and yield. In the search for novel strategies to control pear anthracnose, Lysobacter strains have drawn a great deal of attention due to their high-level production of extracellular enzymes and bioactive metabolites. In the present study, we compared four Lysobacter strains including Lysobacter enzymogenes OH11, Lysobacter antibioticus OH13, Lysobacter gummosus OH17 and Lysobacter brunescens OH23 with respect to their characteristics and activity against pear anthracnose caused by C. fructicola. The results showed that the evaluated Lysobacter species presented various colony morphologies when cultured on different media and were proficient in producing protease, chitinase, cellulase and glucanase, with L. enzymogenes OH11 showing typical twitching motility. L. enzymogenes OH11 and L. gummosus OH17 showed potent activity against the tested fungi and oomycetes. L. gummosus OH17 produced HSAF (heat-stable antifungal factor) which was demonstrated to be a major antifungal factor in L. enzymogenes OH11 and C3. Furthermore, L. antibioticus OH13 and L. brunescens OH23 exhibited strong antibacterial activity, especially against Xanthomonas species. Cultures of L. enzymogenes OH11 protected pear against anthracnose caused by C. fructicola, and the in vivo results indicated that treatment with an L. enzymogenes OH11 culture could decrease the diameter of lesions in pears by 35 % and reduce the severity of rot symptoms compared to that observed in the control. In the present study, we systemically compared four Lysobacter strains and demonstrated that they have strong antagonistic activity against a range of pathogens, demonstrating their promise in the development of biological control agents.
Collapse
Affiliation(s)
- Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, PR China
| | - Tianping Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, PR China; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Huiyong Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, PR China
| | - Gaoge Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, PR China
| | - Guoliang Qian
- College of Plant Protection (Key Laboratory of Integrated Management of Crop Diseases and Pests), Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, PR China; Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
36
|
Dar D, Thomashow LS, Weller DM, Newman DK. Global landscape of phenazine biosynthesis and biodegradation reveals species-specific colonization patterns in agricultural soils and crop microbiomes. eLife 2020; 9:59726. [PMID: 32930660 PMCID: PMC7591250 DOI: 10.7554/elife.59726] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/02/2020] [Indexed: 01/08/2023] Open
Abstract
Phenazines are natural bacterial antibiotics that can protect crops from disease. However, for most crops it is unknown which producers and specific phenazines are ecologically relevant, and whether phenazine biodegradation can counter their effects. To better understand their ecology, we developed and environmentally-validated a quantitative metagenomic approach to mine for phenazine biosynthesis and biodegradation genes, applying it to >800 soil and plant-associated shotgun-metagenomes. We discover novel producer-crop associations and demonstrate that phenazine biosynthesis is prevalent across habitats and preferentially enriched in rhizospheres, whereas biodegrading bacteria are rare. We validate an association between maize and Dyella japonica, a putative producer abundant in crop microbiomes. D. japonica upregulates phenazine biosynthesis during phosphate limitation and robustly colonizes maize seedling roots. This work provides a global picture of phenazines in natural environments and highlights plant-microbe associations of agricultural potential. Our metagenomic approach may be extended to other metabolites and functional traits in diverse ecosystems.
