1
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
2
|
Sedikides A, Lennox AJJ. Silver-Catalyzed ( Z)-β-Fluoro-vinyl Iodonium Salts from Alkynes: Efficient and Selective Syntheses of Z-Monofluoroalkenes. J Am Chem Soc 2024; 146:15672-15680. [PMID: 38829699 PMCID: PMC11177317 DOI: 10.1021/jacs.4c03826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Monofluoroalkenes are stable and lipophilic amide bioisosteres used in medicinal chemistry. However, efficient and stereoselective methods for synthesizing Z-monofluoroalkenes are underdeveloped. We envisage (Z)-β-fluoro-vinyl iodonium salts (Z-FVIs) as coupling partners for the diverse and stereoselective synthesis of Z-monofluoroalkenes. Disclosed herein is the development and application of a silver(I)-catalyzed process for accessing a broad scope of (Z)-FVIs with exclusive Z-stereoselectivity and regioselectivity from alkynes in a single step. Experimental and computational studies provide insight into the mechanism of the catalytic cycle and the role of the silver(I) catalyst, and the reactivity of (Z)-FVIs is explored through several stereospecific derivatizations.
Collapse
Affiliation(s)
- Alexi
T. Sedikides
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| | - Alastair J. J. Lennox
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
3
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
4
|
Cook XAF, de Gombert A, McKnight J, Pantaine LRE, Willis MC. The 2-Pyridyl Problem: Challenging Nucleophiles in Cross-Coupling Arylations. Angew Chem Int Ed Engl 2021; 60:11068-11091. [PMID: 32940402 PMCID: PMC8246887 DOI: 10.1002/anie.202010631] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 12/22/2022]
Abstract
Azine-containing biaryls are ubiquitous scaffolds in many areas of chemistry, and efficient methods for their synthesis are continually desired. Pyridine rings are prominent amongst these motifs. Transition-metal-catalysed cross-coupling reactions have been widely used for their synthesis and functionalisation as they often provide a swift and tuneable route to related biaryl scaffolds. However, 2-pyridine organometallics are capricious coupling partners and 2-pyridyl boron reagents in particular are notorious for their instability and poor reactivity in Suzuki-Miyaura cross-coupling reactions. The synthesis of pyridine-containing biaryls is therefore limited, and methods for the formation of unsymmetrical 2,2'-bis-pyridines are scarce. This Review focuses on the methods developed for the challenging coupling of 2-pyridine nucleophiles with (hetero)aryl electrophiles, and ranges from traditional cross-coupling processes to alternative nucleophilic reagents and novel main group approaches.
Collapse
Affiliation(s)
- Xinlan A. F. Cook
- Chemistry Research LaboratoryOxford University12 Mansfield RoadOxfordOX1 3TAUK
| | - Antoine de Gombert
- Chemistry Research LaboratoryOxford University12 Mansfield RoadOxfordOX1 3TAUK
| | - Janette McKnight
- Chemistry Research LaboratoryOxford University12 Mansfield RoadOxfordOX1 3TAUK
| | - Loïc R. E. Pantaine
- Chemistry Research LaboratoryOxford University12 Mansfield RoadOxfordOX1 3TAUK
| | - Michael C. Willis
- Chemistry Research LaboratoryOxford University12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
5
|
Takai R, Shimbo D, Tada N, Itoh A. Ligand-Enabled Copper-Catalyzed N-Alkynylation of Sulfonamide with Alkynyl Benziodoxolone: Synthesis of Amino Acid-Derived Ynamide. J Org Chem 2021; 86:4699-4713. [PMID: 33719425 DOI: 10.1021/acs.joc.1c00101] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ynamides are versatile building blocks in organic synthesis. However, the synthesis of amino acid-derived ynamides is difficult but in high demand. Herein, we disclose the copper-catalyzed Csp-N coupling of sulfonamide, including amino acid and peptide derivatives, to give ynamides by using alkynyl benziodoxolones with broad functional group tolerance under mild reaction conditions. The electron-rich bipyridine as a ligand and ethanol as solvent were used for the success of this reaction. The usefulness of the obtained amino acid-derived ynamide as building block was showcased by further derivatization to unique amino acid derivatives. A control experiment to elucidate the mechanistic insight was also described.
