1
|
Jachak GR, Kashinath K, Vasudevan N, Athawale PR, Choudhury R, Dange SS, Agarwal H, Barthwal MK, Reddy DS. Comprehensive Study on Solomonamides: Total Synthesis, Stereochemical Revision, and SAR Studies toward Identification of Simplified Lead. J Org Chem 2023; 88:17088-17133. [PMID: 38051995 DOI: 10.1021/acs.joc.3c01987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Solomonamides, a pair of macrocyclic peptide natural products originating from marine sources, have garnered significant attention within the synthetic community owing to their marked anti-inflammatory efficacy and intricate molecular architectures. In this paper, we present a very detailed investigation into solomonamides, including the challenges associated with the total synthesis, the evolution of our synthetic strategies, structural reassignment, synthesis of all possible stereoisomeric macrocycles, biological assessment, structure-activity relationship (SAR) studies, etc. Within the ambit of this total synthesis, diverse strategies for macrocyclization were rigorously explored, encompassing the Friedel-Crafts acylation, cyclization involving the aniline NH2 moiety, macrolactamization utilizing Gly-NH2, and Heck macrocyclization methodologies. In addition, an array of intriguing chemical transformations were devised, including but not limited to photo-Fries rearrangement, Wacker oxidation, ligand-free Heck macrocyclization, oxidative cleavage of indole, synthesis of contiguous stereocenters via substrate/reagent-controlled protocols, and simultaneous making and breaking of olefinic moieties. The findings of this investigation revealed a structurally simplified lead compound. Remarkably, the lead compound, while possessing structural simplification in comparison to the intricate solomonamide counterparts, demonstrates equipotent in vivo anti-inflammatory efficacy.
Collapse
Affiliation(s)
- Gorakhnath R Jachak
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - K Kashinath
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - N Vasudevan
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Paresh R Athawale
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rahul Choudhury
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santoshkumar S Dange
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
| | - Heena Agarwal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - Manoj Kumar Barthwal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Pharmacology Division, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow 226031, India
| | - D Srinivasa Reddy
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| |
Collapse
|
2
|
Dandawate M, Choudhury R, Krishna GR, Reddy DS. Total Synthesis and Absolute Configuration Determination of the α-Glycosidase Inhibitor (3 S,4 R)-6-Acetyl-3-hydroxy-2,2-dimethylchroman-4-yl ( Z)-2-Methylbut-2-enoate from Ageratina grandifolia. JOURNAL OF NATURAL PRODUCTS 2023. [PMID: 37316456 DOI: 10.1021/acs.jnatprod.3c00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, we report the first total synthesis of α-glycosidase inhibitor (3R, 4S)-6-acetyl-3-hydroxy-2,2-dimethylchroman-4-yl (Z)-2-methylbut-2-enoate as well as its enantiomer. Our synthesis confirms the chromane structure separately proposed by Navarro-Vazquez and Mata, on the basis of DFT computations. Furthermore, our synthesis allowed us to determine the absolute configuration of the natural compound as (3S, 4R) and not (3R, 4S).
Collapse
Affiliation(s)
- Monica Dandawate
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Rahul Choudhury
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gamidi Rama Krishna
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - D Srinivasa Reddy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| |
Collapse
|
3
|
Cha JW, Kim MS, Park JS. A Single-Scan Ultraselective Heteronuclear Polarization Transfer Method for Unambiguous Complex Structure Assignment. Angew Chem Int Ed Engl 2023:e202304196. [PMID: 37186340 DOI: 10.1002/anie.202304196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Complex nuclear magnetic resonance (NMR) signals of organic compounds containing multiple analogous substructures or mixtures pose a significant challenge to structural identification, thus resulting in frequent misassignment of structures. The GEMSTONE method, a single-scan technique that selectively excites a specific proton signal among the crowded NMR signals, was recently proposed as a solution. However, its extension to the polarization transfer method for heteronuclear spin systems was unsuccessful. Here, we present an extension method that addresses the altered heteronuclear polarization transfer efficiency and enables the acquisition of ultraselective 13C and 1H-13C correlation NMR subspectra with hertz-level signal selectivity in both dimensions. We demonstrate the effectiveness of this technique in the structural analysis of a chromopeptide pharmaceutical and a diastereomeric mixture fungicide.