Collapse
Affiliation(s)
- Daniel Dar
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Linda S Thomashow
- Wheat Health, Genetics and Quality Research Unit, USDA Agricultural Research Service, Pullman, United States
| | - David M Weller
- Wheat Health, Genetics and Quality Research Unit, USDA Agricultural Research Service, Pullman, United States
| | - Dianne K Newman
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
37
|
Microbial Degradation of Pyridine: a Complete Pathway in Arthrobacter sp. Strain 68b Deciphered. Appl Environ Microbiol 2020; 86:AEM.00902-20. [PMID: 32471913 DOI: 10.1128/aem.00902-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/23/2020] [Indexed: 11/20/2022] Open
Abstract
Pyridine and its derivatives constitute the majority of heterocyclic aromatic compounds that occur largely as a result of human activities and contribute to environmental pollution. It is known that they can be degraded by various bacteria in the environment; however, the degradation of unsubstituted pyridine has not yet been completely resolved. In this study, we present data on the pyridine catabolic pathway in Arthrobacter sp. strain 68b at the level of genes, enzymes, and metabolites. The pyr gene cluster, responsible for the degradation of pyridine, was identified in a catabolic plasmid, p2MP. The pathway of pyridine metabolism consisted of four enzymatic steps and ended by the formation of succinic acid. The first step in the degradation of pyridine proceeds through a direct ring cleavage catalyzed by a two-component flavin-dependent monooxygenase system, encoded by pyrA (pyridine monooxygenase) and pyrE genes. The genes pyrB, pyrC, and pyrD were found to encode (Z)-N-(4-oxobut-1-enyl)formamide dehydrogenase, amidohydrolase, and succinate semialdehyde dehydrogenase, respectively. These enzymes participate in the subsequent steps of pyridine degradation. The metabolites of these enzymatic reactions were identified, and this allowed us to reconstruct the entire pyridine catabolism pathway in Arthrobacter sp. 68b.IMPORTANCE The biodegradation pathway of pyridine, a notorious toxicant, is relatively unexplored, as no genetic data related to this process have ever been presented. In this paper, we describe the plasmid-borne pyr gene cluster, which includes the complete set of genes responsible for the degradation of pyridine. A key enzyme, the monooxygenase PyrA, which is responsible for the first step of the catabolic pathway, performs an oxidative cleavage of the pyridine ring without typical activation steps such as reduction or hydroxylation of the heterocycle. This work provides new insights into the metabolism of N-heterocyclic compounds in nature.
Collapse
|
38
|
Afoshin AS, Kudryakova IV, Borovikova AO, Suzina NE, Toropygin IY, Shishkova NA, Vasilyeva NV. Lytic potential of Lysobacter capsici VKM B-2533 T: bacteriolytic enzymes and outer membrane vesicles. Sci Rep 2020; 10:9944. [PMID: 32561806 PMCID: PMC7305183 DOI: 10.1038/s41598-020-67122-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/03/2020] [Indexed: 11/10/2022] Open
Abstract
Recent recurrent outbreaks of bacterial resistance to antibiotics have shown the critical need to identify new lytic agents to combat them. The species Lysobacter capsici VKM B-2533T possesses a potent antimicrobial action against a number of bacteria, fungi and yeasts. Its activity can be due to the impact of bacteriolytic enzymes, antibiotics and peptides. This work isolated four homogeneous bacteriolytic enzymes and a mixture of two proteins, which also had a bacteriolytic activity. The isolates included proteins identical to L. enzymogenes α- and β-lytic proteases and lysine-specific protease. The proteases of 26 kDa and 29 kDa and a protein identified as N-acetylglycosaminidase had not been isolated in Lysobacter earlier. The isolated β-lytic protease digested live methicillin-resistant staphylococcal cells with high efficiency (minimal inhibitory concentration, 2.85 μg/mL). This property makes the enzyme deserving special attention. A recombinant β-lytic protease was produced. The antimicrobial potential of the bacterium was contributed to by outer membrane vesicles (OMVs). L. capsici cells were found to form a group of OMVs responsible for antifungal activity. The data are indicative of a significant antimicrobial potential of this bacterium that requires thorough research.
