1
|
Su W, Zhu J, Chen Y, Zhang X, Qiu W, Yang K, Yu P, Song Q. Copper-catalysed asymmetric hydroboration of alkenes with 1,2-benzazaborines to access chiral naphthalene isosteres. Nat Chem 2024; 16:1312-1319. [PMID: 38589627 DOI: 10.1038/s41557-024-01505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 03/08/2024] [Indexed: 04/10/2024]
Abstract
Bioisosteric replacement has emerged as a clear strategy for drug-structure optimization. Naphthalene is the core element of many chiral pharmaceuticals and drug candidates. However, as a promising isostere of naphthalene, the chiral version of 1,2-benzazaborine has rarely been explored due to the lack of efficient synthetic methods. Here we describe a copper-catalysed enantioselective hydroboration of alkenes with 1,2-benzazaborines. The method provides a general platform for the atom-economic and efficient construction of diverse chiral 1,2-benzazaborine compounds (more than 60 examples) that bear a 2-carbon-stereogenic centre or allene skeleton in high yields and excellent enantioselectivities. Three 1,2-benzazaborine analogues of bioactive chiral naphthalene-containing molecules have been prepared, and a series of transformations around chiral 1,2-benzazaborines have also been developed. Notably, the hydroboration process of this study reveals that the identity of 1,2-benzazaborine plays an essential role in the rate-determining step and catalyst resting state.
Collapse
Affiliation(s)
- Wanlan Su
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, China
| | - Jide Zhu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, China
| | - Yu Chen
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Xu Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, China
| | - Weihua Qiu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, China
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, China.
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China.
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Xu J, Qiu W, Zhang X, Wu Z, Zhang Z, Yang K, Song Q. Palladium-Catalyzed Atroposelective Kinetic C-H Olefination and Allylation for the Synthesis of C-B Axial Chirality. Angew Chem Int Ed Engl 2023; 62:e202313388. [PMID: 37840007 DOI: 10.1002/anie.202313388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
The direct C-H functionalization of 1,2-benzazaborines, especially asymmetric version, remains a great challenge. Here we report a palladium-catalyzed enantioselective C-H olefination and allylation reactions of 1,2-benzazaborines. This asymmetric approach is a kinetic resolution (KR), providing various C-B axially chiral 2-aryl-1,2-benzazaborines and 3-substituted 2-aryl-1,2-benzazaborines in generally high yields with excellent enantioselectivities (selectivity (S) factor up to 354). The synthetic potential of this reaction is showcased by late-stage modification of complex molecules, scale-up reaction, and applications.
Collapse
Affiliation(s)
- Jie Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Weihua Qiu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xu Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhihan Wu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhen Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
3
|
Roos CB, Chiang CH, Murray LAM, Yang D, Schulert L, Narayan ARH. Stereodynamic Strategies to Induce and Enrich Chirality of Atropisomers at a Late Stage. Chem Rev 2023; 123:10641-10727. [PMID: 37639323 DOI: 10.1021/acs.chemrev.3c00327] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Enantiomers, where chirality arises from restricted rotation around a single bond, are atropisomers. Due to the unique nature of the origins of their chirality, synthetic strategies to access these compounds in an enantioselective manner differ from those used to prepare enantioenriched compounds containing point chirality arising from an unsymmetrically substituted carbon center. In particular stereodynamic transformations, such as dynamic kinetic resolutions, thermodynamic dynamic resolutions, and deracemizations, which rely on the ability to racemize or interconvert enantiomers, are a promising set of transformations to prepare optically pure compounds in the late stage of a synthetic sequence. Translation of these synthetic approaches from compounds with point chirality to atropisomers requires an expanded toolbox for epimerization/racemization and provides an opportunity to develop a new conceptual framework for the enantioselective synthesis of these compounds.
