1
|
Espinoza-Chávez RM, de Oliveira Rezende Júnior C, Laureano de Souza M, Consolin Chelucci R, Michelan-Duarte S, Krogh R, Gomes Ferreira LL, Valli M, Sena de Oliveira A, Andricopulo AD, Carlos Dias L. Structure-Metabolism Relationships of Benzimidazole Derivatives with anti-Trypanosoma cruzi Activity for Chagas Disease. ChemMedChem 2024; 19:e202400293. [PMID: 38924252 DOI: 10.1002/cmdc.202400293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
This study introduces further insights from the hit-to-lead optimization process involving a series of benzimidazole derivatives acting as inhibitors of the cruzain enzyme, which targets Trypanosoma cruzi, the causative parasite of Chagas disease. Here, we present the design, synthesis and biological evaluation of 30 new compounds as a third generation of benzimidazole analogues with trypanocidal activity, aiming to enhance our understanding of their pharmacokinetic profiles and establish a structure-metabolism relationships within the series. The design of these new analogues was guided by the analysis of previous pharmacokinetic results, considering identified metabolic sites and biotransformation studies. This optimization resulted in the discovery of two compounds (42 e and 49 b) exhibiting enhanced metabolic stability, anti-Trypanosoma cruzi activity compared to benznidazole (the reference drug for Chagas disease), as well as being non-cruzain inhibitors, and demonstrating a satisfactory in vitro pharmacokinetic profile. These findings unveil a new subclass of aminobenzimidazole and rigid compounds, which offer potential for further exploration in the quest for discovering novel classes of antichagasic compounds.
Collapse
Affiliation(s)
- Rocío Marisol Espinoza-Chávez
- Laboratory of Synthetic Organic Chemistry, Institute of Chemistry, State University of Campinas (Unicamp), Campinas-SP, 13084-971, Brazil
| | - Celso de Oliveira Rezende Júnior
- Laboratory of Synthetic Organic Chemistry, Institute of Chemistry, State University of Campinas (Unicamp), Campinas-SP, 13084-971, Brazil
- Institute of Chemistry, Federal University of Uberlândia (UFU), Uberlândia-MG, 38400-902, Brazil
| | - Mariana Laureano de Souza
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Rafael Consolin Chelucci
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Simone Michelan-Duarte
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Renata Krogh
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Leonardo Luiz Gomes Ferreira
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Marilia Valli
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Aldo Sena de Oliveira
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
- Department of Exact Sciences and Education, Federal University of Santa Catarina (UFSC), Blumenau-SC, 89036-004, Brazil
| | - Adriano D Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos (IFSC), University of Sao Paulo (USP), Sao Carlos-SP, 13563-120, Brazil
| | - Luiz Carlos Dias
- Laboratory of Synthetic Organic Chemistry, Institute of Chemistry, State University of Campinas (Unicamp), Campinas-SP, 13084-971, Brazil
| |
Collapse
|
2
|
Yan Z, Jiang S, Xi J, Ye W, Meng L, Xiao H, Wu W. Frost-resistant nanocellulose-based organohydrogel with high mechanical strength and transparency. J Colloid Interface Sci 2024; 661:879-887. [PMID: 38330660 DOI: 10.1016/j.jcis.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Improving mechanical strength and frost-resistance is an important research direction in the field of hydrogel materials. Herein, using bacterial nanocellulose (BC) as a reinforcing agent and polyvinyl alcohol (PVA) as a polymer matrix, a frost-resistant organohydrogel was constructed via the freezing-thawing method in a new binary solvent system of N, N-dimethylformamide and water (DMF-H2O), which was designed according to the Hansen Solubility Parameter. Owing to the solvent-induced crystallization effect that led to the enhanced 3D hydrogen bonding network during the freezing-thawing process, the optimal organohydrogel achieved excellent mechanical properties with the tensile strength of 2,974 kPa and the stretchability of 277 % at room temperature, respectively. In the visiblelight range, the organohydrogel demonstrated high transmittance. Moreover, the presence of a DMF-H2O binary solvent endows it with frost-resistance, retaining the tensile strength of 508 kPa and a stretchability of 190 % even at -70 °C, respectively. This kind of transparent, frost-resistant organohydrogel has potential uses in harsh settings due to its great mechanical strength.