Collapse
Affiliation(s)
- Jin Wook Cha
- KIST Gangneung Institute of Natural Products, Natural Product Informatics Research Center, 679 Saimdang-ro, 25451, Gangneung, KOREA, REPUBLIC OF
| | - Min-Seon Kim
- Korea Institute of Science and Technology, Natural Product Informatics Research Center, KOREA, REPUBLIC OF
| | - Jin-Soo Park
- Korea Institute of Science and Technology, Natural Product Informatics Research Center, KOREA, REPUBLIC OF
| |
Collapse
|
4
|
Ha MW, Kim J, Paek SM. Recent Achievements in Total Synthesis for Integral Structural Revisions of Marine Natural Products. Mar Drugs 2022; 20:md20030171. [PMID: 35323470 PMCID: PMC8951824 DOI: 10.3390/md20030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
A great effort to discover new therapeutic ingredients is often initiated through the discovery of the existence of novel marine natural products. Since substances produced by the marine environment might be structurally more complex and unique than terrestrial natural products, there have been cases of misassignments of their structures despite the availability of modern spectroscopic and computational chemistry techniques. When it comes to refutation to erroneously or tentatively proposed structures empirical preparations through organic chemical synthesis has the greatest contribution along with close and sophiscated inspection of spectroscopic data. Herein, we analyzed the total synthetic studies that have decisively achieved in revelation of errors, ambiguities, or incompleteness of the isolated structures of marine natural products covering the period from 2018 to 2021.
Collapse
Affiliation(s)
- Min Woo Ha
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Jeju-do, Korea;
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Jeju-do, Korea
| | - Jonghoon Kim
- Department of Chemistry, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea;
| | - Seung-Mann Paek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Gyeongnam-do, Korea
- Correspondence: ; Tel.: +82-55-772-2424
| |
Collapse
|
5
|
Total Synthesis of Pagoamide A. Molecules 2021; 26:molecules26144224. [PMID: 34299497 PMCID: PMC8307129 DOI: 10.3390/molecules26144224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Abstract
The first total synthesis of the thiazole-containing cyclic depsipeptide pagoamide A, is detailed. The longest linear sequence of the liquid-phase synthesis comprises 9 long linear steps from simple known starting materials, which led to the unambiguous structural confirmation of pagoamide A.
Collapse
|
6
|
Jachak GR, Elizebath D, Shukla A, Shanmugam D, Reddy DS. Synthesis and Biological Evaluation of Hoshionolactam‐Based Compounds. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gorakhnath R. Jachak
- Organic Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad New Delhi 110025 India
| | - Drishya Elizebath
- Organic Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
| | - Anurag Shukla
- Biochemical Sciences Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad New Delhi 110025 India
| | - Dhanasekaran Shanmugam
- Biochemical Sciences Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad New Delhi 110025 India
| | - D. Srinivasa Reddy
- Organic Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad New Delhi 110025 India
- CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
| |
Collapse
|
7
|
Paul D, Das S, Saha S, Sharma H, Goswami RK. Intramolecular Heck Reaction in Total Synthesis of Natural Products: An Update. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100071] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Debobrata Paul
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Subhendu Das
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Sanu Saha
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Himangshu Sharma
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Rajib Kumar Goswami
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| |
Collapse
|
8
|
Paul D, Kundu A, Saha S, Goswami RK. Total synthesis: the structural confirmation of natural products. Chem Commun (Camb) 2021; 57:3307-3322. [DOI: 10.1039/d1cc00241d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This feature article highlights total synthesis as one of the reliable tools for the structural confirmation of natural products.
Collapse
Affiliation(s)
- Debobrata Paul
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Ashis Kundu
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Sanu Saha
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Rajib Kumar Goswami
- School of Chemical Sciences
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|
9
|
Zhang W. Heck macrocyclization in natural product total synthesis. Nat Prod Rep 2021; 38:1109-1135. [PMID: 33662070 DOI: 10.1039/d0np00087f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1981-2020 Heck macrocyclization is a logical extension of the award-winning Mizoroki-Heck reaction. Through covalent linking of two otherwise discrete coupling partners, the resultant chimeric substrate is transformed into a large ring with enhanced rigidity and unique functional group disposition. Pioneered in the early 1980s, this methodology has evolved into a competent option for creating diverse macrocycles. Despite its growing influence, hitherto no systematic survey has ever appeared in the literature. The present review delineates the state-of-the-art of Heck macrocyclization in the context of natural product synthesis. Sixteen selected cases, each examined from a different perspective, coalesce into the view that the title reaction is a viable tool for synthesis-enabled macrocycle research.