Collapse
|
4
|
Yang K, Mao Y, Zhang Z, Xu J, Wang H, He Y, Yu P, Song Q. Construction of C-B axial chirality via dynamic kinetic asymmetric cross-coupling mediated by tetracoordinate boron. Nat Commun 2023; 14:4438. [PMID: 37488114 PMCID: PMC10366327 DOI: 10.1038/s41467-023-40164-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 07/14/2023] [Indexed: 07/26/2023] Open
Abstract
Catalytic dynamic kinetic asymmetric transformation (DyKAT) provides a powerful tool to access chiral stereoisomers from racemic substrates. Such transformation has been widely employed on the construction of central chirality, however, the application in axial chirality remains underexplored because its equilibrium of substrate enantiomers is limited to five-membered metalacyclic intermediate. Here we report a tetracoordinate boron-directed dynamic kinetic asymmetric cross-coupling of racemic, configurationally stable 3-bromo-2,1-azaborines with boronic acid derivatives. A series of challenging C-B axially chiral compounds were prepared with generally good to excellent enantioselectivities. Moreover, this transformation can also be extended to prepare atropisomers bearing adjacent C-B and C-C diaxes with excellent diastereo- and enantio-control. The key to the success relies on the rational design of a reversible tetracoordinate boron intermediate, which is supported by theoretical calculations that dramatically reduces the rotational barrier of the original C-B axis and achieves the goal of DyKAT.
Collapse
Affiliation(s)
- Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yanfei Mao
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zhihan Zhang
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jie Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Hao Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yong He
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
5
|
Baschieri A, Aleotti F, Matteucci E, Sambri L, Mancinelli M, Mazzanti A, Leoni E, Armaroli N, Monti F. A Pyridyl-1,2-azaborine Ligand for Phosphorescent Neutral Iridium(III) Complexes. Inorg Chem 2023; 62:2456-2469. [PMID: 36696253 PMCID: PMC9906742 DOI: 10.1021/acs.inorgchem.2c04449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A novel 1,2-azaborine (i.e., 4-methyl-2-(pyridin-2-yl)-2,1-borazaronaphthalene, 1a) has been synthesized and used for the first time as a B-N alternative to common cyclometalating ligands to obtain neutral phosphorescent iridium(III) complexes (i.e., 2a, 3, and 4) of general formula [Ir(C∧N)2(N∧NB)], where C∧N indicates three different cyclometalating ligands (Hppy = 2-phenylpyridine; Hdfppy = 2-(2,4-difluoro-phenyl)pyridine; Hpqu = 2-methyl-3-phenylquinoxaline). Moreover, the azaborine-based complex 2a was compared to the isoelectronic C═C iridium(III) complex 2b, obtained using the corresponding 2-(naphthalen-2-yl)pyridine ligand 1b. Due to the dual cyclometalation mode of such C═C ligand, the isomeric complex 2c was also obtained. All new compounds have been fully characterized by NMR spectroscopy and high-resolution mass spectrometry (MS), and the X-ray structure of 2a was determined. The electronic properties of both ligands and complexes were investigated by electrochemical, density functional theory (DFT), and photophysical methods showing that, compared to the naphthalene analogues, the azaborine ligand induces a larger band gap in the corresponding complexes, resulting in increased redox gap (basically because of the highest occupied molecular orbital (HOMO) stabilization) and blue-shifted emission bands (e.g., λmax = 523 vs 577 nm for 2a vs 2b, in acetonitrile solution at 298 K). On the other hand, the 3LC nature of the emitting state is the same in all complexes and remains centered on the pyridyl-borazaronaphthalene or its C═C pyridyl-naphthalene analogue. As a consequence, the quantum yields of such azaborine-based complexes are comparable to those of the more classical C═C counterparts (e.g., photoluminescence quantum yield (PLQY) = 16 vs 22% for 2a vs 2b, in acetonitrile solution at 298 K) but with enhanced excited-state energy. This proves that such type of azaborine ligands can be effectively used for the development of novel classes of photoactive transition-metal complexes for light-emitting devices or photocatalytic applications.
Collapse
Affiliation(s)
- Andrea Baschieri
- Istituto
per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy,
| | - Flavia Aleotti
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Elia Matteucci
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Letizia Sambri
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Michele Mancinelli
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy,
| | - Andrea Mazzanti
- Dipartimento
di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Enrico Leoni
- Istituto
per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy,Laboratorio
Tecnologie dei Materiali Faenza, ENEA, Via Ravegnana 186, 48018 Faenza, RA, Italy
| | - Nicola Armaroli
- Istituto
per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Filippo Monti
- Istituto
per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy,
| |
Collapse
|
6
|
Pecorari D, Giuliani E, Mazzanti A, Stagni S, Fiorini V, Vigarani G, Zinna F, Pescitelli G, Mancinelli M. Synthesis and Stereodynamic and Emission Properties of Dissymmetric Bis-Aryl Carbazole Boranes and Identification of a CPL-Active B-C Atropisomeric Compound. J Org Chem 2023; 88:871-881. [PMID: 36599041 PMCID: PMC9872089 DOI: 10.1021/acs.joc.2c02209] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We synthesized bis-aryl carbazole borane derivatives having emissive properties and axial chirality. The resolution of a thermally stable atropisomeric pair (compound 1b), due to a B-C chiral axis, was achieved by chiral stationary-phase high-performance liquid chromatography (CSP-HPLC). Complete photophysical properties of all compounds were measured and simulated by time-dependent density functional theory (TD-DFT) calculations of the complete fluorescence cycle, and circularly polarized luminescence spectra were obtained for the atropisomers of compound 1b, whose absolute configuration was derived using a TD-DFT simulation of the electronic circular dichroism (ECD) spectra.
