1
|
Zhang X, Chang M, Ni T, Zhang X, Zhao Q, Li W, Li T. Dehydrogenative [4 + 2] Annulation of 1-Indanones with Alkynes Enabled by In-Situ-Generated Nickel Hydride. Org Lett 2024; 26:6619-6624. [PMID: 39072679 DOI: 10.1021/acs.orglett.4c02272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A practical and effective nickel-catalyzed dehydrogenative [4 + 2] annulation of 1-indanones with alkynes was reported. In this protocol, nickel-catalyzed desaturation of 1-indanones and nickel hydride catalyzed coupling with alkynes were first incorporated. A cyclopentadiene-type nickel hydride species was generated in situ via β-H elimination, and they subsequently reacted with a wide variety of alkynes to afford various benzo[a]fluorenone derivatives in good yields and regioselectivity.
Collapse
Affiliation(s)
- Xu Zhang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Mengfan Chang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Tongtong Ni
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xuhan Zhang
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Qiang Zhao
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Wenguang Li
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Ting Li
- Engineering Technology Research Center of Henan Province for Solar Catalysis, College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
2
|
Féo M, Bakas NJ, Radović A, Parisot W, Clisson A, Chamoreau LM, Haddad M, Ratovelomanana-Vidal V, Neidig ML, Lefèvre G. Thermally Stable Redox Noninnocent Bathocuproine-Iron Complex for Cycloaddition Reactions. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
3
|
Parisot W, Huvelle S, Haddad M, Lefèvre G, Phansavath P, Ratovelomanana-Vidal V. Synthesis of 5 H-chromeno[3,4- c]pyridine derivatives through ruthenium-catalyzed [2 + 2 + 2] cycloaddition. Org Chem Front 2023. [DOI: 10.1039/d2qo01918c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Efficient access to 5H-chromeno[3,4-c]pyridines using Ru-catalyzed [2 + 2 + 2] cycloaddition of α,ω-diynes with cyanamides was developed, providing valuable tricyclic pyridine building blocks and enabling access to a biologically relevant intermediate.
Collapse
Affiliation(s)
- William Parisot
- PSL University, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D team, 75005 Paris, France
| | - Steve Huvelle
- PSL University, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D team, 75005 Paris, France
| | - Mansour Haddad
- PSL University, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D team, 75005 Paris, France
| | - Guillaume Lefèvre
- PSL University, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D team, 75005 Paris, France
| | - Phannarath Phansavath
- PSL University, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D team, 75005 Paris, France
| | - Virginie Ratovelomanana-Vidal
- PSL University, Chimie ParisTech, CNRS, Institute of Chemistry for Life and Health Sciences, CSB2D team, 75005 Paris, France
| |
Collapse
|
4
|
Zhang W, Xue Y, Konduri S, Lin G, Wu M, Tang P, Chen F. Unified total synthesis of eburnamine-vincamine indole alkaloids based on catalytic asymmetric hydrogenation/lactamization cascade. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
5
|
Baire B, Santhi J. Ag(I)-Promoted homo-dimerization of 2-(alk-2-yn-1-onyl)-1-alkynylbenzenes via a [4 + 2] cycloaddition of benzopyrylium ions: access to structurally unique naphthalenes. Org Biomol Chem 2021; 20:247-251. [PMID: 34904139 DOI: 10.1039/d1ob02229f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report a Ag(I)-promoted homo-dimerization of 2-(alk-2-yn-1-onyl)-1-alkynylbenzenes for the synthesis of structurally novel and functionalized naphthalene derivatives. This transformation exhibits a broad scope for the alkyl as well as aryl groups present on alkynes. Observations made from control experiments suggest the possible mechanism as (i) the homo-dimerization of the in situ generated benzopyrylium ion intermediates through a head-tail [4 + 2] cycloaddition, followed by (ii) the competitive ring-opening vs. decarbonylative aromatization of the adduct to give formylated and deformylated naphthalenes, respectively.