Collapse
Affiliation(s)
- Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, People's Republic of China.
| |
Collapse
|
10
|
Saridakis I, Kaiser D, Maulide N. Unconventional Macrocyclizations in Natural Product Synthesis. ACS CENTRAL SCIENCE 2020; 6:1869-1889. [PMID: 33274267 PMCID: PMC7706100 DOI: 10.1021/acscentsci.0c00599] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 06/12/2023]
Abstract
Over the past several decades, macrocyclic compounds have emerged as increasingly significant therapeutic candidates in drug discovery. Their pharmacological activity hinges on their rotationally restricted three-dimensional orientation, resulting in a unique conformational preorganization and a high enthalpic gain as a consequence of high-affinity macrocycle-protein binding interactions. Synthetic access to macrocyclic drug candidates is therefore crucial. From a synthetic point of view, the efficiency of macrocyclization events commonly suffers from entropic penalties as well as undesired intermolecular couplings (oligomerization). Although over the past several decades ring-closing metathesis, macrolactonization, or macrolactamization have become strategies of choice, the toolbox of organic synthesis provides a great number of versatile transformations beyond the aforementioned. This Outlook focuses on a selection of examples employing what we term unconventional macrocyclizations toward the synthesis of natural products or analogues.
Collapse
Affiliation(s)
- Iakovos Saridakis
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Daniel Kaiser
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
| | - Nuno Maulide
- Institute
of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090 Vienna, Austria
- Research
Platform for Next Generation Macrocycles, Währinger Strasse 38, 1090 Vienna, Austria
| |
Collapse
|
11
|
Total synthesis and absolute configuration determination of Ktedonoketone, a benzenoid metabolite from Thermophilic bacterium. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Paul D, Sahana MH, Mandal P, Chakrabarti P, Goswami RK. Biselyngbyolides A & C: their total synthesis and anticancer activities. Org Biomol Chem 2020; 18:7151-7164. [PMID: 32966514 DOI: 10.1039/d0ob00576b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Convergent strategies for the first total synthesis of biselyngbyolide C and an alternative route for the total synthesis of biselyngbyolide A have been developed. The key strategic feature in this study is Heck macrocyclization. The use of intramolecular Heck coupling for biselyngbyolide B was demonstrated by us earlier; however such a strategy has not been explored further for the other members of this family of natural products, in particular, where sensitive skipped olefins are involved. The other highlights of this synthetic study include iterative Crimmins acetate aldol and Wittig olefination processes, followed by the less explored cobalt-hydride-based reduction of an activated olefin and Shiina esterification. Our synthetic study enabled us to amend the reported NMR data of biselyngbyolides A and C. An evaluation of the anticancer activities of both biselyngbyolides A and C revealed that the apoptosis generated in cancer cells followed an intrinsic pathway.
Collapse
Affiliation(s)
- Debobrata Paul
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Moinul Haque Sahana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | - Pratiti Mandal
- Division of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India.
| | - Partha Chakrabarti
- Division of Cell Biology & Physiology, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India.
| | - Rajib Kumar Goswami
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| |
Collapse
|
13
|
Saha S, Yadav S, Reshi NUD, Dutta I, Kunnikuruvan S, Bera JK. Electronic Asymmetry of an Annelated Pyridyl–Mesoionic Carbene Scaffold: Application in Pd(II)-Catalyzed Wacker-Type Oxidation of Olefins. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02729] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sayantani Saha
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Suman Yadav
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Noor U Din Reshi
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Indranil Dutta
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Sooraj Kunnikuruvan
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Jitendra K. Bera
- Department of Chemistry and Center for Environmental Science, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
14
|
Fernandes RA, Jha AK, Kumar P. Recent advances in Wacker oxidation: from conventional to modern variants and applications. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01820a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent developments in the well-known Wacker oxidation process from conventional to modern variants and applications to natural products' synthesis are compiled in this review.