Collapse
Affiliation(s)
- Ryogo Takai
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Daisuke Shimbo
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Norihiro Tada
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Akichika Itoh
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
6
|
Cook XAF, Gombert A, McKnight J, Pantaine LRE, Willis MC. The 2‐Pyridyl Problem: Challenging Nucleophiles in Cross‐Coupling Arylations. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xinlan A. F. Cook
- Chemistry Research Laboratory Oxford University 12 Mansfield Road Oxford OX1 3TA UK
| | - Antoine Gombert
- Chemistry Research Laboratory Oxford University 12 Mansfield Road Oxford OX1 3TA UK
| | - Janette McKnight
- Chemistry Research Laboratory Oxford University 12 Mansfield Road Oxford OX1 3TA UK
| | - Loïc R. E. Pantaine
- Chemistry Research Laboratory Oxford University 12 Mansfield Road Oxford OX1 3TA UK
| | - Michael C. Willis
- Chemistry Research Laboratory Oxford University 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
7
|
Diaryliodoniums Salts as Coupling Partners for Transition-Metal Catalyzed C- and N-Arylation of Heteroarenes. Catalysts 2020. [DOI: 10.3390/catal10050483] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Owing to the pioneering works performed on the metal-catalyzed sp2 C–H arylation of indole and pyrrole by Sanford and Gaunt, N– and C-arylation involving diaryliodonium salts offers an attractive complementary strategy for the late-stage diversification of heteroarenes. The main feature of this expanding methodology is the selective incorporation of structural diversity into complex molecules which usually have several C–H bonds and/or N–H bonds with high tolerance to functional groups and under mild conditions. This review summarizes the main recent achievements reported in transition-metal-catalyzed N– and/or C–H arylation of heteroarenes using acyclic diaryliodonium salts as coupling partners.
Collapse
|
8
|
Shin M, Kim M, Hwang C, Lee H, Kwon H, Park J, Lee E, Cho SH. Facile Synthesis of α-Boryl-Substituted Allylboronate Esters Using Stable Bis[(pinacolato)boryl]methylzinc Reagents. Org Lett 2020; 22:2476-2480. [DOI: 10.1021/acs.orglett.0c00721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Minkyeong Shin
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Rep. of Korea
| | - Minjae Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Rep. of Korea
| | - Chiwon Hwang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Rep. of Korea
| | - Hyojae Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Rep. of Korea
| | - Hyunchul Kwon
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Rep. of Korea
| | - Jinyoung Park
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Rep. of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Rep. of Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Rep. of Korea
| |
Collapse
|
9
|
Abdulla HO, Amin AA, Raviola C, Opatz T, Protti S, Fagnoni M. Smooth Metal-Free Photoinduced Preparation of Valuable 8-Arylxanthines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900638] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Havall Othman Abdulla
- PhotoGreen Lab; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 Pavia Italy
- Chemistry Department; College of Science; Salahaddin University; Erbil Iraq
| | - Ahmed A. Amin
- Chemistry Department; College of Education; Salahaddin University; Erbil Iraq
| | - Carlotta Raviola
- PhotoGreen Lab; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 Pavia Italy
| | - Till Opatz
- Institute of Organic Chemistry; College of Education; Johannes Gutenberg University of Mainz; 55128 Mainz Germany
| | - Stefano Protti
- PhotoGreen Lab; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 Pavia Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab; Department of Chemistry; University of Pavia; Viale Taramelli 12 27100 Pavia Italy
| |
Collapse
|
10
|
Patel UN, Jagtap RA, Punji B. Scope and Mechanistic Aspect of Nickel-Catalyzed Alkenylation of Benzothiazoles and Related Azoles with Styryl Bromides. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Tóth BL, Béke F, Egyed O, Bényei A, Stirling A, Novák Z. Synthesis of Multifunctional Aryl(trifloxyalkenyl)iodonium Triflate Salts. ACS OMEGA 2019; 4:9188-9197. [PMID: 31460007 PMCID: PMC6648789 DOI: 10.1021/acsomega.9b00728] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 03/26/2019] [Indexed: 06/10/2023]
Abstract
A convenient procedure for the synthesis of aryl(trifloxyalkenyl)iodonium triflate salts from commercially available (diacetoxyiodo)benzene, trimethylsilyl trifluoromethanesulfonate, and acetylenes under mild conditions was developed. The obtained multifunctional hypervalent vinyliodonium salts equipped with electrophilic and nucleophilic functions could serve as novel C2 synthons for organic transformations. The structure of the iodonium salts was identified by multidimensional NMR spectroscopy and X-ray crystallography.