Collapse
Affiliation(s)
- Beeraiah Baire
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| | - Jampani Santhi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India.
| |
Collapse
|
6
|
Amatore M, Parrain J, Commeiras L. Alkyne Surrogates in Cycloaddition Reactions for the Preparation of Molecules of Interest. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Muriel Amatore
- Aix Marseille Univ CNRS Centrale Marseille iSm2 Marseille France
| | - Jean‐Luc Parrain
- Aix Marseille Univ CNRS Centrale Marseille iSm2 Marseille France
| | | |
Collapse
|
7
|
Doerksen RS, Hodík T, Hu G, Huynh NO, Shuler WG, Krische MJ. Ruthenium-Catalyzed Cycloadditions to Form Five-, Six-, and Seven-Membered Rings. Chem Rev 2021; 121:4045-4083. [PMID: 33576620 DOI: 10.1021/acs.chemrev.0c01133] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ruthenium-catalyzed cycloadditions to form five-, six-, and seven-membered rings are summarized, including applications in natural product total synthesis. Content is organized by ring size and reaction type. Coverage is limited to processes that involve formation of at least one C-C bond. Processes that are stoichiometric in ruthenium or exploit ruthenium as a Lewis acid (without intervention of organometallic intermediates), ring formations that occur through dehydrogenative condensation-reduction, σ-bond activation-initiated annulations that do not result in net reduction of bond multiplicity, and photochemically promoted ruthenium-catalyzed cycloadditions are not covered.
Collapse
Affiliation(s)
- Rosalie S Doerksen
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Tomáš Hodík
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Guanyu Hu
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Nancy O Huynh
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - William G Shuler
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Dömling A, Neochoritis CG, Lei X, Thomaidi M, Angeli GK. Fluorene-Based Multicomponent Reactions. Synlett 2021. [DOI: 10.1055/a-1471-9080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractFluorene and fluorenone are privileged structures with extensive utility in both materials science and drug discovery. Here, we describe syntheses of those moieties through isocyanide-based multicomponent reactions (IMCRs) and the incorporation of the products in diverse and complex derivatives that can be further utilized. We performed six different IMCRs, based on the dual functionality of 9-isocyano-9H-fluorene, and we describe 23 unprecedented adducts.
Collapse
Affiliation(s)
| | | | - Xiaofang Lei
- Department of Chemistry, University of Crete
- Department of Pharmacy, Drug Design Group, University of Groningen
| | | | | |
Collapse
|
9
|
Bag D, Sawant SD. Heteroarene-tethered Functionalized Alkyne Metamorphosis. Chemistry 2021; 27:1165-1218. [PMID: 32603015 DOI: 10.1002/chem.202002154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 12/11/2022]
Abstract
Heteroarene-tethered functionalized alkynes are multipotent synthons in organic chemistry. This detailed Review described herein offers a thorough discussion of the metamorphosis of heteroarene-tethered functionalized alkynes, an area which has earned much attention over the past decade in the straightforward synthesis of architecturally complex heterocyclic scaffolds in atom and step economic manner. Depending upon the variety of functionalized alkynes, this Review is divided into multiple sections. Amongst the vast array of synthetic transformations covered, dearomatizing spirocyclizations and cascade spirocyclization/rearrangement are of great interest. Synthetic transformations involving the heteroarene-tethered functionalized alkynes with scope, challenges, limitations, mechanism, their application in the total synthesis of natural products and future perceptions are surveyed.
