1
|
Poursaitidis ET, Gkizis PL, Triandafillidi I, Kokotos CG. Organocatalytic activation of hydrogen peroxide: towards green and sustainable oxidations. Chem Sci 2024; 15:1177-1203. [PMID: 38274062 PMCID: PMC10806817 DOI: 10.1039/d3sc05618j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
The advent of organocatalysis provided an additional option in every researcher's arsenal, towards the development of elegant and sustainable protocols for various organic transformations. Oxidation reactions are considered to be key in organic synthesis since oxygenated functionalities appear in many natural products. Hydrogen peroxide is categorized as a green oxidant, since its only by-product is water, offering novel opportunities for the development of green and sustainable protocols. In this review article, we intend to present recent developments in the field of the organocatalytic activation of hydrogen peroxide, providing useful insight into the applied oxidative protocols. At the same time, we will present some interesting mechanistic studies, providing information on the oxygen transfer processes.
Collapse
Affiliation(s)
- Efthymios T Poursaitidis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Petros L Gkizis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Ierasia Triandafillidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| |
Collapse
|
2
|
Dong Y, Li T, Zhang S, Sanchis J, Yin H, Ren J, Sheng X, Li G, Reetz MT. Biocatalytic Baeyer–Villiger Reactions: Uncovering the Source of Regioselectivity at Each Evolutionary Stage of a Mutant with Scrutiny of Fleeting Chiral Intermediates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yijie Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- Key Laboratory of Agricultural Microbiomics and Precision Application − Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Microbial Culture Collection Center (GDMCC), Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Tang Li
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Shiqing Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, P.R. China
| | - Joaquin Sanchis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Heng Yin
- Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| | - Jie Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, P.R. China
| | - Guangyue Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-product Quality and Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Manfred T. Reetz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim 45470, Germany
| |
Collapse
|
3
|
Zhang CS, Shao YP, Zhang FM, Han X, Zhang XM, Zhang K, Tu YQ. Cu(II)/SPDO complex-catalyzed asymmetric Baeyer–Villiger oxidation of 2-arylcyclobutanones and its application for the total synthesis of eupomatilones 5 and 6. Chem Sci 2022; 13:8429-8435. [PMID: 35919715 PMCID: PMC9297696 DOI: 10.1039/d2sc02079c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
A novel classical kinetic resolution of 2-aryl-substituted or 2,3-disubstituted cyclobutanones of Baeyer–Villiger oxidation catalyzed by a Cu(ii)/SPDO complex is reported for the first time, producing normal lactones in excellent enantioselectivities (up to 96% ee) and regioselectivities (up to >20/1), along with unreacted ketones in excellent enantioselectivities (up to 99% ee). The current transformation features a wide substrate scope. Moreover, catalytic asymmetric total syntheses of natural eupomatilones 5 and 6 are achieved in nine steps from commercially available 3-methylcyclobutan-1-one. A novel classical kinetic resolution of Baeyer–Villiger oxidation catalyzed by a Cu(ii)/SPDO complex with excellent enantioselectivity, regioselectivity and wide substrate scope is reported for the first time and explore the synthetic application.![]()
Collapse
Affiliation(s)
- Chang-Sheng Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Ya-Ping Shao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Xue Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 Guangdong P. R. China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 P. R. China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
4
|
Metrano AJ, Chinn AJ, Shugrue CR, Stone EA, Kim B, Miller SJ. Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms. Chem Rev 2020; 120:11479-11615. [PMID: 32969640 PMCID: PMC8006536 DOI: 10.1021/acs.chemrev.0c00523] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Low molecular weight synthetic peptides have been demonstrated to be effective catalysts for an increasingly wide array of asymmetric transformations. In many cases, these peptide-based catalysts have enabled novel multifunctional substrate activation modes and unprecedented selectivity manifolds. These features, along with their ease of preparation, modular and tunable structures, and often biomimetic attributes make peptides well-suited as chiral catalysts and of broad interest. Many examples of peptide-catalyzed asymmetric reactions have appeared in the literature since the last survey of this broad field in Chemical Reviews (Chem. Rev. 2007, 107, 5759-5812). The overarching goal of this new Review is to provide a comprehensive account of the numerous advances in the field. As a corollary to this goal, we survey the many different types of catalytic reactions, ranging from acylation to C-C bond formation, in which peptides have been successfully employed. In so doing, we devote significant discussion to the structural and mechanistic aspects of these reactions that are perhaps specific to peptide-based catalysts and their interactions with substrates and/or reagents.
