1
|
Munda M, Chatterjee D, Majhi M, Biswas S, Pal D, Bisai A. Total synthesis of naturally occurring abietane diterpenoids via a late-stage Fe(iii)- bTAML catalysed Csp 3-H functionalization. RSC Adv 2024; 14:20420-20424. [PMID: 38932981 PMCID: PMC11200212 DOI: 10.1039/d4ra03791j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The synthesis of diverse trans-fused decalins, including the abietane diterpenoids scaffold, using an efficient selective oxidation strategy is described. The abietane core was demonstrated to be a versatile scaffold that can be site-selectively functionalized. The utility of this novel oxidation strategy was showcased in a concise total synthesis of six abietane congeners.
Collapse
Affiliation(s)
- Mintu Munda
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri Bhopal-462 066 Madhya Pradesh India
| | - Debasmita Chatterjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Nadia-741 246 West Bengal India
| | - Moumita Majhi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Nadia-741 246 West Bengal India
| | - Souvik Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Nadia-741 246 West Bengal India
| | - Debopam Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Nadia-741 246 West Bengal India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri Bhopal-462 066 Madhya Pradesh India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Nadia-741 246 West Bengal India
| |
Collapse
|
2
|
Rani S, Aslam S, Lal K, Noreen S, Alsader KAM, Hussain R, Shirinfar B, Ahmed N. Electrochemical C-H/C-C Bond Oxygenation: A Potential Technology for Plastic Depolymerization. CHEM REC 2024; 24:e202300331. [PMID: 38063812 DOI: 10.1002/tcr.202300331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/23/2023] [Indexed: 03/10/2024]
Abstract
Herein, we provide eco-friendly and safely operated electrocatalytic methods for the selective oxidation directly or with water, air, light, metal catalyst or other mediators serving as the only oxygen supply. Heavy metals, stoichiometric chemical oxidants, or harsh conditions were drawbacks of earlier oxidative cleavage techniques. It has recently come to light that a crucial stage in the deconstruction of plastic waste and the utilization of biomass is the selective activation of inert C(sp3 )-C/H(sp3 ) bonds, which continues to be a significant obstacle in the chemical upcycling of resistant polyolefin waste. An appealing alternative to chemical oxidations using oxygen and catalysts is direct or indirect electrochemical conversion. An essential transition in the chemical and pharmaceutical industries is the electrochemical oxidation of C-H/C-C bonds. In this review, we discuss cutting-edge approaches to chemically recycle commercial plastics and feasible C-C/C-H bonds oxygenation routes for industrial scale-up.
Collapse
Affiliation(s)
- Sadia Rani
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Samina Aslam
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Kiran Lal
- Department of Chemistry, The Women University Multan, Multan, 60000, Pakistan
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Riaz Hussain
- Department of Chemistry, University of Education Lahore, D.G. Khan Campus, 32200, Pakistan
| | - Bahareh Shirinfar
- West Herts College - University of Hertfordshire, Watford, WD17 3EZ, London, United Kingdom
| | - Nisar Ahmed
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
3
|
Jana S, De P, Dey C, Dey SG, Dey A, Gupta SS. Highly regioselective oxidation of C-H bonds in water using hydrogen peroxide by a cytochrome P450 mimicking iron complex. Chem Sci 2023; 14:10515-10523. [PMID: 37799989 PMCID: PMC10548533 DOI: 10.1039/d3sc03495j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 08/28/2023] [Indexed: 10/07/2023] Open
Abstract
Cytochrome P450, one of nature's oxidative workhorses, catalyzes the oxidation of C-H bonds in complex biological settings. Extensive research has been conducted over the past five decades to develop a fully functional mimic that activates O2 or H2O2 in water to oxidize strong C-H bonds. We report the first example of a synthetic iron complex that functionally mimics cytochrome P450 in 100% water using H2O2 as the oxidant. This iron complex, in which one methyl group is replaced with a phenyl group in either wing of the macrocycle, oxidized unactivated C-H bonds in small organic molecules with very high selectivity in water (pH 8.5). Several substrates (34 examples) that contained arenes, heteroaromatics, and polar functional groups were oxidized with predictable selectivity and stereoretention with moderate to high yields (50-90%), low catalyst loadings (1-4 mol%) and a small excess of H2O2 (2-3 equiv.) in water. Mechanistic studies indicated the oxoiron(v) to be the active intermediate in water and displayed unprecedented selectivity towards 3° C-H bonds. Under single-turnover conditions, the reactivity of this oxoiron(v) intermediate in water was found to be around 300 fold higher than that in CH3CN, thus implying the role water plays in enzymatic systems.
Collapse
Affiliation(s)
- Sandipan Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| | - Puja De
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| | - Chinmay Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata West Bengal 700032 India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata West Bengal 700032 India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science Kolkata West Bengal 700032 India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohanpur 741246 Kolkata India
| |
Collapse
|
4
|
Le TV, Romero I, Daugulis O. "Sandwich" Diimine-Copper Catalyzed Trifluoroethylation and Pentafluoropropylation of Unactivated C(sp 3 )-H Bonds by Carbene Insertion. Chemistry 2023; 29:e202301672. [PMID: 37267071 PMCID: PMC10642771 DOI: 10.1002/chem.202301672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
We report here "sandwich"-diimine copper complex-catalyzed trifluoroethylation and pentafluoropropylation of unactivated C(sp3 )-H bonds in alkyl esters, halides, and protected amines by employing CF3 CHN2 and CF3 CF2 CHN2 reagents. Reactions proceed in dichloromethane solvent at room temperature. Identical C-H functionalization conditions and stoichiometries are employed for generality and convenience. Selectivities for C-H insertions are higher for compounds possessing stronger electron-withdrawing substituents. Preliminary mechanistic studies point to a mechanism involving a pre-equilibrium forming a "sandwich"-diimine copper-CF3 CHN2 complex followed by rate-determining loss of nitrogen affording the reactive copper carbene. It reacts with trifluoromethyldiazomethane about 6.5 times faster than with 1-fluoroadamantane explaining the need for slow addition of the diazo compound.