Collapse
Affiliation(s)
- Debojyoti Bag
- Laboratory 212, Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu, Canal Road, Jammu, Jammu and Kashmir, 180001, India
| | - Sanghapal D Sawant
- Laboratory 212, Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine Jammu, Canal Road, Jammu, Jammu and Kashmir, 180001, India
| |
Collapse
|
10
|
Patel S, Rathod B, Regu S, Chak S, Shard A. A Perspective on Synthesis and Applications of Fluorenones. ChemistrySelect 2020. [DOI: 10.1002/slct.202002695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sagarkumar Patel
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research-Ahmedabad An Institute of National Importance Govt. of india) Opposite Airforce Station, Nr. Palaj Village, Gandhinagar 382355 India
| | - Bhagyashri Rathod
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research-Ahmedabad An Institute of National Importance Govt. of india) Opposite Airforce Station, Nr. Palaj Village, Gandhinagar 382355 India
| | - Siddulu Regu
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research-Ahmedabad An Institute of National Importance Govt. of india) Opposite Airforce Station, Nr. Palaj Village, Gandhinagar 382355 India
| | - Shivam Chak
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research-Ahmedabad An Institute of National Importance Govt. of india) Opposite Airforce Station, Nr. Palaj Village, Gandhinagar 382355 India
| | - Amit Shard
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research-Ahmedabad An Institute of National Importance Govt. of india) Opposite Airforce Station, Nr. Palaj Village, Gandhinagar 382355 India
| |
Collapse
|
11
|
Manick AD, Salgues B, Parrain JL, Zaborova E, Fages F, Amatore M, Commeiras L. Access to Fluorenones Using Benzocyclopentynone Surrogate as Partner for the [2 + 2 + 2] Cycloaddition Reaction. Org Lett 2020; 22:1894-1898. [PMID: 32073278 DOI: 10.1021/acs.orglett.0c00235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A convenient and versatile procedure for the straightforward synthesis of substituted fluorenones as valuable scaffolds is described under rhodium catalysis. The present [2 + 2 + 2] cycloaddition reaction of diynes with 3-acetoxy or-3-alkoxyindenones as surrogates of the highly reactive benzocyclopentynone 2π partner allows the preparation of various fluorenone-type derivatives in good yields and provides an additional and tunable process for the generation of more challenging molecules with application in pharmaceutical, polymer, and material sciences.
Collapse
Affiliation(s)
| | - Bruno Salgues
- Aix Marseille Univ, CNRS, CINaM, UMR 7325, Marseille 13284, France
| | - Jean-Luc Parrain
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| | - Elena Zaborova
- Aix Marseille Univ, CNRS, CINaM, UMR 7325, Marseille 13284, France
| | - Frédéric Fages
- Aix Marseille Univ, CNRS, CINaM, UMR 7325, Marseille 13284, France
| | - Muriel Amatore
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| | - Laurent Commeiras
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille 13397, France
| |
Collapse
|
12
|
Synthesis of Anthraquinones by Iridium-Catalyzed [2 + 2 + 2] Cycloaddition of a 1,2-Bis(propiolyl)benzene Derivative with Alkynes. INORGANICS 2019. [DOI: 10.3390/inorganics7110138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
[2 + 2 + 2] cycloaddition of a 1,2-bis(propiolyl)benzene derivative with terminal and internal alkynes takes place in the presence of [Ir(cod)Cl]2 (cod = 1,5-cyclooctadiene) combined with bis(diphenylphosphino)ethane (DPPE) to give anthraquinones in 42% to 93% yields with a simple experimental procedure. A fluorenone derivative can also be synthesized by iridium-catalyzed [2 + 2 + 2] cycloaddition of a benzene-linked ketodiyne with an internal alkyne to give a 94% yield.
Collapse
|
13
|
Kaiser RP, Caivano I, Kotora M. Transition-metal-catalyzed methods for synthesis of fluorenes. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Zhang Y, Wu W, Fu C, Huang X, Ma S. Benzene construction via Pd-catalyzed cyclization of 2,7-alkadiynylic carbonates in the presence of alkynes. Chem Sci 2019; 10:2228-2235. [PMID: 30881648 PMCID: PMC6385558 DOI: 10.1039/c8sc04681f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022] Open
Abstract
A palladium-catalyzed highly regio- and chemo-selective cyclization of 2,7-alkadiynylic carbonates with functionalized alkynes to construct 1,3-dihydroisobenzofuran and isoindoline derivatives under mild conditions has been developed. Functional groups such as alcohol, sulfonamide, and indoles could be well tolerated. After careful mechanistic studies, a mechanism involving oxidative addition and regioselectivity-defined double alkyne insertions has been proposed.
