1
|
Ahmad T, Khan S, Ullah N. Recent Advances in the Catalytic Asymmetric Friedel-Crafts Reactions of Indoles. ACS OMEGA 2022; 7:35446-35485. [PMID: 36249392 PMCID: PMC9558610 DOI: 10.1021/acsomega.2c05022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Functionalized chiral indole derivatives are privileged and versatile organic frameworks encountered in numerous pharmaceutically active agents and biologically active natural products. The catalytic asymmetric Friedel-Crafts reaction of indoles, catalyzed by chiral metal complexes or chiral organocatalysts, is one of the most powerful and atom-economical approaches to access optically active indole derivatives. Consequently, a wide range of electrophilic partners including α,β-unsaturated ketones, esters, amides, imines, β,γ-unsaturated α-keto- and α-ketiminoesters, ketimines, nitroalkenes, and many others have been successfully employed to achieve a plethora of functionalized chiral indole moieties. In particular, strategies for C-H functionalization in the phenyl of indoles require incorporation of a directing or blocking group in the phenyl or azole ring of indole. The discovery of chiral catalysts which can control enantiodiscrimination has gained a great deal of attention in recent years. This review will provide an updated account on the application of the asymmetric Friedel-Crafts reaction of indoles in the synthesis of diverse chiral indole derivatives, covering the timeframe from 2011 to today.
Collapse
Affiliation(s)
- Tauqir Ahmad
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
| | - Sardaraz Khan
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
| | - Nisar Ullah
- Chemistry
Department, King Fahd University of Petroleum
and Minerals, Dhahran 31261, Saudi Arabia
- The
Center for Refining & Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
2
|
Wang WN, Liu RM, Zhang L, Liu XL, Dai YF, Yu ZB, Peng LJ. Ring opening and skeletal reconstruction of 3-vinyl benzofuranone-chromone synthons: catalyst-free access to skeletally-diverse 2-pyridone and optically active imidazoline derivatives. Org Biomol Chem 2022; 20:2227-2232. [PMID: 35237774 DOI: 10.1039/d1ob02432a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein is reported the first example of ring opening and skeletal reconstruction of 3-vinyl benzofuranone-chromones 1 as versatile synthons, which can react with ammonia or primary aliphatic amines as binucleophiles, for the eco-friendly and atom-economical synthesis of diverse and functionalized 2-pyridones 3 with potential biological activity in good to excellent yields (77-93%). When using optically active 1,2-diphenylethylenediamine 2 as the binucleophile, the in situ generated 2-pyridone intermediates are successfully transformed to novel optically active functionalized imidazoline derivatives 4 with high efficiency (up to 87% yield). In particular, this is the first report on the catalyst-free intramolecular cyclization occurring between an amide and a primary aliphatic amine for the construction of imidazoline molecules.
Collapse
Affiliation(s)
- Wei-Na Wang
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China.
| | - Ren-Ming Liu
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China.
| | - Lei Zhang
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China.
| | - Xiong-Li Liu
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China.
| | - Yi-Feng Dai
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China.
| | - Zhang-Biao Yu
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China.
| | - Li-Jun Peng
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Li Y, Dong M, Gao N, Cao G, Teng D. Zn (II)/spiroQuinox catalyzed asymmetric Friedel–Crafts alkylation of indoles with cyclic
N
‐sulfonyl ketimino esters. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yanshun Li
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Mengqi Dong
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Nanxing Gao
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Guorui Cao
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| | - Dawei Teng
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao China
| |
Collapse
|
4
|
Elshaier YA, Nemr MTM, Al Refaey M, Fadaly WAA, Barakat A. Chemistry of 2-Vinylindoles: Synthesis and Applications. NEW J CHEM 2022. [DOI: 10.1039/d2nj00460g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a class of compounds, 2-vinylindoles have demonstrated a wide range of biological properties. Due to the general interest in these synthons, new divergent protocols of chemical synthesis have been...
Collapse
|
5
|
Jung WO, Mai BK, Spinello BJ, Dubey ZJ, Kim SW, Stivala CE, Zbieg JR, Liu P, Krische MJ. Enantioselective Iridium-Catalyzed Allylation of Nitroalkanes: Entry to β-Stereogenic α-Quaternary Primary Amines. J Am Chem Soc 2021; 143:9343-9349. [PMID: 34152145 PMCID: PMC8284932 DOI: 10.1021/jacs.1c05212] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first systematic study of simple nitronate nucleophiles in iridium-catalyzed allylic alkylation is described. Using a tol-BINAP-modified π-allyliridium C,O-benzoate catalyst, α,α-disubstituted nitronates substitute racemic branched alkyl-substituted allylic acetates, thus providing entry to β-stereogenic α-quaternary primary amines. DFT calculations reveal early transition states that render the reaction less sensitive to steric effects and distinct trans-effects of diastereomeric chiral-at-iridium π-allyl complexes that facilitate formation of congested tertiary-quaternary C-C bonds.