Collapse
Affiliation(s)
- A S Afoshin
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, PSCBR RAS, 5 Prosp. Nauki, Pushchino, Moscow Region, 142290, Russia
| | - I V Kudryakova
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, PSCBR RAS, 5 Prosp. Nauki, Pushchino, Moscow Region, 142290, Russia
| | - A O Borovikova
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, PSCBR RAS, 5 Prosp. Nauki, Pushchino, Moscow Region, 142290, Russia
| | - N E Suzina
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, PSCBR RAS, 5 Prosp. Nauki, Pushchino, Moscow Region, 142290, Russia
| | - I Yu Toropygin
- Department of Proteomics, V.N. Orekhovich Research Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, 10 Pogodinskaja Str., Moscow, 119832, Russia
| | - N A Shishkova
- Laboratory of Anthrax Microbiology, FBIS State Research Center for Applied Microbiology and Biotechnology, Obolensk, Serpukhov District, Moscow Region, 142279, Russia
| | - N V Vasilyeva
- Laboratory of Microbial Cell Surface Biochemistry, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, PSCBR RAS, 5 Prosp. Nauki, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
39
|
Identification of new arylamine N-acetyltransferases and enhancing 2-acetamidophenol production in Pseudomonas chlororaphis HT66. Microb Cell Fact 2020; 19:105. [PMID: 32430011 PMCID: PMC7236291 DOI: 10.1186/s12934-020-01364-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 05/12/2020] [Indexed: 01/03/2023] Open
Abstract
Background 2-Acetamidophenol (AAP) is an aromatic compound with the potential for antifungal, anti-inflammatory, antitumor, anti-platelet, and anti-arthritic activities. Due to the biosynthesis of AAP is not yet fully understood, AAP is mainly produced by chemical synthesis. Currently, metabolic engineering of natural microbial pathway to produce valuable aromatic compound has remarkable advantages and exhibits attractive potential. Thus, it is of paramount importance to develop a dominant strain to produce AAP by elucidating the AAP biosynthesis pathway. Result In this study, the active aromatic compound AAP was first purified and identified in gene phzB disruption strain HT66ΔphzB, which was derived from Pseudomonas chlororaphis HT66. The titer of AAP in the strain HT66ΔphzB was 236.89 mg/L. Then, the genes involved in AAP biosynthesis were determined. Through the deletion of genes phzF, Nat and trpE, AAP was confirmed to have the same biosynthesis route as phenazine-1-carboxylic (PCA). Moreover, a new arylamine N-acetyltransferases (NATs) was identified and proved to be the key enzyme required for generating AAP by in vitro assay. P. chlororaphis P3, a chemical mutagenesis mutant strain of HT66, has been demonstrated to have a robust ability to produce antimicrobial phenazines. Therefore, genetic engineering, precursor addition, and culture optimization strategies were used to enhance AAP production in P. chlororaphis P3. The inactivation of phzB in P3 increased AAP production by 92.4%. Disrupting the phenazine negative regulatory genes lon and rsmE and blocking the competitive pathway gene pykA in P3 increased AAP production 2.08-fold, which also confirmed that AAP has the same biosynthesis route as PCA. Furthermore, adding 2-amidophenol to the KB medium increased AAP production by 64.6%, which suggested that 2-amidophenol is the precursor of AAP. Finally, by adding 5 mM 2-amidophenol and 2 mM Fe3+ to the KB medium, the production of AAP reached 1209.58 mg/L in the engineered strain P3ΔphzBΔlonΔpykAΔrsmE using a shaking-flask culture. This is the highest microbial-based AAP production achieved to date. Conclusion In conclusion, this study clarified the biosynthesis process of AAP in Pseudomonas and provided a promising host for industrial-scale biosynthesis of AAP from renewable resources. ![]()
Collapse
|
40
|