Collapse
Affiliation(s)
- Anthony J. Metrano
- AstraZeneca Oncology R&D, 35 Gatehouse Dr., Waltham, MA 02451, United States
| | - Alex J. Chinn
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Christopher R. Shugrue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elizabeth A. Stone
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| | - Byoungmoo Kim
- Department of Chemistry, Clemson University, Clemson, SC 29634, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| |
Collapse
|
5
|
Petsi M, Zografos AL. 2,5-Diketopiperazine Catalysts as Activators of Dioxygen in Oxidative Processes. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Marina Petsi
- Department of Chemistry, Main University Campus, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Alexandros L. Zografos
- Department of Chemistry, Main University Campus, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
6
|
Hilton M, Brackett CM, Mercado BQ, Blagg BSJ, Miller SJ. Catalysis-Enabled Access to Cryptic Geldanamycin Oxides. ACS CENTRAL SCIENCE 2020; 6:426-435. [PMID: 32232143 PMCID: PMC7099596 DOI: 10.1021/acscentsci.0c00024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Indexed: 05/30/2023]
Abstract
Catalytic, selective modifications of natural products can be a fertile platform for not only unveiling new natural product analogues with altered biological activity, but also for revealing new reactivity and selectivity hierarchies for embedded functional groups in complex environments. Motivated by these intersecting aims, we report site- and stereoselective oxidation reactions of geldanamycin facilitated by aspartyl-peptide catalysts. Through the isolation and characterization of four new geldanamycin oxides, we discovered a synergistic effect between lead peptide-based catalysts and geldanamycin, resulting in an unexpected reaction pathway. Curiously, our discoveries would likely not have been possible absent the attractive noncovalent interactions intrinsic to both the catalysts and the natural product. The result is a set of new "meta" catalytic reactions that deliver both unknown and previously incompletely characterized geldanamycin analogues. Enabled by the catalytic, site-selective epoxidation of geldanamycin, biological assays were carried out to document the bioactivities of the new compounds.
Collapse
Affiliation(s)
- Margaret
J. Hilton
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Christopher M. Brackett
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Brandon Q. Mercado
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Brian S. J. Blagg
- Department
of Chemistry and Biochemistry, University
of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Scott J. Miller
- Department
of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
7
|
Wu W, Cao W, Hu L, Su Z, Liu X, Feng X. Asymmetric Baeyer-Villiger oxidation: classical and parallel kinetic resolution of 3-substituted cyclohexanones and desymmetrization of meso-disubstituted cycloketones. Chem Sci 2019; 10:7003-7008. [PMID: 31588267 PMCID: PMC6676330 DOI: 10.1039/c9sc01563a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
Classical kinetic resolution, parallel kinetic resolution and desymmetrization were achieved by asymmetric BV oxidation of 3-substituted and meso-disubstituted cycloketones.
Regioselectivity is a crucial issue in Baeyer–Villiger (BV) oxidation. To date, few reports have addressed asymmetric BV oxidation of 3-substituted cycloketones due to the high difficulty of controlling regio- and stereoselectivity. Herein, we report the asymmetric BV oxidation of 3-substituted and meso-disubstituted cycloketones with chiral N,N′-dioxide/Sc(iii) catalysts performed in three ways: classical kinetic resolution, parallel kinetic resolution and desymmetrization. The methodology was applied in the total and formal synthesis of bioactive compounds and natural products. Control experiments and calculations demonstrated that flexible and adjustable catalysts played a significant role in the chiral recognition of substrates.