Collapse
Affiliation(s)
- Woo-Ok Jung
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Brian J Spinello
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Zachary J Dubey
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Seung Wook Kim
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Craig E Stivala
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason R Zbieg
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Boylan A, Nguyen TS, Lundy BJ, Li JY, Vallakati R, Sundstrom S, May JA. Rate Dependence on Inductive and Resonance Effects for the Organocatalyzed Enantioselective Conjugate Addition of Alkenyl and Alkynyl Boronic Acids to β-Indolyl Enones and β-Pyrrolyl Enones. Molecules 2021; 26:1615. [PMID: 33799473 PMCID: PMC8000498 DOI: 10.3390/molecules26061615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/01/2022] Open
Abstract
Two key factors bear on reaction rates for the conjugate addition of alkenyl boronic acids to heteroaryl-appended enones: the proximity of inductively electron-withdrawing heteroatoms to the site of bond formation and the resonance contribution of available heteroatom lone pairs to stabilize the developing positive charge at the enone β-position. For the former, the closer the heteroatom is to the enone β-carbon, the faster the reaction. For the latter, greater resonance stabilization of the benzylic cationic charge accelerates the reaction. Thus, reaction rates are increased by the closer proximity of inductive electron-withdrawing elements, but if resonance effects are involved, then increased rates are observed with electron-donating ability. Evidence for these trends in isomeric substrates is presented, and the application of these insights has allowed for reaction conditions that provide improved reactivity with previously problematic substrates.
Collapse
Affiliation(s)
- Amy Boylan
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
| | - Thien S. Nguyen
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
- Graduate School of Energy, Environment, Water and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| | - Brian J. Lundy
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
- Baker Hughes, 17021 Aldine Westfield Rd, Houston, TX 77073, USA
| | - Jian-Yuan Li
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
- Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ravikrishna Vallakati
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
- Vallark Pharma Pvt. Ltd., Genome Valley, Turkapally, Hyderabad 500078, India
| | - Sasha Sundstrom
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
- Department of Chemistry and Biochemistry, Baylor Sciences Bldg. D.208, One Bear Place #97348, Waco, TX 76798, USA
| | - Jeremy A. May
- Department of Chemistry, University of Houston, 3585 Cullen Blvd., Fleming Building 112, Houston, TX 77204-5003, USA; (A.B.); (T.S.N.); (B.J.L.); (J.-Y.L.); (R.V.); (S.S.)
| |
Collapse
|
7
|
Méndez I, Ferrer C, Rodríguez R, Lahoz FJ, García-Orduña P, Carmona D. Catalytic Enantioselective Alkylation of Indoles with trans-4-Methylthio-β-Nitrostyrene. ACS OMEGA 2020; 5:27978-27989. [PMID: 33163781 PMCID: PMC7643163 DOI: 10.1021/acsomega.0c03485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
The reaction of the rhodium aqua-complex (S Rh,R C)-[Cp*Rh{(R)-Prophos} (OH2)][SbF6]2 [Cp* = C5Me5, Prophos = propane-1,2-diyl-bis(diphenylphosphane)] (1) with trans-4-methylthio-β-nitrostyrene (MTNS) gives two linkage isomers (S Rh,R C)-[Cp*Rh{(R)-Prophos}(κ1 O-MTNS)]2+ (3-O) and (S Rh,R C)-[Cp*Rh{(R)-Prophos}(κ1 S-MTNS)]2+ (3-S) in which the nitrostyrene binds the metal through one of the oxygen atoms of the nitro group or through the sulfur atom, respectively. Both isomers are in equilibrium in dichloromethane solution, the equilibrium constant being affected by the temperature in such a way that when the temperature increases, the relative concentration of the oxygen-bonded isomer 3-O increases. The homologue aqua-complex of iridium, (S Ir,R C)-[Cp*Ir{(R)-Prophos}(OH2)][SbF6]2 (2), also reacts with MTNS; but only the sulfur-coordinated isomer (S Ir,R C)-[Cp*Ir{(R)-Prophos}(κ1 S-MTNS)]2+ (4-S) is detected in the solution by NMR spectroscopy. The crystal structures of 3-S and 4-S have been elucidated by X-ray diffractometric methods. Complexes 1 and 2 catalyze the Friedel-Crafts reaction of indole, N-methylindole, 2-methylindole, or N-methyl-2-methylindole with MTNS. Up to 93% ee has been achieved for N-methyl-2-methylindole. With this indole, the ee increases as conversion increases, ee at 263 K is lower than that obtained at 298 K, and the sign of the chirality of the major enantiomer changes at temperatures below 263 K. Detection and characterization of the catalytic intermediates metal-aci-nitro and the free aci-nitro compound as well as detection of the Friedel-Crafts (FC)-adduct complex involved in the catalysis allowed us to propose a plausible double cycle that accounts for the catalytic observations.