Guo S, Liu R, Wang W, Hu H, Li Z, Zhang X. Designing an Artificial Pathway for the Biosynthesis of a Novel Phenazine N-Oxide in Pseudomonas chlororaphis HT66. ACS Synth Biol 2020; 9:883-892. [PMID: 32197042 DOI: 10.1021/acssynbio.9b00515] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aromatic N-oxides are valuable due to their versatile chemical, pharmaceutical, and agricultural applications. Natural phenazine N-oxides possess potent biological activities and can be applied in many ways; however, few N-oxides have been identified. Herein, we developed a microbial system to synthesize phenazine N-oxides via an artificial pathway. First, the N-monooxygenase NaphzNO1 was predicted and screened in Nocardiopsis sp. 13-12-13 through a product comparison and gene sequencing. Subsequently, according to similarities in the chemical structures of substrates, an artificial pathway for the synthesis of a phenazine N-oxide in Pseudomonas chlororaphis HT66 was designed and established using three heterologous enzymes, a monooxygenase (PhzS) from P. aeruginosa PAO1, a monooxygenase (PhzO) from P. chlororaphis GP72, and the N-monooxygenase NaphzNO1. A novel phenazine derivative, 1-hydroxyphenazine N'10-oxide, was obtained in an engineered strain, P. chlororaphis HT66-SN. The phenazine N-monooxygenase NaphzNO1 was identified by metabolically engineering the phenazine-producing platform P. chlororaphis HT66. Moreover, the function of NaphzNO1, which can catalyze the conversion of 1-hydroxyphenazine but not that of 2-hydroxyphenazine, was confirmed in vitro. Additionally, 1-hydroxyphenazine N'10-oxide demonstrated substantial cytotoxic activity against two human cancer cell lines, MCF-7 and HT-29. Furthermore, the highest microbial production of 1-hydroxyphenazine N'10-oxide to date was achieved at 143.4 mg/L in the metabolically engineered strain P3-SN. These findings demonstrate that P. chlororaphis HT66 has the potential to be engineered as a platform for phenazine-modifying gene identification and derivative production. The present study also provides a promising alternative for the sustainable synthesis of aromatic N-oxides with unique chemical structures by N-monooxygenase.
Collapse
Affiliation(s)
- Shuqi Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rongfeng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
41
|
Guo S, Wang Y, Bilal M, Hu H, Wang W, Zhang X. Microbial Synthesis of Antibacterial Phenazine-1,6-dicarboxylic Acid and the Role of PhzG in Pseudomonas chlororaphis GP72AN. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2373-2380. [PMID: 32013409 DOI: 10.1021/acs.jafc.9b07657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pseudomonas chlororaphis have been demonstrated to be environmentally friendly biocontrol strains, and most of them can produce phenazine compounds. Phenazine-1,6-dicarboxylic acid (PDC), with a potential antibacterial activity, is generally found in Streptomyces but not in Pseudomonas. The present study aimed to explore the feasibility of PDC synthesis and the function of PhzG in Pseudomonas. A PDC producer was constructed by replacing phzG in P. chlororaphis with lphzG from Streptomyces lomondensis. Through gene deletion, common start codon changing, gene silence, and in vitro assay, our result revealed that the yield of PDC in P. chlororaphis is associated with the relative expression of phzG to phzA and phzB. In addition, it is found that PDC can be spontaneously synthesized without PhzG. This study provides an efficient way for PDC production and promotes a better understanding of PhzG function in PDC biosynthesis. Moreover, this study gives an alternative opportunity for developing new antibacterial biopesticides.
Collapse
Affiliation(s)
- Shuqi Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Yining Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Muhammad Bilal
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
- National Experimental Teaching Center for Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
42
|
Han H, Guo ZK, Zhang B, Zhang M, Shi J, Li W, Jiao RH, Tan RX, Ge HM. Bioactive phenazines from an earwig-associated Streptomyces sp. Chin J Nat Med 2019; 17:475-480. [PMID: 31262460 DOI: 10.1016/s1875-5364(19)30055-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Indexed: 10/26/2022]
Abstract
Three new phenazine-type compounds, named phenazines SA-SC (1-3), together with four new natural products (4-7), were isolated from the fermentation broth of an earwig-associated Streptomyces sp. NA04227. The structures of these compounds were determined by extensive analyses of NMR, high resolution mass spectroscopic data, as well as single-crystal X-ray diffraction measurement. Sequencing and analysis of the genome data allowed us to identify the gene cluster (spz) and propose a biosynthetic pathway for these phenazine-type compounds. Additionally, compounds 1-5 exhibited moderate inhibitory activity against acetylcholinesterase (AChE), and compound 3 showed antimicrobial activities against Micrococcus luteus.