Collapse
Affiliation(s)
| | | | - Olafs Daugulis
- Department of Chemistry, University of Houston 3585 Cullen Blvd
| |
Collapse
|
5
|
Fujisaki H, Okamura M, Hikichi S, Kojima T. Selective alkane hydroxylation and alkene epoxidation using H 2O 2 and Fe(II) catalysts electrostatically attached to a fluorinated surface. Chem Commun (Camb) 2023; 59:3265-3268. [PMID: 36820494 DOI: 10.1039/d2cc06998a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Fe(II) complexes with pentadentate ligands, including N-heterocyclic carbene moieties, were prepared and electrostatically attached onto the perfluorinated surface of a mesoporous aluminosilicate. The heterogeneous catalysts were applied to the catalytic oxidation of cyclohexane and cyclohexene using H2O2 as an oxidant in CH3CN, demonstrating high performance and selectivity in alkane hydroxylation and cyclohexene epoxidation.
Collapse
Affiliation(s)
- Hiroto Fujisaki
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Masaya Okamura
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan.
| | - Shiro Hikichi
- Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan. .,CREST, Japan Science and Technology Agency (JST), Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan. .,CREST, Japan Science and Technology Agency (JST), Japan
| |
Collapse
|
6
|
Jana S, Pattanayak S, Das S, Ghosh M, Velasco L, Moonshiram D, Sen Gupta S. Comparing the reactivity of an oxoiron(IV) cation radical and its oxoiron(V) tautomer towards C-H bonds. Chem Commun (Camb) 2023; 59:2755-2758. [PMID: 36779358 DOI: 10.1039/d2cc07005g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
An oxoiron(IV) cation radical is generated upon two-electron oxidation of an iron(III) complex bearing an electron-rich methoxy substituted bTAML framework and thoroughly characterized via multiple spectroscopic techniques and density functional theory (DFT). Reactivity studies demonstrate faster rates for oxidation of strong aliphatic sp3 C-H bonds than for its corresponding oxoiron(V) valence tautomer.
Collapse
Affiliation(s)
- Sandipan Jana
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Santanu Pattanayak
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Soumadip Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Munmun Ghosh
- Department of Chemistry, Ashoka University, Rajiv Gandhi Education City, Sonepat, Haryana 131029, India.
| | - Lucia Velasco
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, 28049, Madrid, Spain.
| | - Dooshaye Moonshiram
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, 28049, Madrid, Spain.
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
7
|
Kejriwal A. Non-heme iron coordination complexes for alkane oxidation using hydrogen peroxide (H 2O 2) as powerful oxidant. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2085567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ambica Kejriwal
- Department of Chemistry, Raiganj University, Raiganj, West Bengal, India
| |
Collapse
|
8
|
Chen J, Yao J, Li XX, Wang Y, Song W, Cho KB, Lee YM, Nam W, Wang B. Bromoacetic Acid-Promoted Nonheme Manganese-Catalyzed Alkane Hydroxylation Inspired by α-Ketoglutarate-Dependent Oxygenases. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jie Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jinping Yao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiao-Xi Li
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yan Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenxun Song
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Kyung-Bin Cho
- Department of Chemistry, Jeonbuk National University, Jeonju 54896, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Bin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
9
|
Fan H, Tong Z, Ren Z, Mishra K, Morita S, Edouarzin E, Gorla L, Averkiev B, Day VW, Hua DH. Synthesis and Characterization of Bimetallic Nanoclusters Stabilized by Chiral and Achiral Polyvinylpyrrolidinones. Catalytic C(sp 3)-H Oxidation. J Org Chem 2022; 87:6742-6759. [PMID: 35511477 DOI: 10.1021/acs.joc.2c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Second-generation chiral-substituted poly-N-vinylpyrrolidinones (CSPVPs) (-)-1R and (+)-1S were synthesized by free-radical polymerization of (3aR,6aR)- and (3aS,6aS)-5-ethenyl-tetrahydro-2,2-dimethyl-4H-1,3-dioxolo[4,5-c]pyrrol-4-one, respectively, using thermal and photochemical reactions. They were produced from respective d-isoascorbic acid and d-ribose. In addition, chiral polymer (-)-2 was also synthesized from the polymerization of (S)-3-(methoxymethoxy)-1-vinylpyrrolidin-2-one. Molecular weights of these chiral polymers were measured using HRMS, and the polymer chain tacticity was studied using 13C NMR spectroscopy. Chiral polymers (-)-1R, (+)-1S, and (-)-2 along with poly-N-vinylpyrrolidinone (PVP, MW 40K) were separately used in the stabilization of Cu/Au or Pd/Au nanoclusters. CD spectra of the bimetallic nanoclusters stabilized by (-)-1R and (+)-1S showed close to mirror-imaged CD absorption bands at wavelengths 200-300 nm, revealing that bimetallic nanoclusters' chiroptical responses are derived from chiral polymer-encapsulated nanomaterials. Chemo-, regio-, and stereo-selectivity was found in the catalytic C-H group oxidation reactions of complex bioactive natural products, such as ambroxide, menthofuran, boldine, estrone, dehydroabietylamine, 9-allogibberic acid, and sclareolide, and substituted adamantane molecules, when catalyst Cu/Au (3:1) or Pd/Au (3:1) stabilized by CSPVPs or PVP and oxidant H2O2 or t-BuOOH were applied. Oxidation of (+)-boldine N-oxide 23 using NMO as an oxidant yielded 4,5-dehydroboldine 27, and oxidation of (-)-9-allogibberic acid yielded C6,15 lactone 47 and C6-ketone 48.