Collapse
Affiliation(s)
- Yuchen Zhang
- Laboratory of Molecular Recognition and Synthesis , Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , People's Republic of China . ;
| | - Wangteng Wu
- Laboratory of Molecular Recognition and Synthesis , Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , People's Republic of China . ;
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis , Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , People's Republic of China . ;
| | - Xin Huang
- Laboratory of Molecular Recognition and Synthesis , Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , People's Republic of China . ;
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis , Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang , People's Republic of China . ;
| |
Collapse
|
15
|
Maity P, Mukhopadhyay C. Resorcinarene supramolecular organocatalyst for functionalized 1-tetralone synthesis in aqueous medium. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Ye F, Tran C, Jullien L, Le Saux T, Haddad M, Michelet V, Ratovelomanana-Vidal V. Synthesis of Fluorescent Azafluorenones and Derivatives via a Ruthenium-Catalyzed [2 + 2 + 2] Cycloaddition. Org Lett 2018; 20:4950-4953. [PMID: 30070483 DOI: 10.1021/acs.orglett.8b02085] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An original and mild synthetic route for the preparation of novel azafluorenones and derivatives via a ruthenium-mediated [2 + 2 + 2] cycloaddition of α,ω-diynes and cyanamides has been developed. This atom-economical catalytic process demonstrated remarkable regioselectivities to access fluorescent azafluorenone derivatives. The photophysical properties of azafluorenone derivatives have been evaluated, and photoluminescence phenomena at solid and liquid states have been highlighted.
Collapse
Affiliation(s)
- Fei Ye
- PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris , Paris 75005 , France
| | - Christine Tran
- PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris , Paris 75005 , France
| | - Ludovic Jullien
- PASTEUR, Chemistry Department , École Normale Supérieure, PSL University, Sorbonne University, CNRS , Paris 75005 , France
| | - Thomas Le Saux
- PASTEUR, Chemistry Department , École Normale Supérieure, PSL University, Sorbonne University, CNRS , Paris 75005 , France
| | - Mansour Haddad
- PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris , Paris 75005 , France
| | - Véronique Michelet
- PSL Research University, Chimie ParisTech - CNRS, Institut de Recherche de Chimie Paris , Paris 75005 , France
| | | |
Collapse
|
17
|
Bhatt D, Patel N, Chowdhury H, Bharatam PV, Goswami A. Additive-Controlled Switchable Selectivity from Cyanobenzenes to 2-Alkynylpyridines: Ruthenium(II)-Catalyzed [2+2+2] Cycloadditions of Diynes and Alkynylnitriles. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800228] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Divya Bhatt
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road Rupnagar, Punjab- 140001 India
| | - Neha Patel
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Sector 67, S. A. S. Nagar 160062 Punjab India
| | - Hrishikesh Chowdhury
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road Rupnagar, Punjab- 140001 India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER); Sector 67, S. A. S. Nagar 160062 Punjab India
| | - Avijit Goswami
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road Rupnagar, Punjab- 140001 India
| |
Collapse
|
18
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2016. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Ye F, Boukattaya F, Haddad M, Ratovelomanana-Vidal V, Michelet V. Synthesis of 2-aminopyridines via ruthenium-catalyzed [2+2+2] cycloaddition of 1,6- and 1,7-diynes with cyanamides: scope and limitations. NEW J CHEM 2018. [DOI: 10.1039/c7nj04933a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A direct route to access 2-aminopyridines using Ru-catalyzed-[2+2+2] cycloaddition of 1,n-diynes with cyanamides is described in excellent yields and regioselectivities.