Collapse
Affiliation(s)
- Rodney A. Fernandes
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Amit K. Jha
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Praveen Kumar
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| |
Collapse
|
15
|
Jachak GR, Athawale PR, Choudhury R, Kashinath K, Reddy DS. Access to a Stereoisomer Library of Solomonamide Macrocycles. Chem Asian J 2019; 14:4572-4576. [DOI: 10.1002/asia.201901075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/10/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Gorakhnath R. Jachak
- CSIR-National Chemical LaboratoryDivision of Organic Chemistry Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi- 110 025 India
| | - Paresh R. Athawale
- CSIR-National Chemical LaboratoryDivision of Organic Chemistry Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi- 110 025 India
| | - Rahul Choudhury
- CSIR-National Chemical LaboratoryDivision of Organic Chemistry Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi- 110 025 India
| | - K. Kashinath
- CSIR-National Chemical LaboratoryDivision of Organic Chemistry Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi- 110 025 India
| | - D. Srinivasa Reddy
- CSIR-National Chemical LaboratoryDivision of Organic Chemistry Dr. Homi Bhabha Road Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi- 110 025 India
| |
Collapse
|
16
|
Exploring the Antiangiogenic Potential of Solomonamide A Bioactive Precursors: In Vitro and in Vivo Evidences of the Inhibitory Activity of Solo F-OH During Angiogenesis. Mar Drugs 2019; 17:md17040228. [PMID: 30991727 PMCID: PMC6520732 DOI: 10.3390/md17040228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
Marine sponges are a prolific source of bioactive compounds. In this work, the putative antiangiogenic potential of a series of synthetic precursors of Solomonamide A, a cyclic peptide isolated from a marine sponge, was evaluated. By means of an in vitro screening, based on the inhibitory activity of endothelial tube formation, the compound Solo F-OH was selected for a deeper characterization of its antiangiogenic potential. Our results indicate that Solo F-OH is able to inhibit some key steps of the angiogenic process, including the proliferation, migration, and invasion of endothelial cells, as well as diminish their capability to degrade the extracellular matrix proteins. The antiangiogenic potential of Solo F-OH was confirmed by means of two different in vivo models: the chorioallantoic membrane (CAM) and the zebrafish yolk membrane (ZFYM) assays. The reduction in ERK1/2 and Akt phosphorylation in endothelial cells treated with Solo F-OH denotes that this compound could target the upstream components that are common to both pathways. Taken together, our results show a new and interesting biological activity of Solo F-OH as an inhibitor of the persistent and deregulated angiogenesis that characterizes cancer and other pathologies.
Collapse
|
17
|
Rh-catalyzed intramolecular cyclization of 1-sulfonyl-1,2,3-triazole and sulfinate. Concise preparation of sulfonylated unsaturated piperidines. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Jachak GR, Reddy DS. Scalable Synthesis of Both Enantiomers of Vigabatrin, an Antiepileptic Drug. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gorakhnath R. Jachak
- Organic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune India
- Academy of Scientific and Innovative Research (AcSIR); 110 025 New Delhi India
| | - D. Srinivasa Reddy
- Organic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune India
- Academy of Scientific and Innovative Research (AcSIR); 110 025 New Delhi India
| |
Collapse
|
19
|
Kulkarni AS, Shingare RD, Dandela R, Reddy DS. Total Synthesis of an Anticancer Natural Product (±)-Peharmaline A and Its Analogues. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Akshay S. Kulkarni
- Organic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune India
| | - Rahul D. Shingare
- Organic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune India
- Academy of Scientific and Innovative Research (AcSIR); 110 025 New Delhi India
| | - Rambabu Dandela
- Organic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune India
| | - D. Srinivasa Reddy
- Organic Chemistry Division; CSIR-National Chemical Laboratory; Dr. Homi Bhabha Road 411008 Pune India
- Academy of Scientific and Innovative Research (AcSIR); 110 025 New Delhi India
| |
Collapse
|
20
|