Collapse
Affiliation(s)
- Huafang Fan
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Zongbo Tong
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Zhaoyang Ren
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Kanchan Mishra
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Shunya Morita
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Edruce Edouarzin
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Lingaraju Gorla
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Boris Averkiev
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Victor W Day
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Duy H Hua
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
10
|
Kuiry H, Das D, Das S, Chakraborty S, Chandra B, Gupta SS. Electrocatalytic alcohol oxidation by a molecular iron complex. Faraday Discuss 2022; 234:42-57. [PMID: 35174376 DOI: 10.1039/d1fd00074h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient electrochemical method for the selective oxidation of alcohols to their corresponding aldehydes/ketones using a biomimetic iron complex, [(bTAML)FeIII-OH2]-, as the redox mediator in an undivided electrochemical cell with inexpensive carbon and nickel electrodes using water as an oxygen source is reported. The substrate scope also includes alcohols that contain O and N heteroatoms in the scaffold, which are well tolerated under these reaction conditions. Mechanistic studies show the involvement of a high-valent FeV(O) species, [(bTAML)FeV(O)]-, formed via PCET (overall 2H+/2e-) from [(bTAML)FeIII-OH2]- at 0.77 V (vs. Fc+/Fc). Moreover, electrokinetic studies of the oxidation of C-H bonds indicate a second-order reaction, with the C-H abstraction by FeV(O) being the rate-determining step. The overall mechanism, studied using linear free energy relationships and radical clocks, indicates a "net hydride" transfer, leading to the oxidation of the alcohol to the corresponding aldehyde or ketone. When the reaction was carried out at pH > 11, the reaction could be carried out at a ∼500 mV lower potential than that at pH 8, albeit with reduced reaction rates. The reactive intermediate involved at pH > 11 is the corresponding one-electron oxidized [(bTAML)FeIV(O)]2- species.
Collapse
Affiliation(s)
- Himangshu Kuiry
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India-741246.
| | - Debasree Das
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra-411008, India
| | - Soumadip Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India-741246.
| | - Soham Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India-741246.
| | - Bittu Chandra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India-741246.
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India-741246.
| |
Collapse
|
11
|
Zima AM, Lyakin OY, Bryliakova AA, Babushkin DE, Bryliakov KP, Talsi EP. Reactivity vs. Selectivity of Biomimetic Catalyst Systems of the Fe(PDP) Family through the Nature and Spin State of the Active Iron-Oxygen Species. CHEM REC 2022; 22:e202100334. [PMID: 35142426 DOI: 10.1002/tcr.202100334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Indexed: 12/12/2022]
Abstract
Catalytic approaches to late-stage creation of new C-O bonds, especially via oxygenation of particular C-H groups in complex organic molecules, provide challenging tools for the synthesis of biologically active compounds and candidate drugs. In the last decade, significant efforts were invested in designing bioinspired iron based catalyst systems, capable of conducting selective oxidations of organic compounds. The key role of the oxygen-transferring high-valent iron-oxygen species in selective oxygenation is now well established; the next logical step would be gaining insight into the factors governing the oxidation chemo- and stereoselectivity, in relation to the peculiarities of their electronic structure, which would allow introducing the desired level of predictability into those catalytic transformations. In this Personal Account we analyze recent data on the reactivity of bioinspired formally oxoiron(V) catalytically active sites toward organic substrates having C=C and C(sp3 )-H groups. While the majority of reported oxoiron(V) active species are low-spin (S=1/2) complexes, the presence of strong electron-donating groups (NR1 R2 ) in the ligand backbone favors the high-spin (S=3/2) ground state. Remarkably, the high-spin perferryl species exhibit higher chemo-, regio-, and stereoselectivity in the oxidations than their low-spin counterparts, thus witnessing the significance of these subtle electronic effects for the selectivity of oxidations conducted by bioinspired catalysts of the Fe(PDP) family.
Collapse
Affiliation(s)
- Alexandra M Zima
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk, 630090, Russia
| | - Oleg Y Lyakin
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk, 630090, Russia
| | - Anna A Bryliakova
- Novosibirsk State University, Pirogova 1, Novosibirsk, 630090, Russia.,Novosibirsk R&D Center, Inzhenernaya 20, Novosibirsk, 630090, Russia
| | - Dmitrii E Babushkin
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk, 630090, Russia
| | | | - Evgenii P Talsi
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, Novosibirsk, 630090, Russia
| |
Collapse
|
12
|
Rajamanickam S, Saraswat M, Venkataramani S, Patel BK. Intermolecular CDC amination of remote and proximal unactivated C sp3 -H bonds through intrinsic substrate reactivity - expanding towards a traceless directing group. Chem Sci 2021; 12:15318-15328. [PMID: 34976352 PMCID: PMC8635183 DOI: 10.1039/d1sc04365j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
An intermolecular radical based distal selectivity in appended alkyl chains has been developed. The selectivity is maximum when the distal carbon is γ to the appended group and decreases by moving from γ → δ → ε positions. In –COO– linked alkyl chains, the same distal γ-selectivity is observed irrespective of its origin, either from the alkyl carboxy acid or alkyl alcohol. The appended groups include esters, N–H protected amines, phthaloyl, sulfone, sulfinimide, nitrile, phosphite, phosphate and borate esters. In borate esters, boron serves as a traceless directing group, which is hitherto unprecedented for any remote Csp3–H functionalization. The selectivity order follows the trend: 3° benzylic > 2° benzylic > 3° tertiary > α to keto > distal methylene (γ > δ > ε). Computations predicted the radical stability (thermodynamic factors) and the kinetic barriers as the factors responsible for such trends. Remarkably, this strategy eludes any designer catalysts, and the selectivity is due to the intrinsic substrate reactivity. An intermolecular amination at the distal methylene carbon has been realized in an appended alkyl chain with electron withdrawing groups. Traceless remote Csp3–H functionalization has been accomplished using borate esters.![]()
Collapse
Affiliation(s)
- Suresh Rajamanickam
- Department of Chemistry, Indian Institute of Technology Guwahati North Guwahati Address Assam-781039 India
| | - Mayank Saraswat
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, Knowledge City, Manauli SAS Nagar 140306 India
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Sector 81, Knowledge City, Manauli SAS Nagar 140306 India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati North Guwahati Address Assam-781039 India
| |
Collapse
|
13
|