Collapse
Affiliation(s)
- Wangbin Wu
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China . ;
| | - Weidi Cao
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China . ;
| | - Linfeng Hu
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China . ;
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China . ;
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China . ;
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry and Technology , Ministry of Education , College of Chemistry , Sichuan University , Chengdu 610064 , China . ;
| |
Collapse
|
8
|
Borges‐González J, García‐Monzón I, Martín T. Conformational Control of Tetrahydropyran‐Based Hybrid Dipeptide Catalysts Improves Activity and Stereoselectivity. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jorge Borges‐González
- Instituto de Productos Naturales y AgrobiologíaCSIC Francisco Sánchez, 3 38206 La Laguna, Tenerife Spain
- Doctoral and Postgraduate SchoolUniversity of La Laguna
| | - Irma García‐Monzón
- Instituto de Productos Naturales y AgrobiologíaCSIC Francisco Sánchez, 3 38206 La Laguna, Tenerife Spain
- Doctoral and Postgraduate SchoolUniversity of La Laguna
| | - Tomás Martín
- Instituto de Productos Naturales y AgrobiologíaCSIC Francisco Sánchez, 3 38206 La Laguna, Tenerife Spain
- Instituto Universitario de Bio-Orgánica “Antonio González” CIBICANUniversidad de La Laguna, Francisco Sánchez, 2 38206 La Laguna, Tenerife Spain
| |
Collapse
|
9
|
Crawford JM, Sigman MS. Conformational Dynamics in Asymmetric Catalysis: Is Catalyst Flexibility a Design Element? SYNTHESIS-STUTTGART 2019; 51:1021-1036. [PMID: 31235980 PMCID: PMC6590688 DOI: 10.1055/s-0037-1611636] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Traditionally, highly selective low molecular weight catalysts have been designed to contain rigidifying structural elements. As a result, many proposed stereochemical models rely on steric repulsion for explaining the observed selectivity. Recently, as is the case for enzymatic systems, it has become apparent that some flexibility can be beneficial for imparting selectivity. Dynamic catalysts can reorganize to maximize attractive non-covalent interactions that stabilize the favored diastereomeric transition state, while minimizing repulsive non-covalent interactions for enhanced selectivity. This Short Review discusses catalyst conformational dynamics and how these effects have proven beneficial for a variety of catalyst classes, including tropos ligands, cinchona alkaloids, hydrogen-bond donating catalysts, and peptides.
Collapse
Affiliation(s)
- Jennifer M. Crawford
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
10
|
Yan XC, Metrano AJ, Robertson MJ, Abascal NC, Tirado-Rives J, Miller SJ, Jorgensen WL. Molecular Dynamics Simulations of a Conformationally Mobile Peptide-Based Catalyst for Atroposelective Bromination. ACS Catal 2018; 8:9968-9979. [PMID: 30687577 DOI: 10.1021/acscatal.8b03563] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is widely accepted that structural rigidity is required to achieve high levels of asymmetric induction in catalytic, enantioselective reactions. This fundamental design principle often does not apply to highly selective catalytic peptides that often exhibit conformational heterogeneity. As a result, these complex systems are particularly challenging to study both experimentally and computationally. Herein, we utilize molecular dynamics simulations to investigate the role of conformational mobility on the reactivity and selectivity exhibited by a catalytic, β-turn-biased peptide in an atroposelective bromination reaction. By means of cluster analysis, multiple distinct conformers of the peptide and a catalyst-substrate complex were identified in the simulations, all of which were corroborated by experimental NMR measurements. The simulations also revealed that a shift in the conformational equilibrium of the peptidic catalyst occurs upon addition of substrate, and the degree of change varies among different substrates. On the basis of these data, we propose a correlation between the composition of the peptide conformational ensemble and its catalytic properties. Moreover, these findings highlight the importance of conformational dynamics in catalytic, asymmetric reactions mediated by oligopeptides, unveiled through high-level, state-of-the-art computational modeling.