Collapse
Affiliation(s)
- Balázs L. Tóth
- ELTE
“Lendület” Catalysis and Organic Synthesis Research
Group, Institute of Chemistry, Eötvös
Loránd University, Faculty of Science, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Ferenc Béke
- ELTE
“Lendület” Catalysis and Organic Synthesis Research
Group, Institute of Chemistry, Eötvös
Loránd University, Faculty of Science, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| | - Orsolya Egyed
- Research
Centre for Natural Sciences of the Hungarian Academy of Sciences, Magyar Tudósok körútja
2, H-1117 Budapest, Hungary
| | - Attila Bényei
- Department
of Pharmaceutical Chemistry, University
of Debrecen, Egyetem
tér 1, H-4032 Debrecen, Hungary
| | - András Stirling
- Research
Centre for Natural Sciences of the Hungarian Academy of Sciences, Magyar Tudósok körútja
2, H-1117 Budapest, Hungary
| | - Zoltán Novák
- ELTE
“Lendület” Catalysis and Organic Synthesis Research
Group, Institute of Chemistry, Eötvös
Loránd University, Faculty of Science, Pázmány Péter stny. 1/A, H-1117 Budapest, Hungary
| |
Collapse
|
12
|
Yuan H, Guo L, Liu F, Miao Z, Feng L, Gao H. Copper-Catalyzed Tandem O-Vinylation of Arylhydroxylamines/[3,3]-Rearrangement/Cyclization: Synthesis of Highly Substituted Indoles and Benzoindoles. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00470] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hairui Yuan
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 27 South Shanda Road, Ji’nan 250100, Shandong, People’s Republic of China
| | - Lirong Guo
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 27 South Shanda Road, Ji’nan 250100, Shandong, People’s Republic of China
| | - Fengting Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 27 South Shanda Road, Ji’nan 250100, Shandong, People’s Republic of China
| | - Zechen Miao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 27 South Shanda Road, Ji’nan 250100, Shandong, People’s Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 27 South Shanda Road, Ji’nan 250100, Shandong, People’s Republic of China
| | - Hongyin Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 27 South Shanda Road, Ji’nan 250100, Shandong, People’s Republic of China
| |
Collapse
|
13
|
Recent applications of magnesium- and Zinc-TMP amides in the synthesis of bioactive targets. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.12.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Hyatt IFD, Dave L, David N, Kaur K, Medard M, Mowdawalla C. Hypervalent iodine reactions utilized in carbon–carbon bond formations. Org Biomol Chem 2019; 17:7822-7848. [DOI: 10.1039/c9ob01267b] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This review covers recent developments of hypervalent iodine chemistry in dearomatizations, radicals, hypervalent iodine-guided electrophilic substitution, arylations, photoredox, and more.
Collapse
Affiliation(s)
| | - Loma Dave
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| | - Navindra David
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| | - Kirandeep Kaur
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| | - Marly Medard
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| | - Cyrus Mowdawalla
- Department of Chemistry and Biochemistry
- Adelphi University
- Garden City
- USA
| |
Collapse
|
15
|
Zhang H, Wang KH, Wang J, Su Y, Huang D, Hu Y. N-Arylations of trifluoromethylated N-acylhydrazones with diaryliodonium salts as arylation reagents. Org Biomol Chem 2019; 17:2940-2947. [DOI: 10.1039/c9ob00236g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and efficient N-arylation of trifluoromethylated N-acylhydrazones is described by using diaryliodonium salts as arylation reagents in the presence of copper salts. A wide variety of N-aryl acylhydrazones are obtained with good to excellent yields under mild reaction conditions.
Collapse
Affiliation(s)
| | - Ke-Hu Wang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Junjiao Wang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Yingpeng Su
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Danfeng Huang
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| | - Yulai Hu
- College of Chemistry and Chemical Engineering
- Northwest Normal University
- Lanzhou
- P. R. China
| |
Collapse
|
16
|
Liu C, Wang Q. Alkenylation of C(sp
3
)−H Bonds by Zincation/Copper‐Catalyzed Cross‐Coupling with Iodonium Salts. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chuan Liu
- French Family Science Center Department of Chemistry Duke University 124 Science Drive Durham NC 27708 USA
- Current address: HitGen Ltd. Tianfu Life Science Park 88 South Keyuan Road Chengdu 610041 P. R. China
| | - Qiu Wang
- French Family Science Center Department of Chemistry Duke University 124 Science Drive Durham NC 27708 USA
| |
Collapse
|
17
|
Liu C, Wang Q. Alkenylation of C(sp 3 )-H Bonds by Zincation/Copper-Catalyzed Cross-Coupling with Iodonium Salts. Angew Chem Int Ed Engl 2018; 57:4727-4731. [PMID: 29479782 DOI: 10.1002/anie.201713278] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/06/2018] [Indexed: 12/20/2022]
Abstract
α-Vinylation of phosphonates, phosphine oxides, sulfones, sulfonamides, and sulfoxides has been achieved by selective C-H zincation and copper-catalyzed C(sp3 )-C(sp2 ) cross-coupling reaction using vinylphenyliodonium salts. The vinylation transformation proceeds in high efficiency and stereospecificity under mild reaction conditions. This zincative cross-coupling reaction represents a general alkenylation strategy, which is also applicable for α-alkenylation of esters, amides, and nitriles in the synthesis of β,γ-unsaturated carbonyl compounds.