Aliphatic C–H hydroxylation activity and durability of a nickel complex catalyst according to the molecular structure of the bis(oxazoline) ligands. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Biswas JP, Ansari M, Paik A, Sasmal S, Paul S, Rana S, Rajaraman G, Maiti D. Effect of the Ligand Backbone on the Reactivity and Mechanistic Paradigm of Non‐Heme Iron(IV)‐Oxo during Olefin Epoxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jyoti Prasad Biswas
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Mursaleem Ansari
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Aniruddha Paik
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Sheuli Sasmal
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Sabarni Paul
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Sujoy Rana
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Gopalan Rajaraman
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
15
|
Sasmal HS, Bag S, Chandra B, Majumder P, Kuiry H, Karak S, Sen Gupta S, Banerjee R. Heterogeneous C-H Functionalization in Water via Porous Covalent Organic Framework Nanofilms: A Case of Catalytic Sphere Transmutation. J Am Chem Soc 2021; 143:8426-8436. [PMID: 34029465 DOI: 10.1021/jacs.1c02425] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heterogeneous catalysis in water has not been explored beyond certain advantages such as recyclability and recovery of the catalysts from the reaction medium. Moreover, poor yield, extremely low selectivity, and active catalytic site deactivation further underrate the heterogeneous catalysis in water. Considering these facts, we have designed and synthesized solution-dispersible porous covalent organic framework (COF) nanospheres. We have used their distinctive morphology and dispersibility to functionalize unactivated C-H bonds of alkanes heterogeneously with high catalytic yield (42-99%) and enhanced regio- and stereoselectivity (3°:2° = 105:1 for adamantane). Further, the fabrication of catalyst-immobilized COF nanofilms via covalent self-assembly of catalytic COF nanospheres for the first time has become the key toward converting the catalytically inactive homogeneous catalysts into active and effective heterogeneous catalysts operating in water. This unique covalent self-assembly occurs through the protrusion of the fibers at the interface of two nanospheres, transmuting the catalytic spheres into films without any leaching of catalyst molecules. The catalyst-immobilized porous COF nanofilms' chemical functionality and hydrophobic environment stabilize the high-valent transient active oxoiron(V) intermediate in water and restricts the active catalytic site's deactivation. These COF nanofilms functionalize the unactivated C-H bonds in water with a high catalytic yield (45-99%) and with a high degree of selectivity (cis:trans = 155:1; 3°:2° = 257:1, for cis-1,2-dimethylcyclohexane). To establish this approach's "practical implementation", we conducted the catalysis inflow (TON = 424 ± 5) using catalyst-immobilized COF nanofilms fabricated on a macroporous polymeric support.
Collapse
Affiliation(s)
- Himadri Sekhar Sasmal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Saikat Bag
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Bittu Chandra
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Poulami Majumder
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Himangshu Kuiry
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Suvendu Karak
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India.,Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|
16
|
Biswas JP, Ansari M, Paik A, Sasmal S, Paul S, Rana S, Rajaraman G, Maiti D. Effect of the Ligand Backbone on the Reactivity and Mechanistic Paradigm of Non-Heme Iron(IV)-Oxo during Olefin Epoxidation. Angew Chem Int Ed Engl 2021; 60:14030-14039. [PMID: 33836110 DOI: 10.1002/anie.202102484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 01/08/2023]
Abstract
The oxygen atom transfer (OAT) reactivity of the non-heme [FeIV (2PyN2Q)(O)]2+ (2) containing the sterically bulky quinoline-pyridine pentadentate ligand (2PyN2Q) has been thoroughly studied with different olefins. The ferryl-oxo complex 2 shows excellent OAT reactivity during epoxidations. The steric encumbrance and electronic effect of the ligand influence the mechanistic shuttle between OAT pathway I and isomerization pathway II (during the reaction stereo pure olefins), resulting in a mixture of cis-trans epoxide products. In contrast, the sterically less hindered and electronically different [FeIV (N4Py)(O)]2+ (1) provides only cis-stilbene epoxide. A Hammett study suggests the role of dominant inductive electronic along with minor resonance effect during electron transfer from olefin to 2 in the rate-limiting step. Additionally, a computational study supports the involvement of stepwise pathways during olefin epoxidation. The ferryl bend due to the bulkier ligand incorporation leads to destabilization of both d z 2 and d x 2 - y 2 orbitals, leading to a very small quintet-triplet gap and enhanced reactivity for 2 compared to 1. Thus, the present study unveils the role of steric and electronic effects of the ligand towards mechanistic modification during olefin epoxidation.
Collapse
Affiliation(s)
- Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Aniruddha Paik
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Sheuli Sasmal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sabarni Paul
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Sujoy Rana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
17
|
Rana S, Biswas JP, Paul S, Paik A, Maiti D. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chem Soc Rev 2021; 50:243-472. [DOI: 10.1039/d0cs00688b] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | | | - Sabarni Paul
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Aniruddha Paik
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Debabrata Maiti
- Department of Chemistry
- IIT Bombay
- Mumbai-400076
- India
- Tokyo Tech World Research Hub Initiative (WRHI)
| |
Collapse
|
18
|
Frateloreto F, Capocasa G, Olivo G, Abdel Hady K, Sappino C, Di Berto Mancini M, Levi Mortera S, Lanzalunga O, Di Stefano S. Increasing the steric hindrance around the catalytic core of a self-assembled imine-based non-heme iron catalyst for C-H oxidation. RSC Adv 2020; 11:537-542. [PMID: 35423066 PMCID: PMC8690968 DOI: 10.1039/d0ra09677f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
Sterically hindered imine-based non-heme complexes 4 and 5 rapidly self-assemble in acetonitrile at 25 °C, when the corresponding building blocks are added in solution in the proper ratios. Such complexes are investigated as catalysts for the H2O2 oxidation of a series of substrates in order to ascertain the role and the importance of the ligand steric hindrance on the action of the catalytic core 1, previously shown to be an efficient catalyst for aliphatic and aromatic C-H bond oxidation. The study reveals a modest dependence of the output of the oxidation reactions on the presence of bulky substituents in the backbone of the catalyst, both in terms of activity and selectivity. This result supports a previously hypothesized catalytic mechanism, which is based on the hemi-lability of the metal complex. In the active form of the catalyst, one of the pyridine arms temporarily leaves the iron centre, freeing up a lot of room for the access of the substrate.