Collapse
Affiliation(s)
- Xin Cindy Yan
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Anthony J. Metrano
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Michael J. Robertson
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Nadia C. Abascal
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Julian Tirado-Rives
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - William L. Jorgensen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
11
|
Li G, Garcia-Borràs M, Furst MJLJ, Ilie A, Fraaije MW, Houk KN, Reetz MT. Overriding Traditional Electronic Effects in Biocatalytic Baeyer-Villiger Reactions by Directed Evolution. J Am Chem Soc 2018; 140:10464-10472. [PMID: 30044629 PMCID: PMC6314816 DOI: 10.1021/jacs.8b04742] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Controlling the regioselectivity of Baeyer-Villiger (BV) reactions remains an ongoing issue in organic chemistry, be it by synthetic catalysts or enzymes of the type Baeyer-Villiger monooxygenases (BVMOs). Herein, we address the challenging problem of switching normal to abnormal BVMO regioselectivity by directed evolution using three linear ketones as substrates, which are not structurally biased toward abnormal reactivity. Upon applying iterative saturation mutagenesis at sites lining the binding pocket of the thermostable BVMO from Thermocrispum municipale DSM 44069 (TmCHMO) and using 4-phenyl-2-butanone as substrate, the regioselectivity was reversed from 99:1 (wild-type enzyme in favor of the normal product undergoing 2-phenylethyl migration) to 2:98 in favor of methyl migration when applying the best mutant. This also stands in stark contrast to the respective reaction using the synthetic reagent m-CPBA, which provides solely the normal product. Reversal of regioselectivity was also achieved in the BV reaction of two other linear ketones. Kinetic parameters and melting temperatures revealed that most of the evolved mutants retained catalytic activity, as well as thermostability. In order to shed light on the origin of switched regioselectivity in reactions of 4-phenyl-2-butanone and phenylacetone, extensive QM/MM and MD simulations were performed. It was found that the mutations introduced by directed evolution induce crucial changes in the conformation of the respective Criegee intermediates and transition states in the binding pocket of the enzyme. In mutants that destabilize the normally preferred migration transition state, a reversal of regioselectivity is observed. This conformational control of regioselectivity overrides electronic control, which normally causes preferential migration of the group that is best able to stabilize positive charge. The results can be expected to aid future protein engineering of BVMOs.
Collapse
Affiliation(s)
- Guangyue Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agriproduct Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Max-Planck-Institut fürKohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Marc Garcia-Borràs
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Maximilian J. L. J. Furst
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Adriana Ilie
- Max-Planck-Institut fürKohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Manfred T. Reetz
- Max-Planck-Institut fürKohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim, Germany
- Department of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35032 Marburg, Germany
| |
Collapse
|
12
|
Rigling C, Kisunzu JK, Duschmalé J, Häussinger D, Wiesner M, Ebert MO, Wennemers H. Conformational Properties of a Peptidic Catalyst: Insights from NMR Spectroscopic Studies. J Am Chem Soc 2018; 140:10829-10838. [PMID: 30106584 DOI: 10.1021/jacs.8b05459] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Peptides have become valuable as catalysts for a variety of different reactions, but little is known about the conformational properties of peptidic catalysts. We investigated the conformation of the peptide H-dPro-Pro-Glu-NH2, a highly reactive and stereoselective catalyst for conjugate addition reactions, and the corresponding enamine intermediate in solution by NMR spectroscopy and computational methods. The combination of nuclear Overhauser effects (NOEs), residual dipolar couplings (RDCs), J-couplings, and temperature coefficients revealed that the tripeptide adopts a single predominant conformation in its ground state. The structure is a type I β-turn, which gains stabilization from three hydrogen bonds that are cooperatively formed between all functional groups (secondary amine, carboxylic acid, amides) within the tripeptide. In contrast, the conformation of the enamine intermediate is significantly more flexible. The conformational ensemble of the enamine is still dominated by the β-turn, but the backbone and the side chain of the glutamic acid residue are more dynamic. The key to the switch between rigidity and flexibility of the peptidic catalyst is the CO2H group in the side chain of the glutamic acid residue, which acts as a lid that can open and close. As a result, the peptidic catalyst is able to adapt to the structural requirements of the intermediates and transition states of the catalytic cycle. These insights might explain the robustness and high reactivity of the peptidic catalyst, which exceeds that of other secondary amine-based organocatalysts. The data suggest that a balance between rigidity and flexibility, which is reminiscent of the dynamic nature of enzymes, is beneficial for peptidic catalysts and other synthetic catalysts.