Collapse
|
8
|
Zhai G, Liu X, Ma W, Wang G, Yang L, Li S, Wu Y, Hu X. B(C 6 F 5 ) 3 -Catalyzed Tandem Friedel-Crafts and C-H/C-O Coupling Reactions of Dialkylanilines. Chem Asian J 2020; 15:3082-3086. [PMID: 32770729 DOI: 10.1002/asia.202000763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/30/2020] [Indexed: 11/11/2022]
Abstract
Tandem Friedel-Crafts (FC) and C-H/C-O coupling reactions catalyzed by tris(pentafluorophenyl) borane (B(C6 F5 )3 ) were achieved without using any other additive in the absence of solvent. This process can be used for the reactions between a series of dialkylanilines and vinyl ethers with good isolated yields of bis(4-dialkylaminophenyl) compounds. Based on combined theoretical and experimental studies, the possible reaction mechanism was proposed. B(C6 F5 )3 can activate the C=C and C-O bond for FC and C-H/C-O coupling reactions respectively. The FC reaction is slow, which is followed by a fast C-H/C-O coupling.
Collapse
Affiliation(s)
- Gaowen Zhai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xueting Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Wentao Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Guoqiang Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Liu Yang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Shuhua Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Youting Wu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xingbang Hu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
9
|
Fanourakis A, Docherty PJ, Chuentragool P, Phipps RJ. Recent Developments in Enantioselective Transition Metal Catalysis Featuring Attractive Noncovalent Interactions between Ligand and Substrate. ACS Catal 2020; 10:10672-10714. [PMID: 32983588 PMCID: PMC7507755 DOI: 10.1021/acscatal.0c02957] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/14/2020] [Indexed: 12/11/2022]
Abstract
Enantioselective transition metal catalysis is an area very much at the forefront of contemporary synthetic research. The development of processes that enable the efficient synthesis of enantiopure compounds is of unquestionable importance to chemists working within the many diverse fields of the central science. Traditional approaches to solving this challenge have typically relied on leveraging repulsive steric interactions between chiral ligands and substrates in order to raise the energy of one of the diastereomeric transition states over the other. By contrast, this Review examines an alternative tactic in which a set of attractive noncovalent interactions operating between transition metal ligands and substrates are used to control enantioselectivity. Examples where this creative approach has been successfully applied to render fundamental synthetic processes enantioselective are presented and discussed. In many of the cases examined, the ligand scaffold has been carefully designed to accommodate these attractive interactions, while in others, the importance of the critical interactions was only elucidated in subsequent computational and mechanistic studies. Through an exploration and discussion of recent reports encompassing a wide range of reaction classes, we hope to inspire synthetic chemists to continue to develop asymmetric transformations based on this powerful concept.
Collapse
Affiliation(s)
- Alexander Fanourakis
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Philip J. Docherty
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Padon Chuentragool
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Robert J. Phipps
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| |
Collapse
|
10
|
Wang P, Zhao Y, Chapagain B, Yang Y, Liu W, Wang Y. Mechanistic insights into Cu-catalyzed enantioselective Friedel–Crafts reaction between indoles and 2-aryl-N-sulfonylaziridines. Catal Sci Technol 2020. [DOI: 10.1039/c9cy01967g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Computational studies were successfully carried out to provide mechanistic insights into LCu-catalyzed (L = (S)-Segphos ligand) Friedel–Crafts (F–C) reaction between indoles and 2-aryl-N-sulfonylaziridines.