Collapse
Affiliation(s)
- Federico Frateloreto
- Dipartimento di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, Università di Roma La Sapienza P. le A. Moro 5 00185 Rome Italy
| | - Giorgio Capocasa
- Dipartimento di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, Università di Roma La Sapienza P. le A. Moro 5 00185 Rome Italy
| | - Giorgio Olivo
- Dipartimento di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, Università di Roma La Sapienza P. le A. Moro 5 00185 Rome Italy
| | - Karim Abdel Hady
- Dipartimento di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, Università di Roma La Sapienza P. le A. Moro 5 00185 Rome Italy
| | - Carla Sappino
- Dipartimento di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, Università di Roma La Sapienza P. le A. Moro 5 00185 Rome Italy
| | - Marika Di Berto Mancini
- Dipartimento di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, Università di Roma La Sapienza P. le A. Moro 5 00185 Rome Italy
| | - Stefano Levi Mortera
- Area of Genetics and Rare Diseases, Unit of Human Microbiome, Bambino Gesù Children's Italy
| | - Osvaldo Lanzalunga
- Dipartimento di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, Università di Roma La Sapienza P. le A. Moro 5 00185 Rome Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica and Istituto CNR per i Sistemi Biologici (ISB-CNR), Sezione Meccanismi di Reazione, Università di Roma La Sapienza P. le A. Moro 5 00185 Rome Italy
| |
Collapse
|
19
|
Chandra B, K M H, Pattanayak S, Gupta SS. Oxoiron(v) mediated selective electrochemical oxygenation of unactivated C-H and C[double bond, length as m-dash]C bonds using water as the oxygen source. Chem Sci 2020; 11:11877-11885. [PMID: 34094416 PMCID: PMC8162932 DOI: 10.1039/d0sc03616a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
An efficient electrochemical method for the selective oxidation of C–H bonds of unactivated alkanes (BDE ≤97 kcal mol−1) and CC bonds of alkenes using a biomimetic iron complex, [(bTAML)FeIII-OH2]−, as the redox mediator in an undivided electrochemical cell with inexpensive carbon and nickel electrodes is reported. The O-atom of water remains the source of O-incorporation in the product formed after oxidation. The products formed upon oxidation of C–H bonds display very high regioselectivity (75 : 1, 3° : 2° for adamantane) and stereo-retention (RC ∼99% for cyclohexane derivatives). The substrate scope includes natural products such as cedryl acetate and ambroxide. For alkenes, epoxides were obtained as the sole product. Mechanistic studies show the involvement of a high-valent oxoiron(v) species, [(bTAML)FeV(O)]− formed via PCET (overall 2H+/2e−) from [(bTAML)FeIII-OH2]− in CPE at 0.80 V (vs. Ag/AgNO3). Moreover, electrokinetic studies for the oxidation of C–H bonds indicate a second-order reaction with the C–H abstraction by oxoiron(v) being the rate-determining step. A biomimetic iron complex-mediated selective and efficient electrochemical oxygenation of unactivated C–H bonds and CC bonds using water as an O-atom source.![]()
Collapse
Affiliation(s)
- Bittu Chandra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal India-741246
| | - Hellan K M
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal India-741246
| | - Santanu Pattanayak
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal India-741246
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur West Bengal India-741246
| |
Collapse
|
20
|
Chandra B, De P, Sen Gupta S. Selective oxygenation of unactivated C-H bonds by dioxygen via the autocatalytic formation of oxoiron(v) species. Chem Commun (Camb) 2020; 56:8484-8487. [PMID: 32588843 DOI: 10.1039/d0cc03071f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Selective catalytic oxygenation of unactivated C-H bonds for a series of substrates by dioxygen using iron complexes was performed without the use of a co-reductant. Mechanistic studies indicate that the reaction proceeded via the autocatalytic formation of an oxoiron(v) intermediate, which brings high regioselectivity and stereoretention.
Collapse
Affiliation(s)
- Bittu Chandra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Puja De
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India.
| |
Collapse
|
21
|
Panda C, Sarkar A, Sen Gupta S. Coordination chemistry of carboxamide ‘Nx’ ligands to metal ions for bio-inspired catalysis. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213314] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Vicens L, Olivo G, Costas M. Rational Design of Bioinspired Catalysts for Selective Oxidations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02073] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Laia Vicens
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Giorgio Olivo
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | - Miquel Costas
- Institut de Quı́mica Computacional i Catàlisi (IQCC) and Departament de Quı́mica, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| |
Collapse
|
23
|
Dantignana V, Company A, Costas M. Oxoiron(V) Complexes of Relevance in Oxidation Catalysis of Organic Substrates. Isr J Chem 2020. [DOI: 10.1002/ijch.201900161] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Valeria Dantignana
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química Universitat de Girona C/M. Aurèlia Capmany 69 17003 Girona, Catalonia Spain
| | - Anna Company
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química Universitat de Girona C/M. Aurèlia Capmany 69 17003 Girona, Catalonia Spain
| | - Miquel Costas
- Grup de Química Bioinspirada, Supramolecular i Catàlisi (QBIS-CAT), Institut de Química Computacional i Catàlisi (IQCC), Departament de Química Universitat de Girona C/M. Aurèlia Capmany 69 17003 Girona, Catalonia Spain
| |
Collapse
|
24
|
Doiuchi D, Nakamura T, Hayashi H, Uchida T. Non‐Heme‐Type Ruthenium Catalyzed Chemo‐ and Site‐Selective C−H Oxidation. Chem Asian J 2020; 15:762-765. [DOI: 10.1002/asia.202000134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Indexed: 01/17/2023]
Affiliation(s)
- Daiki Doiuchi
- Department of Chemistry Graduate School of ScienceKyushu University 744, Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Tatsuya Nakamura
- Department of Chemistry Graduate School of ScienceKyushu University 744, Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Hiroki Hayashi
- Faculty of Arts and ScienceKyushu University 744, Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Tatsuya Uchida
- Faculty of Arts and ScienceKyushu University 744, Motooka, Nishi-ku Fukuoka 819-0395 Japan
- International Institute for Carbon-Neutral Energy Research (WPI−I2CNER)Kyushu University 744, Motooka, Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
25
|
Das A, Nutting JE, Stahl SS. Electrochemical C-H oxygenation and alcohol dehydrogenation involving Fe-oxo species using water as the oxygen source. Chem Sci 2019; 10:7542-7548. [PMID: 31588305 PMCID: PMC6761876 DOI: 10.1039/c9sc02609f] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/25/2019] [Indexed: 11/30/2022] Open
Abstract
High-valent iron-oxo complexes are key intermediates in C-H functionalization reactions. Herein, we report the generation of a (TAML)Fe-oxo species (TAML = tetraamido macrocyclic ligand) via electrochemical proton-coupled oxidation of the corresponding (TAML)FeIII-OH2 complex. Cyclic voltammetry (CV) and spectroelectrochemical studies are used to elucidate the relevant (TAML)Fe redox processes and determine the predominant (TAML)Fe species present in solution during bulk electrolysis. Evidence for iron(iv) and iron(v) species is presented, and these species are used in the electrochemical oxygenation of benzylic C-H bonds and dehydrogenation of alcohols to ketones.