Cheng-Sánchez I, Carrillo P, Sánchez-Ruiz A, Martínez-Poveda B, Quesada AR, Medina MA, López-Romero JM, Sarabia F. Exploring the Ring-Closing Metathesis for the Construction of the Solomonamide Macrocyclic Core: Identification of Bioactive Precursors. J Org Chem 2018; 83:5365-5383. [DOI: 10.1021/acs.joc.7b02988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Iván Cheng-Sánchez
- Department of Organic Chemistry; Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071, Malaga, Spain
| | - Paloma Carrillo
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071, Malaga, Spain
| | - Antonio Sánchez-Ruiz
- Organic Chemistry Section, Faculty of Pharmacy, University of Castilla-La Mancha, Avda Dr. José María Sánchez Ibáñez s/n, 02008, Albacete, Spain
| | - Beatriz Martínez-Poveda
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071, Malaga, Spain
| | - Ana R. Quesada
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071, Malaga, Spain
| | - Miguel A. Medina
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071, Malaga, Spain
| | - Juan M. López-Romero
- Department of Organic Chemistry; Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071, Malaga, Spain
| | - Francisco Sarabia
- Department of Organic Chemistry; Faculty of Sciences, University of Malaga, Campus de Teatinos s/n, 29071, Malaga, Spain
| |
Collapse
|
21
|
Athawale P, Jachak GR, Shukla A, Shanmugam D, Reddy DS. Efforts To Access the Potent Antitrypanosomal Marine Natural Product Janadolide: Synthesis of Des- tert-butyl Janadolide and Its Biological Evaluation. ACS OMEGA 2018; 3:2383-2389. [PMID: 30023831 PMCID: PMC6044843 DOI: 10.1021/acsomega.7b01920] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
To identify novel antitrypanosomal agents based on Janadolide, a potent macrocyclic polyketide-peptide hybrid, a macrolactonization strategy was explored. We prepared des-tert-butyl Janadolide and evaluated its antitrypanosomal activity. Our findings suggest that the tert-butyl group is necessary for the desired bioactivity.
Collapse
Affiliation(s)
- Paresh
R. Athawale
- Organic
Chemistry Division and Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Gorakhnath R. Jachak
- Organic
Chemistry Division and Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Anurag Shukla
- Organic
Chemistry Division and Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Dhanasekaran Shanmugam
- Organic
Chemistry Division and Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - D. Srinivasa Reddy
- Organic
Chemistry Division and Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| |
Collapse
|
22
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
23
|
Jachak GR, Athawale PR, Agarwal H, Barthwal MK, Lauro G, Bifulco G, Reddy DS. Total synthesis of the potent anti-inflammatory natural product solomonamide A along with structural revision and biological activity evaluation. Org Biomol Chem 2018; 16:9138-9142. [DOI: 10.1039/c8ob02713g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, we report the total synthesis of solomonamide A along with its structural revision for the first time.
Collapse
Affiliation(s)
- Gorakhnath R. Jachak
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Paresh R. Athawale
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Heena Agarwal
- Pharmacology Division
- CSIR-Central Drug Research Institute
- Lucknow
- India
| | - Manoj Kumar Barthwal
- Academy of Scientific and Innovative Research (AcSIR)
- New Delhi
- India
- Pharmacology Division
- CSIR-Central Drug Research Institute
| | - Gianluigi Lauro
- Department of Pharmacy
- University of Salerno
- 84084 Fisciano (SA)
- Italy
| | - Giuseppe Bifulco
- Department of Pharmacy
- University of Salerno
- 84084 Fisciano (SA)
- Italy
| | - D. Srinivasa Reddy
- Organic Chemistry Division
- CSIR-National Chemical Laboratory
- Pune
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
24
|
Philkhana SC, Verma AK, Jachak GR, Hazra B, Basu A, Reddy DS. Identification of new anti-inflammatory agents based on nitrosporeusine natural products of marine origin. Eur J Med Chem 2017; 135:89-109. [DOI: 10.1016/j.ejmech.2017.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/16/2022]
|
25
|
Phakellistatins: An Underwater Unsolved Puzzle. Mar Drugs 2017; 15:md15030078. [PMID: 28335479 PMCID: PMC5367035 DOI: 10.3390/md15030078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 11/21/2022] Open
Abstract
A critical summary on the discovery of the nineteen members of the phakellistatin family (phakellistatin 1–19), cytotoxic proline-rich cyclopeptides of marine origin, is reported. Isolation, structural elucidation, and biological properties of the various-sized natural macrocycles are described, along with the total syntheses and the enigmatic issues of the cytotoxic activity reproducibility.
Collapse
|