Collapse
Affiliation(s)
- Daniel Pecorari
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Emanuele Giuliani
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Andrea Mazzanti
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Stefano Stagni
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Valentina Fiorini
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Giulia Vigarani
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy
| | - Francesco Zinna
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Gennaro Pescitelli
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | - Michele Mancinelli
- Department
of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136 Bologna, Italy,
| |
Collapse
|
7
|
Zhang Y, Li W, Jiang R, Zhang L, Li Y, Xu X, Liu X. Synthetic Doping of Acenaphthylene through BN/CC Isosterism and a Direct Comparison with BN-Acenaphthene. J Org Chem 2022; 87:12986-12996. [PMID: 36149831 DOI: 10.1021/acs.joc.2c01534] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Boron/nitrogen-doped acenaphthylenes, a new class of BN-doped cyclopenta-fused polycyclic aromatic hydrocarbons, were synthesized via indole-directed C-H borylation. The reference molecule BN-acenaphthene was also synthesized in a similar manner. Both BN-acenaphthylene and BN-acenaphthene were unequivocally characterized by single-crystal X-ray analysis. The aromaticities of each ring in BN-acenaphthylenes were quantified by experimental and theoretical methods. Moreover, doping the BN unit into acenaphthylene can increase the LUMO level and decrease the HOMO level, resulting in wider HOMO-LUMO energy gaps. Furthermore, regioselective bromination of BN-acenaphthylene (B-Mes) afforded monobrominated BN-acenaphthylene in good yield. Subsequently, cross-coupling of brominated BN-acenaphthylene gave a series of BN-acenaphthylene derivatives. In addition, the photophysical properties of these BN-acenaphthylene derivatives can be fine-tuned by the substituents on the BN-acenaphthylene scaffold.
Collapse
Affiliation(s)
- Yanli Zhang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Wenlong Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Ruijun Jiang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Lei Zhang
- School of Science, Tianjin Chengjian University, Tianjin 300384, People's Republic of China
| | - Yuanhao Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xiaoyang Xu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China
| | - Xuguang Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, People's Republic of China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
8
|
Yang YD, Yang BB, Li L. A nonneglectable stereochemical factor in drug development: Atropisomerism. Chirality 2022; 34:1355-1370. [PMID: 35904531 DOI: 10.1002/chir.23497] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/07/2022]
Abstract
Chirality is one of the key factors affecting the medicinal efficacy of compounds. In addition to central chirality, sterically hindered chiral axes commonly appear in drugs and the resulting chirality is known as atropisomerism. With developments in medicinal chemistry, atropisomerism has attracted increasing attention. This review discusses the classification, biological activity, pharmacokinetics, toxicity and side effects of atropisomers, and can serve as a reference in the research and development of potential chiral drugs.
Collapse
Affiliation(s)
- Ya-Dong Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bei-Bei Yang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Li Li
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Yang J, Zhang JW, Bao W, Qiu SQ, Li S, Xiang SH, Song J, Zhang J, Tan B. Chiral Phosphoric Acid-Catalyzed Remote Control of Axial Chirality at Boron-Carbon Bond. J Am Chem Soc 2021; 143:12924-12929. [PMID: 34384026 DOI: 10.1021/jacs.1c05079] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The previously elusive catalytic enantioselective construction of axially chiral B-aryl-1,2-azaborines with a C-B stereogenic axis has been realized through a chiral phosphoric acid-catalyzed desymmetrization strategy reported herein. The electrophilic aromatic substitution reaction of 3,5-disubsituted phenols with diazodicarboxamides could afford these axially chiral structures in good efficiency with excellent enantiocontrol. The efficient long-range stereochemical control is achieved by multiple well-defined H-bonding interactions between chiral phosphoric acid and both substrates. Meanwhile, the reaction duration could be markedly shortened with weakly acidic N-H in 1,2-azaborine acting as H-bond donor. The scalability of the reaction and facile cleavage of the N-N bond in the product further demonstrated the practicality of this method.