Collapse
Affiliation(s)
- Ping Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | - Yang Zhao
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | - Biplav Chapagain
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | - Yonggang Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | - Wei Liu
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| | - Yong Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- PR China
| |
Collapse
|
11
|
Sato R, Tosaka T, Masu H, Arai T. Catalytic Asymmetric Synthesis of Chiral Bis(indolyl)methanes Using a Ts-PyBidine-Nickel Complex. J Org Chem 2019; 84:14248-14257. [PMID: 31553607 DOI: 10.1021/acs.joc.9b02006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A chiral tosyl-substituted bis(imidazolidine)pyridine Ts-PyBidine-nickel complex was an efficient catalyst for Friedel-Crafts reaction of indoles with methylene indolinones to give bisindolylmethane compounds having differently oxidized indole units with high enantioselectivities. Alkylation of the products proceeded smoothly in a highly diastereoselective manner, providing an all-carbon quaternary carbon center without significant loss of enantiomeric excess.
Collapse
Affiliation(s)
- Ryo Sato
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Research Innovation Center (CIRIC), and Department of Chemistry, Graduate School of Science , Chiba University , 1-33 Yayoi , Inage, Chiba 263-8522 , Japan
| | - Takuya Tosaka
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Research Innovation Center (CIRIC), and Department of Chemistry, Graduate School of Science , Chiba University , 1-33 Yayoi , Inage, Chiba 263-8522 , Japan
| | - Hyuma Masu
- Center for Analytical Instrumentation , Chiba University , 1-33 Yayoi , Inage, Chiba 263-8522 , Japan
| | - Takayoshi Arai
- Soft Molecular Activation Research Center (SMARC), Chiba Iodine Research Innovation Center (CIRIC), and Department of Chemistry, Graduate School of Science , Chiba University , 1-33 Yayoi , Inage, Chiba 263-8522 , Japan
| |
Collapse
|
12
|
Heravi MM, Zadsirjan V, Heydari M, Masoumi B. Organocatalyzed Asymmetric Friedel‐Crafts Reactions: An Update. CHEM REC 2019. [DOI: 10.1002/tcr.201800190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Majid M. Heravi
- Department of ChemistrySchool of ScienceAlzahra University POBox 1993891176, Vanak Tehran Iran Tel.: +98 21 88044051 fax: +98 21 88041344
| | - Vahideh Zadsirjan
- Department of ChemistrySchool of ScienceAlzahra University POBox 1993891176, Vanak Tehran Iran Tel.: +98 21 88044051 fax: +98 21 88041344
| | - Masumeh Heydari
- Department of ChemistrySchool of ScienceAlzahra University POBox 1993891176, Vanak Tehran Iran Tel.: +98 21 88044051 fax: +98 21 88041344
| | - Baharak Masoumi
- Department of ChemistrySchool of ScienceAlzahra University POBox 1993891176, Vanak Tehran Iran Tel.: +98 21 88044051 fax: +98 21 88041344
| |
Collapse
|
13
|
Chen J, Zou L, Zeng C, Zhou Y, Fan B. Rhodium-Catalyzed Asymmetric Arylative Ring-Opening Reactions of Heterobicyclic Alkenes with Anilines. Org Lett 2018; 20:1283-1286. [DOI: 10.1021/acs.orglett.7b03941] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jingchao Chen
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine and ‡Key Laboratory
of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan 650500, People’s Republic of China
| | - Lingling Zou
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine and ‡Key Laboratory
of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan 650500, People’s Republic of China
| | - Chaoyuan Zeng
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine and ‡Key Laboratory
of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan 650500, People’s Republic of China
| | - Yongyun Zhou
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine and ‡Key Laboratory
of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan 650500, People’s Republic of China
| | - Baomin Fan
- YMU-HKBU Joint Laboratory of Traditional Natural Medicine and ‡Key Laboratory
of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, Yunnan 650500, People’s Republic of China
| |
Collapse
|
14
|
Cheng MJ, Cao JQ, Yang XY, Zhong LP, Hu LJ, Lu X, Hou BL, Hu YJ, Wang Y, You XF, Wang L, Ye WC, Li CC. Catalytic asymmetric total syntheses of myrtucommuacetalone, myrtucommuacetalone B, and callistrilones A, C, D and E. Chem Sci 2018; 9:1488-1495. [PMID: 29629171 PMCID: PMC5875087 DOI: 10.1039/c7sc04672c] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 11/26/2017] [Indexed: 01/13/2023] Open
Abstract
Herein, we describe a concise catalytic approach to the first asymmetric total syntheses of myrtucommuacetalone, myrtucommuacetalone B, and callistrilones A, C, D and E. The syntheses proceed in only 5-7 steps from the readily available compound 11, without the need for protecting groups. Key features of the syntheses include a unique organocatalytic asymmetric Friedel-Crafts-type Michael addition with high enantioselectivity and a broad substrate scope, a novel Michael-ketalization-annulation cascade reaction, and an oxidative [3 + 2] cycloaddition. Furthermore, the new compound 7 exhibited potent antibacterial activities against several multidrug-resistant strains (MRSA, VISA and VRE), and showed greater potency than vancomycin.