Collapse
Affiliation(s)
- Zifei Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Shan Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Xi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| | - Wenjie Ye
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Liucheng Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| | - Weibing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Ni P, Yang L, Shen Y, Zhang L, Ma Y, Sun M, Cheng R, Ye J. Synthesis of Phenols from Aryl Ammonium Salts under Mild Conditions. J Org Chem 2022; 87:12677-12687. [DOI: 10.1021/acs.joc.2c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pufan Ni
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Yang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yi Shen
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Zhang
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yueyue Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Maolin Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Ruihua Cheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jinxing Ye
- Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education; Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Dimakos V, Taylor MS. Recent advances in the direct O-arylation of carbohydrates. Org Biomol Chem 2021; 19:514-524. [PMID: 33331387 DOI: 10.1039/d0ob02009e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Methods for the O-arylation of hydroxyl and hemiacetal groups in carbohydrates via C(sp2)-O bond formation are discussed. Such methods provide an alternative disconnection to the traditional approach of nucleophilic substitution between a sugar-derived electrophile and a phenol or phenoxide nucleophile. They have led to new opportunities for stereoselectivity, site-selectivity and chemoselectivity in the preparation of O-aryl glycosides and carbohydrate-derived aryl ethers, compounds that are useful for a broad range of applications in medicinal chemistry, glycobiology and organic synthesis.
Collapse
Affiliation(s)
- Victoria Dimakos
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| | - Mark S Taylor
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
5
|
Zhao X, Zeng J, Meng L, Wan Q. Application of Interrupted Pummerer Reaction Mediated (IPRm) Glycosylation in Natural Product Synthesis. CHEM REC 2020; 20:743-751. [DOI: 10.1002/tcr.201900097] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 01/28/2023]
Affiliation(s)
- Xiang Zhao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology 13 Hangkong Road, Wuhan Hubei 430030 China
| | - Jing Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology 13 Hangkong Road, Wuhan Hubei 430030 China
| | - Lingkui Meng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology 13 Hangkong Road, Wuhan Hubei 430030 China
| | - Qian Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of PharmacyHuazhong University of Science and Technology 13 Hangkong Road, Wuhan Hubei 430030 China
- Institute of Brain ResearchHuazhong University of Science and Technology China
| |
Collapse
|
6
|
Wen L, Edmunds G, Gibbons C, Zhang J, Gadi MR, Zhu H, Fang J, Liu X, Kong Y, Wang PG. Toward Automated Enzymatic Synthesis of Oligosaccharides. Chem Rev 2018; 118:8151-8187. [DOI: 10.1021/acs.chemrev.8b00066] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Liuqing Wen
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Garrett Edmunds
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Christopher Gibbons
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Jiabin Zhang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Madhusudhan Reddy Gadi
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Hailiang Zhu
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Junqiang Fang
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Xianwei Liu
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Yun Kong
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| | - Peng George Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
- National Glycoengineering Research Center and State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China
| |
Collapse
|
7
|
Liu L, Hu Y, Liu H, Liu DY, Xia JH, Sun JS. First Total Synthesis of the Bioactive Arylnaphthyl Lignan 4-O
-Glycosides Phyllanthusmin D and 4′′-O
-Acetylmananthoside B. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Liu
- The National Research Centre for Carbohydrate Synthesis; 99 Ziyang Avenue Nanchang China
| | - Yang Hu
- The National Research Centre for Carbohydrate Synthesis; 99 Ziyang Avenue Nanchang China
| | - Hui Liu
- The National Research Centre for Carbohydrate Synthesis; 99 Ziyang Avenue Nanchang China
| | - De-Yong Liu
- The National Research Centre for Carbohydrate Synthesis; 99 Ziyang Avenue Nanchang China
| | - Jian-Hui Xia
- The National Research Centre for Carbohydrate Synthesis; 99 Ziyang Avenue Nanchang China
- Department of Chemistry of Jiangxi Normal University; 99 Ziyang Avenue Nanchang China
| | - Jian-Song Sun
- The National Research Centre for Carbohydrate Synthesis; 99 Ziyang Avenue Nanchang China
| |
Collapse
|
8
|
Downey AM, Hocek M. Strategies toward protecting group-free glycosylation through selective activation of the anomeric center. Beilstein J Org Chem 2017; 13:1239-1279. [PMID: 28694870 PMCID: PMC5496566 DOI: 10.3762/bjoc.13.123] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
Glycosylation is an immensely important biological process and one that is highly controlled and very efficient in nature. However, in a chemical laboratory the process is much more challenging and usually requires the extensive use of protecting groups to squelch reactivity at undesired reactive moieties. Nonetheless, by taking advantage of the differential reactivity of the anomeric center, a selective activation at this position is possible. As a result, protecting group-free strategies to effect glycosylations are available thanks to the tremendous efforts of many research groups. In this review, we showcase the methods available for the selective activation of the anomeric center on the glycosyl donor and the mechanisms by which the glycosylation reactions take place to illustrate the power these techniques.
Collapse
Affiliation(s)
- A Michael Downey
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, 12843 Prague 2, Czech Republic
| |
Collapse
|