Collapse
Affiliation(s)
- Amit Das
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , USA .
| | - Jordan E Nutting
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , USA .
| | - Shannon S Stahl
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , USA .
| |
Collapse
|
26
|
Sheet D, Bera A, Fu Y, Desmecht A, Riant O, Hermans S. Carbon‐Nanotube‐Appended PAMAM Dendrimers Bearing Iron(II) α‐Keto Acid Complexes: Catalytic Non‐Heme Oxygenase Models. Chemistry 2019; 25:9191-9196. [DOI: 10.1002/chem.201901735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/13/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Debobrata Sheet
- Institute of Condensed Matter and Nanosciences/Molecular Chemistry, Materials and Catalysis (IMCN/MOST)UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
- Department of ChemistryPresidency University, 86/1 College Street Kolkata 700073 India
| | - Abhijit Bera
- School of Chemical SciencesIndian Association for the Cultivation of Sciences 2A & 2B Raja S C Mullick Road Kolkata 700032 India
| | - Yang Fu
- Institute of Condensed Matter and Nanosciences/Molecular Chemistry, Materials and Catalysis (IMCN/MOST)UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Antonin Desmecht
- Institute of Condensed Matter and Nanosciences/Molecular Chemistry, Materials and Catalysis (IMCN/MOST)UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Olivier Riant
- Institute of Condensed Matter and Nanosciences/Molecular Chemistry, Materials and Catalysis (IMCN/MOST)UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Sophie Hermans
- Institute of Condensed Matter and Nanosciences/Molecular Chemistry, Materials and Catalysis (IMCN/MOST)UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
27
|
Burg F, Bach T. Lactam Hydrogen Bonds as Control Elements in Enantioselective Transition-Metal-Catalyzed and Photochemical Reactions. J Org Chem 2019; 84:8815-8836. [DOI: 10.1021/acs.joc.9b01299] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Finn Burg
- Department of Chemistry and Catalysis Research Center (CRC), Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Thorsten Bach
- Department of Chemistry and Catalysis Research Center (CRC), Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
28
|
Hu P, Tan M, Cheng L, Zhao H, Feng R, Gu WJ, Han W. Bio-inspired iron-catalyzed oxidation of alkylarenes enables late-stage oxidation of complex methylarenes to arylaldehydes. Nat Commun 2019; 10:2425. [PMID: 31160563 PMCID: PMC6546739 DOI: 10.1038/s41467-019-10414-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 05/13/2019] [Indexed: 11/30/2022] Open
Abstract
It is a long-standing challenge to achieve efficient and highly selective aerobic oxidation of methylarenes to benzaldehydes, owing to overoxidation problem stemming from the oxidizability of benzaldehyde far higher than the toluene under usual aerobic conditions. Herein we report a bio-inspired iron-catalyzed polymethylhydrosiloxane-promoted aerobic oxidation of methylarenes to benzaldehydes with high yields and selectivities. Notably, this method can tolerate oxidation-labile and reactive boronic acid group, which is normally required to be transformed immediately after its introduction, and represents a significant advance in the area of the chemistry of organoboronic acids, including the ability to incorporate both aldehyde and ketone functionalities into unprotected arylboronic acids, a class that can be difficult to access by current means. The robustness of this protocol is demonstrated on the late-stage oxidation of complex bioactive molecules, including dehydroabietic acid, Gemfibrozil, Tocopherol nicotinate, a complex polyol structure, and structurally complex arylboronic acids. Oxidation of toluenes to benzaldehydes is usually accompanied by overoxidation products. Here, the authors report an iron-catalysed aerobic oxidation of methylarenes to benzaldehydes with high yields and selectivities, even in presence of boronic acid groups and in complex natural products and drugs.
Collapse
Affiliation(s)
- Penghui Hu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China.,School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China
| | - Mingxi Tan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China.,School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China
| | - Lu Cheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China.,School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China
| | - Hongyuan Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China.,School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China
| | - Rui Feng
- School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China
| | - Wei-Jin Gu
- School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China
| | - Wei Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Biofunctional Materials, Key Laboratory of Applied Photochemistry, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China. .,School of Chemistry and Materials Science, Nanjing Normal University, Wenyuan Road No.1, 210023, Nanjing, China.
| |
Collapse
|
29
|
Lyakin OY, Bryliakov KP, Talsi EP. Non-heme oxoiron(V) intermediates in chemo-, regio- and stereoselective oxidation of organic substrates. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Hung K, Condakes ML, Novaes LFT, Harwood SJ, Morikawa T, Yang Z, Maimone TJ. Development of a Terpene Feedstock-Based Oxidative Synthetic Approach to the Illicium Sesquiterpenes. J Am Chem Soc 2019; 141:3083-3099. [PMID: 30698435 DOI: 10.1021/jacs.8b12247] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Illicium sesquiterpenes are a family of natural products containing over 100 highly oxidized and structurally complex members, many of which display interesting biological activities. This comprehensive account chronicles the evolution of a semisynthetic strategy toward these molecules from (+)-cedrol, seeking to emulate key aspects of their presumed biosynthesis. An initial route generated lower oxidation state analogs but failed in delivering a crucial hydroxy group in the final step. Insight gathered during these studies, however, ultimately led to a synthesis of the pseudoanisatinoids along with the allo-cedrane natural product 11- O-debenzoyltashironin. A second-generation strategy was then developed to access the more highly oxidized majucinoid compounds including jiadifenolide and majucin itself. Overall, one dozen natural products can be accessed from an abundant and inexpensive terpene feedstock. A multitude of general observations regarding site-selective C(sp3)-H bond functionalization reactions in complex polycyclic architectures are reported.