Collapse
Affiliation(s)
- Carla Rigling
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| | - Jessica K Kisunzu
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| | - Jörg Duschmalé
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland.,Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Daniel Häussinger
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Markus Wiesner
- Department of Chemistry , University of Basel , St. Johanns-Ring 19 , 4056 Basel , Switzerland
| | - Marc-Olivier Ebert
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| | - Helma Wennemers
- Laboratorium für Organische Chemie , ETH Zürich , D-CHAB, Vladimir-Prelog-Weg 3 , 8093 Zürich , Switzerland
| |
Collapse
|
13
|
Crawford JM, Stone EA, Metrano AJ, Miller SJ, Sigman MS. Parameterization and Analysis of Peptide-Based Catalysts for the Atroposelective Bromination of 3-Arylquinazolin-4(3H)-ones. J Am Chem Soc 2018; 140:868-871. [PMID: 29300461 DOI: 10.1021/jacs.7b11303] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the development of a method to parameterize and predict the performance of structurally flexible β-turn-containing peptide catalysts, using the atroposelective bromination of 3-arylquinazolin-4(3H)-ones as a case study. The multivariate correlations obtained for tetrapeptides of two β-turn types, type I' pre-helical and type II' β-hairpin, indicate that although one conformer may be associated with a more dominant contribution to the observed enantioselectivity, it is possible that multiple conformers contribute to a complex transition state ensemble.
Collapse
Affiliation(s)
- Jennifer M Crawford
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Elizabeth A Stone
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Anthony J Metrano
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Scott J Miller
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
14
|
Nobuta T, Kawabata T. Catalyst-controlled site-selective asymmetric epoxidation of nerylamine and geranylamine derivatives. Chem Commun (Camb) 2017; 53:9320-9323. [PMID: 28771263 DOI: 10.1039/c7cc04809b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Novel catalysts for site- and enantioselective epoxidation of nerylamine and geranylamine derivatives have been developed. Although mCPBA oxidation took place selectively at the more electron-rich double bond to give the 6,7-epoxides, these catalysts provide the 2,3-epoxides in moderate to high enantioselectivity via the oxidation of the relatively electron-deficient double bond.