Collapse
Affiliation(s)
- Hao Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhi-Kai Guo
- Hainan Provincial Key Laboratory for Functional Components Research and Utilization of Marine Bio-resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Mei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wei Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Rui-Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ren-Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China; State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hui-Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
43
|
Interspecies and Intraspecies Signals Synergistically Regulate Lysobacter enzymogenes Twitching Motility. Appl Environ Microbiol 2019; 85:AEM.01742-19. [PMID: 31540995 DOI: 10.1128/aem.01742-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/18/2019] [Indexed: 12/24/2022] Open
Abstract
The twitching motility of bacteria is closely related to environmental adaptability and pathogenic behaviors. Lysobacter is a good genus in which to study twitching motility because of the complex social activities and distinct movement patterns of its members. Regardless, the mechanism that induces twitching motility is largely unknown. In this study, we found that the interspecies signal indole caused Lysobacter to have irregular, random twitching motility with significantly enhanced speed. Deletion of qseC or qseB from the two-component system for indole signaling perception resulted in the disappearance of rapid, random movements and significantly decreased twitching activity. Indole-induced, rapid, random twitching was achieved through upregulation of expression of gene cluster pilE1-pilY11-pilX1-pilW1-pilV1-fimT1 In addition, under conditions of extremely low bacterial density, individual Lysobacter cells grew and divided in a stable manner in situ without any movement. The intraspecies quorum-sensing signaling factor 13-methyltetradecanoic acid, designated L. enzymogenes diffusible signaling factor (LeDSF), was essential for Lysobacter to produce twitching motility through indirect regulation of gene clusters pilM-pilN-pilO-pilP-pilQ and pilS1-pilR-pilA-pilB-pilC These results demonstrate that the motility of Lysobacter is induced and regulated by indole and LeDSF, which reveals a novel theory for future studies of the mechanisms of bacterial twitching activities.IMPORTANCE The mechanism underlying bacterial twitching motility is an important research area because it is closely related to social and pathogenic behaviors. The mechanism mediating cell-to-cell perception of twitching motility is largely unknown. Using Lysobacter as a model, we found in this study that the interspecies signal indole caused Lysobacter to exhibit irregular, random twitching motility via activation of gene cluster pilE1-pilY11-pilX1-pilW1-pilV1-fimT1 In addition, population-dependent behavior induced by 13-methyltetradecanoic acid, a quorum-sensing signaling molecule designated LeDSF, was involved in twitching motility by indirectly regulating gene clusters pilM-pilN-pilO-pilP-pilQ and pilS1-pilR-pilA-pilB-pilC The results demonstrate that the twitching motility of Lysobacter is regulated by these two signaling molecules, offering novel clues for exploring the mechanisms of twitching motility and population-dependent behaviors of bacteria.
Collapse
|
44
|
Lina F, Ting W, Lanfang W, Jun Y, Qi L, Yating W, Xing W, Guanghai J. Specific detection of Lysobacter antibioticus strains in agricultural soil using PCR and real-time PCR. FEMS Microbiol Lett 2019; 365:5094558. [PMID: 30202922 DOI: 10.1093/femsle/fny219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/07/2018] [Indexed: 11/13/2022] Open
Abstract
Lysobacter antibioticus is an important biocontrol bacteria against phytopathogens in soil, and with the ability to produce nonvolatile antimicrobial metabolites has been extensively characterised. It is important to establish applicable techniques to detect and monitor L. antibioticus directly and accurately in soil samples. We developed and tested 13 primer sets according to phenazine gene (phzA, phzB, phzD, phzF, phzS) and the cyclohexanone monooxygenase gene (phzNO1); a pair of primer phzNO1 F1/phzNO1 R1 based on the cyclohexanone monooxygenase (phzNO1) gene of L. antibioticus strain OH13 was selected and optimized polymerase chain reaction (PCR) amplification conditions for rapid and accurate detection. After screening eight strains of L. antibioticus, two strains of Lysobacter enzymogenes, one strain of Lysobacter capsici, Arthrobacterium, Bacillus, Microbacterium, Burkholderia, Pseudomonas and other bacterial strains isolated from different agricultural soils, the phzNO1 F1/phzNO1 R1 primers amplified a single PCR band of about 229 bp from L. antibioticus. The detection sensitivity with primers phzNO1 F1/phzNO1 R1 was 5.14 × 104 fg/25μL of genomic DNA and 2.254 × 1010 to 2.254 × 1011 colony-forming units/mL for the soil samples. Quantitative PCR assays were to develope as a specific method to monitor the L. antibioticus population in soil as well as guide soil micro-ecological management.