Collapse
Affiliation(s)
- Kevin Hung
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Matthew L Condakes
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Luiz F T Novaes
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Stephen J Harwood
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Takahiro Morikawa
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Zhi Yang
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Thomas J Maimone
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| |
Collapse
|
31
|
Jana S, Thomas J, Sen Gupta S. Catalytic oxidation of alcohols using Fe-bTAML and NaClO: Comparing the reactivity of Fe(V)O and Fe(IV)O intermediates. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Mack JBC, Walker KL, Robinson SG, Zare RN, Sigman MS, Waymouth RM, Du Bois J. Mechanistic Study of Ruthenium-Catalyzed C-H Hydroxylation Reveals an Unexpected Pathway for Catalyst Arrest. J Am Chem Soc 2019; 141:972-980. [PMID: 30601662 DOI: 10.1021/jacs.8b10950] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have recently disclosed [(dtbpy)2RuCl2] as an effective precatalyst for chemoselective C-H hydroxylation of C(sp3)-H bonds and have noted a marked disparity in reaction performance between 4,4'-di- tert-butyl-2,2'-bipyridine (dtbpy)- and 2,2'-bipyridine (bpy)-derived complexes. A desire to understand the origin of this difference and to further advance this catalytic method has motivated the comprehensive mechanistic investigation described herein. Details of this reaction have been unveiled through evaluation of ligand structure-activity relationships, electrochemical and kinetic studies, and pressurized sample infusion high-resolution mass spectrometry (PSI-MS). Salient findings from this investigation include the identification of more than one active oxidant and three disparate mechanisms for catalyst decomposition/arrest. Catalyst efficiency, as measured by turnover number, has a strong inverse correlation with the rate and extent of ligand dissociation, which is dependent on the identity of bipyridyl 4,4'-substituent groups. Dissociated bipyridyl ligand is oxidized to mono- and bis- N-oxide species under the reaction conditions, the former of which is found to act as a potent catalyst poison, yielding a catalytically inactive tris-ligated [Ru(dtbpy)2(dtbpy N-oxide)]2+ complex. Insights gained through this work highlight the power of PSI-MS for studies of complex reaction processes and are guiding ongoing efforts to develop high-performance, next-generation catalyst systems for C-H hydroxylation.
Collapse
Affiliation(s)
- James B C Mack
- Department of Chemistry , Stanford University , 337 Campus Drive , Stanford , California 94305 , United States
| | - Katherine L Walker
- Department of Chemistry , Stanford University , 337 Campus Drive , Stanford , California 94305 , United States
| | - Sophia G Robinson
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Richard N Zare
- Department of Chemistry , Stanford University , 337 Campus Drive , Stanford , California 94305 , United States
| | - Matthew S Sigman
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112 , United States
| | - Robert M Waymouth
- Department of Chemistry , Stanford University , 337 Campus Drive , Stanford , California 94305 , United States
| | - J Du Bois
- Department of Chemistry , Stanford University , 337 Campus Drive , Stanford , California 94305 , United States
| |
Collapse
|
33
|
Kiyokawa K, Ito R, Takemoto K, Minakata S. C-H oxygenation at tertiary carbon centers using iodine oxidant. Chem Commun (Camb) 2018; 54:7609-7612. [PMID: 29926057 DOI: 10.1039/c8cc03735c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An oxidation system in which iodic acid (HIO3) is used as an oxidant in the presence of N-hydroxyphthalimide (NHPI) permitted the selective hydroxylation of tertiary C-H bonds and the lactonization of carboxylic acids containing a tertiary carbon center. These reactions are operationally simple and proceed under metal-free conditions using commercially available reagents, thus offering an ideal tool for the efficient oxidation of C-H bonds at tertiary carbon centers.
Collapse
Affiliation(s)
- Kensuke Kiyokawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
34
|
Zima AM, Lyakin OY, Bryliakov KP, Talsi EP. Direct reactivity studies of non-heme iron-oxo intermediates toward alkane oxidation. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2018.01.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
35
|
Pandey B, Jaccob M, Rajaraman G. Mechanistic insights into intramolecular ortho-amination/hydroxylation by nonheme Fe IV[double bond, length as m-dash]NTs/Fe IV[double bond, length as m-dash]O species: the σ vs. the π channels. Chem Commun (Camb) 2018; 53:3193-3196. [PMID: 28220156 DOI: 10.1039/c6cc08761b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Comparative oxidative abilities of nonheme FeIV[double bond, length as m-dash]NTs and FeIV[double bond, length as m-dash]O species using DFT has been explored. Our calculations reveal that the FeIV[double bond, length as m-dash]NTs is found to be a stronger oxidant in two electron transfer reactions and react exclusively via π channels while the FeIV[double bond, length as m-dash]O species is found to be a stronger oxidant when the σ-pathway is activated such as in HAT reactions.
Collapse
Affiliation(s)
- Bhawana Pandey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India.
| | - Madhavan Jaccob
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India. and Department of Chemistry, Loyola College, Chennai 600 034, Tamil Nadu, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India.
| |
Collapse
|
36
|
Bunescu A, Butcher TW, Hartwig JF. Traceless Silylation of β-C(sp 3)-H Bonds of Alcohols via Perfluorinated Acetals. J Am Chem Soc 2018; 140:1502-1507. [PMID: 29283571 PMCID: PMC5809123 DOI: 10.1021/jacs.7b12150] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the silylation of primary C-H bonds located β to secondary and tertiary alcohols by exploiting perfluorinated esters as traceless directing groups. The conversion of a secondary or tertiary alcohol to a perfluoroalkyl ester and conversion of the ester to the corresponding silyl acetals by hydrosilylation allows for selective β-C(sp3)-H silylation catalyzed by the combination of [Ir(cod)OMe]2 and Me4Phen (3,4,7,8-tetramethyl-1,10-phenanthroline) to form 6-membered dioxasilinane. Tamao-Fleming oxidation of these dioxasilinane leads to 1,2 diols. The developed sequence was applied to a series of natural products containing hydroxyl groups.
Collapse
Affiliation(s)
- Ala Bunescu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Trevor W. Butcher
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F. Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
37
|
Chandra B, Singh KK, Gupta SS. Selective photocatalytic hydroxylation and epoxidation reactions by an iron complex using water as the oxygen source. Chem Sci 2017; 8:7545-7551. [PMID: 29163909 PMCID: PMC5676249 DOI: 10.1039/c7sc02780j] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/02/2017] [Indexed: 11/23/2022] Open
Abstract
Iron complex catalysed selective and efficient photocatalytic hydroxylation and epoxidation reactions using water as the oxygen atom source has been reported.