Collapse
Affiliation(s)
- Fei Ye
- PSL
- Research University
- Chimie ParisTech – CNRS
- Institut de Recherche de Chimie Paris
- 75005 Paris
| | - Fatma Boukattaya
- PSL
- Research University
- Chimie ParisTech – CNRS
- Institut de Recherche de Chimie Paris
- 75005 Paris
| | - Mansour Haddad
- PSL
- Research University
- Chimie ParisTech – CNRS
- Institut de Recherche de Chimie Paris
- 75005 Paris
| | | | - Véronique Michelet
- PSL
- Research University
- Chimie ParisTech – CNRS
- Institut de Recherche de Chimie Paris
- 75005 Paris
| |
Collapse
|
20
|
Bhatt D, Chowdhury H, Goswami A. Atom-Economic Route to Cyanoarenes and 2,2'-Dicyanobiarenes via Iron-Catalyzed Chemoselective [2 + 2 + 2] Cycloaddition Reactions of Diynes and Tetraynes with Alkynylnitriles. Org Lett 2017; 19:3350-3353. [PMID: 28604004 DOI: 10.1021/acs.orglett.7b01217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient protocol for the synthesis of cyanoarenes has been developed via an iron-catalyzed chemoselective [2 + 2 + 2] cycloaddition reaction of diynes with alkynylnitriles under mild reaction conditions with good to excellent yields. The reaction is catalyzed by the combination of FeCl2·4H2O as a metal source, 2-(2,6-diisopropylphenyl)iminomethylpyridine (dipimp) as a ligand, and Zn as a reducing agent in DME solvent. The protocol was further extended to the synthesis of 2,2'-dicyanobiarene skeletons from the reaction of tetraynes with alkynylnitriles.
Collapse
Affiliation(s)
- Divya Bhatt
- Department of Chemistry, Indian Institute of Technology Ropar , Nangal Road, Rupnagar, Punjab 140001, India
| | - Hrishikesh Chowdhury
- Department of Chemistry, Indian Institute of Technology Ropar , Nangal Road, Rupnagar, Punjab 140001, India
| | - Avijit Goswami
- Department of Chemistry, Indian Institute of Technology Ropar , Nangal Road, Rupnagar, Punjab 140001, India
| |
Collapse
|
21
|
Ye F, Haddad M, Ratovelomanana-Vidal V, Michelet V. Ruthenium-Catalyzed [2 + 2 + 2] Cycloaddition Reaction Forming 2-Aminopyridine Derivatives from α,ω-Diynes and Cyanamides. Org Lett 2017; 19:1104-1107. [PMID: 28225282 DOI: 10.1021/acs.orglett.7b00130] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A novel, efficient, and mild synthetic route for the preparation of 2-aminopyridines via ruthenium-mediated [2 + 2 + 2] cycloaddition of α,ω-diynes and cyanamides has been developed. This atom-economical catalytic process demonstrated remarkable regioselectivities to access pyridine derivatives of high synthetic utility.
Collapse
Affiliation(s)
- Fei Ye
- PSL Research University, Chimie ParisTech - CNRS , Institut de Recherche de Chimie Paris, Paris 75005, France
| | - Mansour Haddad
- PSL Research University, Chimie ParisTech - CNRS , Institut de Recherche de Chimie Paris, Paris 75005, France
| | | | - Véronique Michelet
- PSL Research University, Chimie ParisTech - CNRS , Institut de Recherche de Chimie Paris, Paris 75005, France
| |
Collapse
|
22
|
Ye F, Haddad M, Michelet V, Ratovelomanana-Vidal V. Solvent-free ruthenium trichloride-mediated [2 + 2 + 2] cycloaddition of α,ω-diynes and cyanamides: a convenient access to 2-aminopyridines. Org Chem Front 2017. [DOI: 10.1039/c7qo00058h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A convenient access to functionalized 2-aminopyridinesviaa solventless Ru-catalyzed [2 + 2 + 2] cycloaddition reaction of α,ω-diynes and cyanamides is described.
Collapse
Affiliation(s)
- Fei Ye
- PSL
- Research University
- Chimie ParisTech – CNRS
- Institut de Recherche de Chimie Paris
- 75005 Paris
| | - Mansour Haddad
- PSL
- Research University
- Chimie ParisTech – CNRS
- Institut de Recherche de Chimie Paris
- 75005 Paris
| | - Véronique Michelet
- PSL
- Research University
- Chimie ParisTech – CNRS
- Institut de Recherche de Chimie Paris
- 75005 Paris
| | | |
Collapse
|