Collapse
Affiliation(s)
- Chuan Liu
- French Family Science Center, Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA.,Current address: HitGen Ltd., Tianfu Life Science Park, 88 South Keyuan Road, Chengdu, 610041, P. R. China
| | - Qiu Wang
- French Family Science Center, Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| |
Collapse
|
18
|
Rajkiewicz AA, Kalek M. N-Heterocyclic Carbene-Catalyzed Olefination of Aldehydes with Vinyliodonium Salts To Generate α,β-Unsaturated Ketones. Org Lett 2018. [DOI: 10.1021/acs.orglett.8b00447] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Adam A. Rajkiewicz
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Marcin Kalek
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland
| |
Collapse
|
19
|
Laha JK, Patel KV, Saima S, Pandey S, Solanke G, Vashisht V. Scope of regioselective Suzuki reactions in the synthesis of arylpyridines and benzylpyridines and subsequent intramolecular cyclizations to azafluorenes and azafluorenones. NEW J CHEM 2018. [DOI: 10.1039/c8nj02734j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The current investigation on regioselective Suzuki reaction of 2,3-dihalopyridines and 2-halo-3-halomethyl pyridines has been studied and extended for azafluorenes and azafluorenones synthesis.
Collapse
Affiliation(s)
- Joydev K. Laha
- Department of Pharmaceutical Technology (Process Chemistry)
- National Institute of Pharmaceutical Education and Research
- India
| | - Ketul V. Patel
- Department of Pharmaceutical Technology (Process Chemistry)
- National Institute of Pharmaceutical Education and Research
- India
| | - Saima Saima
- Department of Pharmaceutical Technology (Process Chemistry)
- National Institute of Pharmaceutical Education and Research
- India
| | - Surabhi Pandey
- Department of Pharmaceutical Technology (Process Chemistry)
- National Institute of Pharmaceutical Education and Research
- India
| | - Ganesh Solanke
- Department of Pharmaceutical Technology (Process Chemistry)
- National Institute of Pharmaceutical Education and Research
- India
| | - Vanya Vashisht
- Department of Pharmaceutical Technology (Process Chemistry)
- National Institute of Pharmaceutical Education and Research
- India
| |
Collapse
|
20
|
Wu A, Chen Q, Liu W, You L, Fu Y, Zhang H. Transition-metal-free arylation of benzoxazoles with aryl nitriles. Org Chem Front 2018. [DOI: 10.1039/c8qo00227d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Transition-metal-free arylation of benzoxazoles with aryl nitriles has been developed to afford important 2-aryl benzoxazoles under simple reaction conditions.
Collapse
Affiliation(s)
- Aizhen Wu
- College of Chemistry
- Nanchang University
- Nanchang 330031
- P. R. China
| | - Quan Chen
- College of Chemistry
- Nanchang University
- Nanchang 330031
- P. R. China
| | - Wei Liu
- College of Food Science and Technology
- Henan University of Technology
- Zhengzhou 450001
- P. R. China
| | - Lijun You
- College of Chemistry
- Nanchang University
- Nanchang 330031
- P. R. China
| | - Yifan Fu
- College of Chemistry
- Nanchang University
- Nanchang 330031
- P. R. China
| | - Hua Zhang
- College of Chemistry
- Nanchang University
- Nanchang 330031
- P. R. China
| |
Collapse
|
21
|
Guan Y, Townsend SD. Metal-Free Synthesis of Unsymmetrical Organoselenides and Selenoglycosides. Org Lett 2017; 19:5252-5255. [DOI: 10.1021/acs.orglett.7b02526] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yong Guan
- Department
of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
| | - Steven D. Townsend
- Department
of Chemistry, Vanderbilt University, 7330 Stevenson Center, Nashville, Tennessee 37235, United States
- Institute
of Chemical Biology, Vanderbilt University, 896 Preston Research Building, Nashville, Tennessee 37232-6304, United States
| |
Collapse
|
22
|
Balkenhohl M, Greiner R, Makarov IS, Heinz B, Karaghiosoff K, Zipse H, Knochel P. Zn-, Mg-, and Li-TMP Bases for the Successive Regioselective Metalations of the 1,5-Naphthyridine Scaffold (TMP=2,2,6,6-Tetramethylpiperidyl). Chemistry 2017; 23:13046-13050. [PMID: 28777497 DOI: 10.1002/chem.201703638] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Indexed: 12/26/2022]
Abstract
A set of successive regioselective metalations and functionalizations of the 1,5-naphthyridine scaffold are described. A combination of Zn-, Mg-, and Li-TMP (TMP=2,2,6,6-tetramethylpiperidyl) bases and the presence or absence of a Lewis acid (BF3 ⋅OEt2 ) allows the introduction of up to three substituents to the 1,5-naphthyridine core. Also, a novel "halogen dance" reaction was discovered upon metalation of an 8-iodo-2,4-trifunctionalized 1,5-naphthyridine allowing a fourth regioselective functionalization. Additionally, reactions leading to key 1,5-naphthyridines for the preparation of OLED materials and a potential antibacterial agent were performed.