The iron complex [(bTAML)FeIII–OH2]– (1) selectively catalyses the photocatalytic hydroxylation and epoxidation reactions of alkanes and alkenes, respectively, using water as the oxygen-atom source. Upon the oxidation of unactivated alkanes, which included several substrates including natural products, hydroxylation was observed mostly at the 3° C–H bonds with 3° : 2° selectivity up to ∼100 : 1. When alkenes were used as the substrates, epoxides were predominantly formed with high yields. In the presence of H218O, more than 90% of the 18O-labelled oxygen atoms were incorporated into the hydroxylated and epoxide product indicating that water was the primary oxygen source. Mechanistic studies indicate the formation of an active [{(bTAML)FeIV}2-μ-oxo]2– (2) dimer from the starting complex 1via PCET. The subsequent disproportionation of 2 upon addition of substrate, leading to the formation of FeV(O), renders the high selectivity observed in these reactions.
Collapse
Affiliation(s)
- Bittu Chandra
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur , West Bengal , India-741246 .
| | - Kundan K Singh
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur , West Bengal , India-741246 .
| | - Sayam Sen Gupta
- Department of Chemical Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur , West Bengal , India-741246 .
| |
Collapse
|
38
|
Ghosh M, Pattanayak S, Dhar BB, Singh KK, Panda C, Sen Gupta S. Selective C-H Bond Oxidation Catalyzed by the Fe-bTAML Complex: Mechanistic Implications. Inorg Chem 2017; 56:10852-10860. [PMID: 28841016 DOI: 10.1021/acs.inorgchem.7b00453] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonheme iron complexes bearing tetradentate N-atom-donor ligands with cis labile sites show great promise for chemoselective aliphatic C-H hydroxylation. However, several challenges still limit their widespread application. We report a mechanism-guided development of a peroxidase mimicking iron complex based on the bTAML macrocyclic ligand framework (Fe-bTAML: biuret-modified tetraamido macrocyclic ligand) as a catalyst to perform selective oxidation of unactivated 3° bonds with unprecedented regioselectivity (3°:2° of 110:1 for adamantane oxidation), high stereoretention (99%), and turnover numbers (TONs) up to 300 using mCPBA as the oxidant. Ligand decomposition pathways involving acid-induced demetalation were identified, and this led to the development of more robust and efficient Fe-bTAML complexes that catalyzed chemoselective C-H oxidation. Mechanistic studies, which include correlation of the product formed with the FeV(O) reactive intermediates generated during the reaction, indicate that the major pathway involves the cleavage of C-H bonds by FeV(O). When these oxidations were performed in the presence of air, the yield of the oxidized product doubled, but the stereoretention remained unchanged. On the basis of 18O labeling and other mechanistic studies, we propose a mechanism that involves the dual activation of mCPBA and O2 by Fe-bTAML, leading to formation of the FeV(O) intermediate. This high-valent iron oxo remains the active intermediate for most of the reaction, resulting in high regio- and stereoselectivity during product formation.
Collapse
Affiliation(s)
- Munmun Ghosh
- Chemical Engineering Division, CSIR, National Chemical Laboratory , Pune 411008, India
| | - Santanu Pattanayak
- Chemical Engineering Division, CSIR, National Chemical Laboratory , Pune 411008, India
| | - Basab B Dhar
- Department of Chemistry, Shiv Nadar University , Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Kundan K Singh
- Chemical Engineering Division, CSIR, National Chemical Laboratory , Pune 411008, India
| | - Chakadola Panda
- Chemical Engineering Division, CSIR, National Chemical Laboratory , Pune 411008, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur 741246, India
| |
Collapse
|
39
|
Affiliation(s)
- Eike B. Bauer
- University of Missouri - St. Louis; Department of Chemistry and Biochemistry; One University Boulevard St. Louis, MO 63121 USA
| |
Collapse
|
40
|
Collins TJ, Ryabov AD. Targeting of High-Valent Iron-TAML Activators at Hydrocarbons and Beyond. Chem Rev 2017; 117:9140-9162. [PMID: 28488444 DOI: 10.1021/acs.chemrev.7b00034] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
TAML activators of peroxides are iron(III) complexes. The ligation by four deprotonated amide nitrogens in macrocyclic motifs is the signature of TAMLs where the macrocyclic structures vary considerably. TAML activators are exceptional functional replicas of the peroxidases and cytochrome P450 oxidizing enzymes. In water, they catalyze peroxide oxidation of a broad spectrum of compounds, many of which are micropollutants, compounds that produce undesired effects at low concentrations-as with the enzymes, peroxide is typically activated with near-quantitative efficiency. In nonaqueous solvents such as organic nitriles, the prototype TAML activator gave the structurally authenticated reactive iron(V)oxo units (FeVO), wherein the iron atom is two oxidation equivalents above the FeIII resting state. The iron(V) state can be achieved through the intermediacy of iron(IV) species, which are usually μ-oxo-bridged dimers (FeIVFeIV), and this allows for the reactivity of this potent reactive intermediate to be studied in stoichiometric processes. The present review is primarily focused at the mechanistic features of the oxidation by FeVO of hydrocarbons including cyclohexane. The main topic is preceded by a description of mechanisms of oxidation of thioanisoles by FeVO, because the associated studies provide valuable insight into the ability of FeVO to oxidize organic molecules. The review is opened by a summary of the interconversions between FeIII, FeIVFeIV, and FeVO species, since this information is crucial for interpreting the kinetic data. The highest reactivity in both reaction classes described belongs to FeVO. The resting state FeIII is unreactive oxidatively. Intermediate reactivity is typically found for FeIVFeIV; therefore, kinetic features for these species in interchange and oxidation processes are also reviewed. Examples of using TAML activators for C-H bond cleavage applied to fine organic synthesis conclude the review.
Collapse
Affiliation(s)
- Terrence J Collins
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Alexander D Ryabov
- Department of Chemistry, Carnegie Mellon University , 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|