Collapse
Affiliation(s)
- Fu Lina
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, P. R. China
| | - Wang Ting
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, P. R. China
| | - Wei Lanfang
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, P. R. China
| | - Yang Jun
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, P. R. China
| | - Liu Qi
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, P. R. China
| | - Wang Yating
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, P. R. China
| | - Wang Xing
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, P. R. China
| | - Ji Guanghai
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management under the Ministry of Education, Yunnan Agricultural University, Kunming 650201, P. R. China
| |
Collapse
|
45
|
Dimitrov SD, Dermen IA, Dimitrova NH, Vasilev KG, Schultz TW, Mekenyan OG. Mechanistic relationship between biodegradation and bioaccumulation. Practical outcomes. Regul Toxicol Pharmacol 2019; 107:104411. [PMID: 31226393 DOI: 10.1016/j.yrtph.2019.104411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/04/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
According to the REACH Regulation, for all substances manufactured or imported in amounts of 10 or more tons per year, that are not exempted from the registration requirement, a Chemical Safety Assessment (CSA) must be conducted. According to CSA criteria, for these substances persistent, bioaccumulative and toxic (PBT), and very persistent and very bioaccumulative (vPvB) assessment is requested. In order to reduce the number of applications of the expensive bioaccumulation test it seems useful to search thresholds for other related parameters above which no bioaccumulation is observed. Given the known relationship between ready biodegradability and bioaccumulation, one such parameter is biodegradation. This article addresses this relationship in searching for BOD threshold above which no vB and B chemicals could be observed. It was found that the regulatory criteria for persistency could be used for identification of not vB and B chemicals. In addition, fish liver metabolism is determined as the most significant factor in reducing of maximum bioaccumulation potential of the chemicals. It was found that parameters associated with the models simulating fish metabolism could be also used for identification of not vB and B chemicals.
Collapse
Affiliation(s)
- Sabcho D Dimitrov
- Laboratory of Mathematical Chemistry, University "Prof. As. Zlatarov", 8010, Bourgas, Bulgaria
| | - Irina A Dermen
- Laboratory of Mathematical Chemistry, University "Prof. As. Zlatarov", 8010, Bourgas, Bulgaria.
| | - Nadezhda H Dimitrova
- Laboratory of Mathematical Chemistry, University "Prof. As. Zlatarov", 8010, Bourgas, Bulgaria.
| | - Krasimir G Vasilev
- Laboratory of Mathematical Chemistry, University "Prof. As. Zlatarov", 8010, Bourgas, Bulgaria.
| | - Terry W Schultz
- The University of Tennessee, College of Veterinary Medicine, 2407 River Drive, Knoxville, TN, 37996-4500, USA.
| | - Ovanes G Mekenyan
- Laboratory of Mathematical Chemistry, University "Prof. As. Zlatarov", 8010, Bourgas, Bulgaria.