Collapse
Affiliation(s)
- Moritz Balkenhohl
- Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Robert Greiner
- Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Ilya S Makarov
- Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Benjamin Heinz
- Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Konstantin Karaghiosoff
- Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Hendrik Zipse
- Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Paul Knochel
- Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| |
Collapse
|
23
|
Hu B, Cao Y, Zhang B, Zhang-Negrerie D, Du Y. Formation of Phenyliodonio-Substituted Spirofurooxindole Trifluoroacetates from N
-Substituted 3-Oxopentanediamides via
Phenyliodine Bis(trifluoroacetate)-Mediated Oxidative Cascade Reactions. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Bei Hu
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 People's Republic of China
| | - Yang Cao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 People's Republic of China
| | - Bobo Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 People's Republic of China
| | - Daisy Zhang-Negrerie
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 People's Republic of China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 People's Republic of China
| |
Collapse
|
24
|
Yin K, Zhang R. Transition-Metal-Free Direct C-H Arylation of Quinoxalin-2(1H)-ones with Diaryliodonium Salts at Room Temperature. Org Lett 2017; 19:1530-1533. [PMID: 28300414 DOI: 10.1021/acs.orglett.7b00310] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A method of synthesizing 3-arylquinoxalin-2(1H)-ones using diaryliodonium tetrafluoroborates under mild conditions is described. This protocol has a wide substrate scope and enables direct C-H functionalization. The synthetic potential of this coupling was explored using a range of readily accessible diaryliodonium salts and quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Kun Yin
- School of Chemical Science and Engineering, Tongji University , 1239 Siping Road, Shanghai 200092, China
| | - Ronghua Zhang
- School of Chemical Science and Engineering, Tongji University , 1239 Siping Road, Shanghai 200092, China.,Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University , 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
25
|
Majee D, Biswas S, Mobin SM, Samanta S. Domino reaction of cyclic sulfamidate imines with Morita–Baylis–Hillman acetates promoted by DABCO: a metal-free approach to functionalized nicotinic acid derivatives. Org Biomol Chem 2017; 15:3286-3297. [DOI: 10.1039/c7ob00240h] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of 4,6-diarylnicotinates have been prepared in good to excellent yields via a domino reaction of cyclic sulfamidate imines with MBH acetates in 2-MeTHF promoted by DABCO under an O2 atmosphere.
Collapse
Affiliation(s)
- Debashis Majee
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Simrol
- India
| | - Soumen Biswas
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Simrol
- India
| | - Shaikh M. Mobin
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Simrol
- India
| | - Sampak Samanta
- Discipline of Chemistry
- Indian Institute of Technology Indore
- Simrol
- India
| |
Collapse
|
26
|
Yang P, Wang R, Wu H, Du Z, Fu Y. Pd-Catalyzed C−H Arylation of Benzothiazoles with Diaryliodonium Salt: One-Pot Synthesis of 2-Arylbenzothiazoles. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peng Yang
- Key Laboratory of Eco-Environment Related Polymer Materials of Ministry of Education; College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou 730070 P. R. China
| | - Rui Wang
- Key Laboratory of Eco-Environment Related Polymer Materials of Ministry of Education; College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou 730070 P. R. China
| | - Hui Wu
- Key Laboratory of Eco-Environment Related Polymer Materials of Ministry of Education; College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou 730070 P. R. China
| | - Zhengyin Du
- Key Laboratory of Eco-Environment Related Polymer Materials of Ministry of Education; College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou 730070 P. R. China
| | - Ying Fu
- Key Laboratory of Eco-Environment Related Polymer Materials of Ministry of Education; College of Chemistry and Chemical Engineering; Northwest Normal University; Lanzhou 730070 P. R. China
| |
Collapse
|