Collapse
Affiliation(s)
- Min-Jing Cheng
- College of Pharmacy , Jinan University , Guangzhou 510632 , China . ;
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China .
| | - Jia-Qing Cao
- College of Pharmacy , Jinan University , Guangzhou 510632 , China . ;
| | - Xin-Yi Yang
- Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing 100050 , China
| | - Li-Ping Zhong
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China .
| | - Li-Jun Hu
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China .
| | - Xi Lu
- Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing 100050 , China
| | - Bao-Long Hou
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China .
| | - Ya-Jian Hu
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China .
| | - Ying Wang
- College of Pharmacy , Jinan University , Guangzhou 510632 , China . ;
| | - Xue-Fu You
- Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences , Peking Union Medical College , Beijing 100050 , China
| | - Lei Wang
- College of Pharmacy , Jinan University , Guangzhou 510632 , China . ;
| | - Wen-Cai Ye
- College of Pharmacy , Jinan University , Guangzhou 510632 , China . ;
| | - Chuang-Chuang Li
- Department of Chemistry , Southern University of Science and Technology , Shenzhen 518055 , China .
| |
Collapse
|
15
|
He F, Chen G, Yang J, Liang G, Deng P, Xiong Y, Zhou H. Catalytic enantioselective Henry reaction of α-keto esters, 2-acylpyridines and 2-acylpyridine N-oxides. RSC Adv 2018; 8:9414-9422. [PMID: 35541881 PMCID: PMC9078658 DOI: 10.1039/c8ra00552d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/19/2018] [Indexed: 12/25/2022] Open
Abstract
Asymmetric Henry reaction of ketones catalyzed by a pre-prepared Ni complex with low catalyst loading.
Collapse
Affiliation(s)
- Feilong He
- School of Pharmaceutical Science
- Chongqing Medical University
- Chongqing 400016
- PR China
| | - Guanghui Chen
- School of Pharmaceutical Science
- Chongqing Medical University
- Chongqing 400016
- PR China
| | - Junxia Yang
- School of Pharmaceutical Science
- Chongqing Medical University
- Chongqing 400016
- PR China
| | - Guojuan Liang
- School of Pharmaceutical Science
- Chongqing Medical University
- Chongqing 400016
- PR China
| | - Ping Deng
- School of Pharmaceutical Science
- Chongqing Medical University
- Chongqing 400016
- PR China
| | - Yan Xiong
- School of Chemistry and Chemical Engineering
- Chongqing University
- Chongqing 401331
- PR China
| | - Hui Zhou
- School of Pharmaceutical Science
- Chongqing Medical University
- Chongqing 400016
- PR China
| |
Collapse
|
16
|
Arai T. Chiral Bis(imidazolidine)-containing NCN Pincer Metal Complexes for Cooperative Asymmetric Catalysis. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takayoshi Arai
- Department of Chemistry, Graduate School of Science, Chiba University
| |
Collapse
|
17
|
Zhang J, Liu C, Wang X, Chen J, Zhang Z, Zhang W. Rhodium-catalyzed asymmetric hydrogenation of β-branched enamides for the synthesis of β-stereogenic amines. Chem Commun (Camb) 2018; 54:6024-6027. [DOI: 10.1039/c8cc02798f] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
β-Branched simple enamides were hydrogenated to give β-stereogenic amines in quantitative yields and with excellent enantioselectivities.
Collapse
Affiliation(s)
- Jian Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Chong Liu
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xingguang Wang
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jianzhong Chen
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
18
|
Noland WE, Herzig RJ, Kumar HV, Narina VS, Elkin PK, Valverde KI, Kim BL. Diels-Alder reactions of fused 5-, 6- and 7-membered ring 2-vinylindoles: Synthesis of annulated tetrahydrocarbazoles. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.09.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|