| |
Collapse
|
46
|
Ling J, Zhu R, Laborda P, Jiang T, Jia Y, Zhao Y, Liu F. LbDSF, the Lysobacter brunescens Quorum-Sensing System Diffusible Signaling Factor, Regulates Anti- Xanthomonas XSAC Biosynthesis, Colony Morphology, and Surface Motility. Front Microbiol 2019; 10:1230. [PMID: 31275253 PMCID: PMC6591275 DOI: 10.3389/fmicb.2019.01230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/17/2019] [Indexed: 01/26/2023] Open
Abstract
Lysobacter species are emerging as novel sources of antibiotics, but the regulation of these antibiotics has not been thoroughly elucidated to date. In this work, we identified a small diffusible signaling factor (DSF) molecule (LbDSF) that regulates the biosynthesis of a novel Xanthomonas-specific antibiotic compound (XSAC) in Lysobacter brunescens OH23. LbDSF was isolated from the culture broth of L. brunescens OH23, and the chemical structure of the molecule was determined by NMR and MS. The LbDSF compound induced GUS expression in a reporter strain of Xanthomonas campestris pv. campestris FE58, which contained the gus gene under the control of a DSF-inducible engXCA promoter. LbDSF production was found to be linked to the enoyl-CoA hydratase RpfF and dependent on the two-component regulatory system RpfC (hybrid sensor histidine kinase)/RpfG (response regulator), and LbDSF production was increased 6.72 times in the ΔrpfC compared to wild-type OH23. LbDSF-regulated XSAC production was dramatically decreased in ΔrpfF, ΔrpfC, and ΔrpfG. Additionally, a significant reduction in surface motility and a number of changes in colony morphology was observed in the ΔrpfF, ΔrpfC, and ΔrpfG compared to the wild-type OH23. The exogenous LbDSF significantly increased XSAC production in wild-type OH23 and recovered the XSAC biosynthetic ability in ΔrpfF. Taken together, these results showed that LbDSF is a fatty-acid-derived DSF that positively regulates XSAC biosynthesis, cell morphology, and surface motility. Moreover, the RpfC/RpfG quorum-sensing signal transduction pathway mediates XSAC biosynthesis. These findings may facilitate antibiotic production through genetic engineering in Lysobacter spp.
Collapse
Affiliation(s)
- Jun Ling
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Runjie Zhu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Pedro Laborda
- School of Life Sciences, Nantong University, Nantong, China
| | - Tianping Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Yifan Jia
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
47
|
Laborda P, Li C, Zhao Y, Tang B, Ling J, He F, Liu F. Antifungal Metabolite p-Aminobenzoic Acid (pABA): Mechanism of Action and Efficacy for the Biocontrol of Pear Bitter Rot Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2157-2165. [PMID: 30735380 DOI: 10.1021/acs.jafc.8b05618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Colletotrichum fructicola, a fungal pathogen that causes bitter rot disease in pears, has recently emerged in Eastern Asia and caused enormous economic losses and crop penalties. For this reason, new strategies for the management of bitter rot disease are greatly needed and can have a great impact on the field. In this regard, our research group recently reported that p-aminobenzoic acid (pABA), which was found in the secretions of rhizobacterium Lysobacter antibioticus OH13, showed a broad spectrum of antifungal activities. Following this project, the antifungal mode of action of pABA has been elucidated in this work indicating that pABA affects the fungal cell cycle of C. fructicola by inhibiting septation during cell division. pABA stability and diffusion screening revealed that pABA degrades after 15 days and is able to cross the pear skin into the external parts of the mesocarp. In vivo studies demonstrated that pABA shows high curative ability against the infection of C. fructicola in pears. To show the efficacy of OH13 for the biocontrol of bitter rot disease, cultures of OH13 containing 379.4 mg/L pABA were sprayed on inoculated pears, significantly reducing the symptoms of the pathogen.