Collapse
Affiliation(s)
- Tomoya Nobuta
- Research Foundation Itsuu Laboratory, C1232, Kanagawa Science Park R&D Building, 3-2-1 Sakado, Takatsu-ku, Kawasaki, Kanagawa, 213-0012, Japan
| | | |
Collapse
|
15
|
Metrano A, Abascal NC, Mercado BQ, Paulson EK, Hurtley AE, Miller SJ. Diversity of Secondary Structure in Catalytic Peptides with β-Turn-Biased Sequences. J Am Chem Soc 2017; 139:492-516. [PMID: 28029251 PMCID: PMC5312972 DOI: 10.1021/jacs.6b11348] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 11/30/2022]
Abstract
X-ray crystallography has been applied to the structural analysis of a series of tetrapeptides that were previously assessed for catalytic activity in an atroposelective bromination reaction. Common to the series is a central Pro-Xaa sequence, where Pro is either l- or d-proline, which was chosen to favor nucleation of canonical β-turn secondary structures. Crystallographic analysis of 35 different peptide sequences revealed a range of conformational states. The observed differences appear not only in cases where the Pro-Xaa loop-region is altered, but also when seemingly subtle alterations to the flanking residues are introduced. In many instances, distinct conformers of the same sequence were observed, either as symmetry-independent molecules within the same unit cell or as polymorphs. Computational studies using DFT provided additional insight into the analysis of solid-state structural features. Select X-ray crystal structures were compared to the corresponding solution structures derived from measured proton chemical shifts, 3J-values, and 1H-1H-NOESY contacts. These findings imply that the conformational space available to simple peptide-based catalysts is more diverse than precedent might suggest. The direct observation of multiple ground state conformations for peptides of this family, as well as the dynamic processes associated with conformational equilibria, underscore not only the challenge of designing peptide-based catalysts, but also the difficulty in predicting their accessible transition states. These findings implicate the advantages of low-barrier interconversions between conformations of peptide-based catalysts for multistep, enantioselective reactions.
Collapse
Affiliation(s)
- Anthony
J. Metrano
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Nadia C. Abascal
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Eric K. Paulson
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Anna E. Hurtley
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O.
Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
16
|
Wang JB, Li G, Reetz MT. Enzymatic site-selectivity enabled by structure-guided directed evolution. Chem Commun (Camb) 2017; 53:3916-3928. [DOI: 10.1039/c7cc00368d] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review covers recent advances in the directed evolution of enzymes for controlling site-selectivity of hydroxylation, amination and chlorination.
Collapse
Affiliation(s)
- Jian-bo Wang
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| | - Guangyue Li
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| | - Manfred T. Reetz
- Department of Chemistry
- Philipps-University Marburg
- Marburg
- Germany
- Max-Plank-Institut für Kohlenforschung
| |
Collapse
|
17
|
Alford J, Abascal NC, Shugrue CR, Colvin SM, Romney DK, Miller SJ. Aspartyl Oxidation Catalysts That Dial In Functional Group Selectivity, along with Regio- and Stereoselectivity. ACS CENTRAL SCIENCE 2016; 2:733-739. [PMID: 27800556 PMCID: PMC5084076 DOI: 10.1021/acscentsci.6b00237] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 05/25/2023]
Abstract
A remarkable aspect of enzyme evolution is the portability of catalytic mechanisms for fundamentally different chemical reactions. For example, aspartyl proteases, which contain two active site carboxylic acid groups, catalyze the hydrolysis of amide bonds, while glycosyltransferases (and glycosyl hydrolases), which often also contain two active site carboxylates, have evolved to form (or break) glycosidic bonds. However, neither catalyst exhibits cross-reactivity in the intracellular environment. The large, macromolecular architectures of these biocatalysts tailor their active sites to their precise, divergent functions. The analogous portability of a small-molecule catalyst for truly orthogonal chemical reactivity is rare. Herein, we report aspartic acid containing peptides that can be directed to different sectors of a substrate for which the danger of cross-reactivity looms large. A transiently formed aspartyl peracid catalyst can participate either as an electrophilic oxidant to catalyze alkene epoxidation or as a nucleophilic oxidant to mediate the Baeyer-Villiger oxidation (BVO) of ketones. We show in this study that an appended peptide sequence can dictate the mode of reactivity for this conserved catalytic functional group within a substrate that has the potential to undergo both alkene epoxidation and BVO; in both cases the additional aspects of chemical selectivity (regio- and stereoselectivity) are high. This sequence-dependent tuning of a common catalytic moiety for functional group selective reactions constitutes a biomimetic strategy that may impact late-stage diversification of complex polyfunctional molecules.
Collapse
|