Collapse
Affiliation(s)
- Junxian Yang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ji-Wei Zhang
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wen Bao
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sheng-Qi Qiu
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shaoyu Li
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Song
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Bin Tan
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
10
|
Yang K, Mao Y, Xu J, Wang H, He Y, Li W, Song Q. Construction of Axially Chiral Arylborons via Atroposelective Miyaura Borylation. J Am Chem Soc 2021; 143:10048-10053. [PMID: 34180660 DOI: 10.1021/jacs.1c04345] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Compared with the well-developed centrally chiral boron chemistry, C-B axially chiral chemistry remains elusive and challenging. Herein we report the first atroposelective Miyaura borylation of bromoarenes with unsymmetrical diboron reagents for the direct catalytic synthesis of optically active atropisomeric arylborons. This reaction features broad substrate scope and produces axially chiral arylborons with high yields and good enantioselectivities.
Collapse
Affiliation(s)
- Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yanfei Mao
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jie Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Hao Wang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yong He
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Wangyang Li
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.,Institute of Next Generation Matter Transformation, College of Materials Science Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| |
Collapse
|
11
|
Pecorari D, Mazzanti A, Gianvittorio S, Foschi S, Stagni S, Fiorini V, Mancinelli M. Highly twisted carbazole-borane derivatives: B–N stereodynamic analysis and consequences on their emission properties. Org Chem Front 2021. [DOI: 10.1039/d1qo00715g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The manuscript describes the stereodynamic features of amino bis-mesityl-boranes bearing carbazole and benzocarbazole as donor heterocycles, and how they influence the photophysical properties.
Collapse
Affiliation(s)
- Daniel Pecorari
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| | - Andrea Mazzanti
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| | - Stefano Gianvittorio
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| | - Simone Foschi
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| | - Stefano Stagni
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| | - Valentina Fiorini
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| | - Michele Mancinelli
- Department of Industrial Chemistry “Toso Montanari”
- University of Bologna
- I-40136 Bologna
- Italy
| |
Collapse
|
12
|
Zhang J, Tan B. Catalytic Asymmetric Borylation to Construct Axially Chiral Arylborons. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Mancinelli M, Bencivenni G, Pecorari D, Mazzanti A. Stereochemistry and Recent Applications of Axially Chiral Organic Molecules. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901918] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Michele Mancinelli
- Department of Industrial Chemistry “Toso Montanari” University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Giorgio Bencivenni
- Department of Industrial Chemistry “Toso Montanari” University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Daniel Pecorari
- Department of Industrial Chemistry “Toso Montanari” University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Andrea Mazzanti
- Department of Industrial Chemistry “Toso Montanari” University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| |
Collapse
|
14
|
Birepinte M, Robert F, Pinet S, Chabaud L, Pucheault M. Non-biaryl atropisomerism at the C–B bond in sterically hindered aminoarylboranes. Org Biomol Chem 2020; 18:3007-3011. [DOI: 10.1039/d0ob00421a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sterically hindered aminoarylboranes with atropisomerism about the C–B bond were prepared and resolved by chiral stationary phase HPLC.