Collapse
Affiliation(s)
- Pedro Laborda
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences , Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology , Nanjing 210014 , People's Republic of China
- School of Life Sciences , Nantong University , Nantong , 226019 , People's Republic of China
| | - Chaohui Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences , Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology , Nanjing 210014 , People's Republic of China
| | - Yangyang Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences , Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology , Nanjing 210014 , People's Republic of China
| | - Bao Tang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences , Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology , Nanjing 210014 , People's Republic of China
| | - Jun Ling
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences , Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology , Nanjing 210014 , People's Republic of China
| | - Feng He
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences , Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology , Nanjing 210014 , People's Republic of China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences , Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology , Nanjing 210014 , People's Republic of China
| |
Collapse
|
48
|
Tang B, Laborda P, Sun C, Xu G, Zhao Y, Liu F. Improving the production of a novel antifungal alteramide B in Lysobacter enzymogenes OH11 by strengthening metabolic flux and precursor supply. BIORESOURCE TECHNOLOGY 2019; 273:196-202. [PMID: 30447620 DOI: 10.1016/j.biortech.2018.10.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Lysobacter enzymogenes OH11 is currently considered to be a novel biocontrol agent for various plant fungi diseases. At present, only heat-stable antifungal factor (HSAF) has been isolated and identified in culture, although other active compounds also showed antifungal activity. In the present study, a novel active compound, alteramide B (ATB), which exhibits broad-spectrum antagonistic activity against phytopathogenic fungi and oomycetes, was isolated. The genes responsible for ATB biosynthesis were also determined. In addition, a strain producing ATB with minimal HSAF production was successfully generated by redirecting metabolic flux, namely L. enzymogenes OH57. Furthermore, ATB production increased to 893.32 ± 15.57 mg/L through medium optimization and precursor supply strategy, which was 24.36-fold higher than that of 10% tryptic soy broth (36.67 ± 1.63 mg/L). Taken together, this study indicates ATB has great development value as a biopesticide because of its bioactivity and high production.
Collapse
Affiliation(s)
- Bao Tang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Pedro Laborda
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Cheng Sun
- School of Medicine, Yangzhou Polytechnic College, Yangzhou 225009, China
| | - Gaoge Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yancun Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
49
|
Tolmie C, Smit MS, Opperman DJ. Native roles of Baeyer–Villiger monooxygenases in the microbial metabolism of natural compounds. Nat Prod Rep 2019; 36:326-353. [DOI: 10.1039/c8np00054a] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Baeyer–Villiger monooxygenases function in the primary metabolism of atypical carbon sources, as well as the synthesis of complex microbial metabolites.
Collapse
Affiliation(s)
- Carmien Tolmie
- Department of Biotechnology
- University of the Free State
- Bloemfontein
- South Africa
| | - Martha S. Smit
- Department of Biotechnology
- University of the Free State
- Bloemfontein
- South Africa
| | | |
Collapse
|
50
|
Fu L, Li H, Wei L, Yang J, Liu Q, Wang Y, Wang X, Ji G. Antifungal and Biocontrol Evaluation of Four Lysobacter Strains Against Clubroot Disease. Indian J Microbiol 2018; 58:353-359. [PMID: 30013280 DOI: 10.1007/s12088-018-0716-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 03/06/2018] [Indexed: 10/17/2022] Open
Abstract
The effect of crude extract (Ce), seed coating agent (SCA) and whole bacterial broth culture (WBC) of Lysobacter strains was evaluated against the causal agent of clubroot formation in Cruciferous vegetables. The ability of four Lysobacter strains (L. antibioticus 6-B-1, L. antibioticus 6-T-4, L. antibioticus 13-B-1 and L. capsici ZST1-2) inhibited Plasmodiophora brassicae of resting spores and disease. Application of WBC of four Lysobacter strains inhibited clubroot disease, indicating that the disease suppression was due to antifungal compounds produced by the biocontrol bacterium in the culture. Development of clubroot on Chinese cabbage was inhibited when the WBC and SCA were applied before P. brassicae inoculation. Crude extract (Ce) of culture filtrate was effective in arresting the germination of resting spores of P. brassicae on slides. However, Lysobacter strains differed in their biocontrol effects, the strain L. capsci ZST1-2 recorded a high level of disease limiting effect.
Collapse
Affiliation(s)
- Lina Fu
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming, 650201 People's Republic of China
| | - Hanmei Li
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming, 650201 People's Republic of China
| | - Lanfang Wei
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming, 650201 People's Republic of China
| | - Jun Yang
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming, 650201 People's Republic of China
| | - Qi Liu
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming, 650201 People's Republic of China
| | - Yating Wang
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming, 650201 People's Republic of China
| | - Xing Wang
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming, 650201 People's Republic of China
| | - Guanghai Ji
- Key Laboratory of Agriculture Biodiversity for Plant Disease Management Under the Ministry of Education, Yunnan Agricultural University, Kunming, 650201 People's Republic of China
| |
Collapse
|