Collapse
Affiliation(s)
- Mélodie Birepinte
- Institute of Molecular Science
- CNRS
- Université de Bordeaux
- 33405 Talence cedex
- France
| | - Frédéric Robert
- Institute of Molecular Science
- CNRS
- Université de Bordeaux
- 33405 Talence cedex
- France
| | - Sandra Pinet
- Institute of Molecular Science
- CNRS
- Université de Bordeaux
- 33405 Talence cedex
- France
| | - Laurent Chabaud
- Institute of Molecular Science
- CNRS
- Université de Bordeaux
- 33405 Talence cedex
- France
| | - Mathieu Pucheault
- Institute of Molecular Science
- CNRS
- Université de Bordeaux
- 33405 Talence cedex
- France
| |
Collapse
|
15
|
Mazzanti A, Boffa M, Marotta E, Mancinelli M. Axial Chirality at the Boron–Carbon Bond: Synthesis, Stereodynamic Analysis, and Atropisomeric Resolution of 6-Aryl-5,6-dihydrodibenzo[c,e][1,2]azaborinines. J Org Chem 2019; 84:12253-12258. [DOI: 10.1021/acs.joc.9b01550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrea Mazzanti
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Maria Boffa
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Emanuela Marotta
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| | - Michele Mancinelli
- Department of Industrial Chemistry “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, Bologna 40136, Italy
| |
Collapse
|
16
|
Mitsudo K, Shigemori K, Mandai H, Wakamiya A, Suga S. Synthesis and Properties of Dithieno-Fused 1,4-Azaborine Derivatives. Org Lett 2018; 20:7336-7340. [DOI: 10.1021/acs.orglett.8b03316] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Keisuke Shigemori
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Mandai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Atsushi Wakamiya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
17
|
Bélanger-Chabot G, Braunschweig H, Roy DK. Recent Developments in Azaborinine Chemistry. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700562] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Guillaume Bélanger-Chabot
- Institute for Inorganic Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Institute for Inorganic Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| | - Dipak Kumar Roy
- Institute for Inorganic Chemistry; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
- Institute for Sustainable Chemistry & Catalysis with Boron; Julius-Maximilians-Universität Würzburg; Am Hubland 97074 Würzburg Germany
| |
Collapse
|
18
|
Mancinelli M, Perticarari S, Prati L, Mazzanti A. Conformational Analysis and Absolute Configuration of Axially Chiral 1-Aryl and 1,3-Bisaryl-xanthines. J Org Chem 2017; 82:6874-6885. [DOI: 10.1021/acs.joc.7b01010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Michele Mancinelli
- Department of Industrial
Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Sofia Perticarari
- Department of Industrial
Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Luca Prati
- Department of Industrial
Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Andrea Mazzanti
- Department of Industrial
Chemistry “Toso Montanari”, University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
19
|
Peluso P, Mamane V, Aubert E, Cossu S. Recent trends and applications in liquid-phase chromatography enantioseparation of atropisomers. Electrophoresis 2017; 38:1830-1850. [DOI: 10.1002/elps.201600502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/24/2017] [Accepted: 02/01/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB CNR - Sede Secondaria di Sassari; Sassari Italy
| | - Victor Mamane
- Institut de Chimie de Strasbourg; UMR CNRS; Strasbourg Cedex France
| | - Emmanuel Aubert
- Cristallographie, Résonance Magnétique et Modélisations (CRM ), UMR CNRS; Université de Lorraine; Vandoeuvre-les-Nancy France
| | - Sergio Cossu
- Dipartimento di Scienze Molecolari e Nanosistemi; Università Ca’ Foscari di Venezia; Mestre Venezia Italy
| |
Collapse
|
20
|
Tiwari MK, Vanka K. Exploiting directional long range secondary forces for regulating electrostatics-dominated noncovalent interactions. Chem Sci 2017; 8:1378-1390. [PMID: 28451279 PMCID: PMC5361874 DOI: 10.1039/c6sc03642b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/10/2016] [Indexed: 12/15/2022] Open
Abstract
It has been well established that long range secondary electrostatic interactions (SEIs) have a significant effect on the stability of supramolecular complexes. However, general rules for exploiting SEIs in the rational design of diverse supramolecular complexes have been difficult to obtain. In this work, we outline a quantum chemical approach for understanding the strength of electrostatic interactions. This approach is seen to provide excellent correlation between the electrostatic force and the binding energy between two partners in hydrogen-bonded complexes, as well as that between two ions in ion-pair complexes. Furthermore, we illustrate how the understanding of the binding allows for the rational design of new complexes where the association constant between the two partners can be increased or decreased, as desired, by several orders of magnitude. Hence, the current work showcases a general, simple and powerful method of understanding and exploiting long range secondary electrostatic interactions.
Collapse
Affiliation(s)
- Mrityunjay K Tiwari
- Physical and Material Chemistry Division , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pashan , Pune-411008 , Maharashtra , India .
| | - Kumar Vanka
- Physical and Material Chemistry Division , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pashan , Pune-411008 , Maharashtra , India .
| |
Collapse
|
21
|
Pomarański P, Samanta S, Roszkowski P, Maurin JK, Czarnocki Z. Enantioselective synthesis of axially chiral 3-bromo-4-alkoxy-2,6-dimethyl-5-(naphthalen-1-yl)pyridines via an asymmetric Suzuki–Miyaura cross-coupling reaction. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.09.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|