1
|
Hanif M, Zahoor AF, Saif MJ, Nazeer U, Ali KG, Parveen B, Mansha A, Chaudhry AR, Irfan A. Exploring the synthetic potential of epoxide ring opening reactions toward the synthesis of alkaloids and terpenoids: a review. RSC Adv 2024; 14:13100-13128. [PMID: 38655462 PMCID: PMC11036177 DOI: 10.1039/d4ra01834f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Epoxides are oxygen containing heterocycles which are significantly employed as crucial intermediates in various organic transformations. They are considered highly reactive three-membered heterocycles due to ring strain and they undergo epoxide ring opening reactions with diverse range of nucleophiles. Epoxide ring-opening reactions have gained prominence as flexible and effective means to obtain various functionalized molecules. These reactions have garnered substantial attention in organic synthesis, driven by the need to comprehend the synthesis of biologically and structurally important organic compounds. They have also found applications in the synthesis of complex natural products. In this review article, we have summarized the implementation of epoxide ring opening reactions in the synthesis of alkaloids and terpenoids based natural products reported within the last decade (2014-2023).
Collapse
Affiliation(s)
- Madiha Hanif
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Muhammad Jawwad Saif
- Department of Applied Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Usman Nazeer
- Department of Chemistry, University of Houston 3585 Cullen Boulevard Texas 77204-5003 USA
| | - Kulsoom Ghulam Ali
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad 38000-Faisalabad Pakistan
| | - Aijaz Rasool Chaudhry
- Department of Physics, College of Science, University of Bisha P.O. Box 551 Bisha 61922 Saudi Arabia
| | - Ahmad Irfan
- Department of Chemistry, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
2
|
Yao JJ, Ding R, Chen X, Zhai H. Asymmetric Total Synthesis of (+)-Alstonlarsine A. J Am Chem Soc 2022; 144:14396-14402. [PMID: 35894835 DOI: 10.1021/jacs.2c06518] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The first asymmetric total synthesis of (+)-alstonlarsine A has been realized. The prominent features of the current synthesis include the following: (i) a Pd/self-adaptable ligand complex-catalyzed asymmetric allylic alkylation of 2-methyl-2-cyclopentenyl carbonate with 2-indolylsubstituted dimethyl malonate to establish the key stereocenter of C15, (ii) an intramolecular nitrile oxide-alkene [3 + 2] cycloaddition (INOC [3 + 2]) to construct the cyclohepta[b]indole backbone with the installment of the requisite stereochemistry of the all-carbon quaternary center of C20, and (iii) a late-stage interrupted Pictet-Spengler reaction (IPSR) to rapidly assemble the core structure of (+)-alstonlarsine A.
Collapse
Affiliation(s)
- Jun-Jun Yao
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Rui Ding
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Xiaoming Chen
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.,The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.,Shenzhen Bay Laboratory, Shenzhen 518055, China.,Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
3
|
Ali R, Ahmed W, Jayant V, alvi S, Ahmed N, Ahmed A. Metathesis reactions in total‐ and natural product fragments syntheses. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rashid Ali
- Jamia Millia Islamia New Delhi India 110025 Department of Chemistry Jamia Nagar,New Delhi india110025 110025 New Delhi INDIA
| | - Waqar Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Vikrant Jayant
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - shakeel alvi
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Nadeem Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| | - Azeem Ahmed
- Jamia Millia Islamia Central University: Jamia Millia Islamia Chemistry INDIA
| |
Collapse
|
4
|
Heravi MM, Amiri Z, Kafshdarzadeh K, Zadsirjan V. Synthesis of indole derivatives as prevalent moieties present in selected alkaloids. RSC Adv 2021; 11:33540-33612. [PMID: 35497516 PMCID: PMC9042329 DOI: 10.1039/d1ra05972f] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/10/2021] [Indexed: 02/02/2023] Open
Abstract
Indoles are a significant heterocyclic system in natural products and drugs. They are important types of molecules and natural products and play a main role in cell biology. The application of indole derivatives as biologically active compounds for the treatment of cancer cells, microbes, and different types of disorders in the human body has attracted increasing attention in recent years. Indoles, both natural and synthetic, show various biologically vital properties. Owing to the importance of this significant ring system, the investigation of novel methods of synthesis have attracted the attention of the chemical community. In this review, we aim to highlight the construction of indoles as a moiety in selected alkaloids.
Collapse
Affiliation(s)
- Majid M Heravi
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Zahra Amiri
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Kosar Kafshdarzadeh
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| | - Vahideh Zadsirjan
- Department of Chemistry, School of Physics and Chemistry, Alzahra University Vanak Tehran Iran +98 2188041344 +98 9121329147
| |
Collapse
|
5
|
Zou P, Yang H, Wei J, Wang T, Zhai H. Total Synthesis of (-)-Picrinine, (-)-Scholarisine C, and (+)-5-β-Methoxyaspidophylline. Org Lett 2021; 23:6836-6840. [PMID: 34410141 DOI: 10.1021/acs.orglett.1c02393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first asymmetric total synthesis of three picrinine-type akuammiline alkaloids, (-)-picrinine, (-)-scholarisine C, and (+)-5-β-methoxyaspidophylline, has been accomplished. The synthesis features an efficient acid-promoted oxo-bridge ring-opening and further carbonyl O-cyclization to assemble the furoindoline scaffold, an unusual Dauben-Michno oxidation to construct the requisite α,β-unsaturated aldehyde functionality, and a nickel-mediated reductive Heck reaction to forge the [3.3.1]-azabicyclic core.
Collapse
Affiliation(s)
- Peng Zou
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Hongjian Yang
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Jian Wei
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Taimin Wang
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.,Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China.,Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
6
|
Gao B, Yao F, Zhang Z, Ding H. Total Synthesis of (+)-Alsmaphorazine C and Formal Synthesis of (+)-Strictamine: A Photo-Fries Approach. Angew Chem Int Ed Engl 2021; 60:10603-10607. [PMID: 33660898 DOI: 10.1002/anie.202101752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 01/04/2023]
Abstract
A bioinspired photo-Fries/imine capture cascade reaction was developed in continuous-flow mode, which facilitated the rapid construction of a series of diversely functionalized 2,7-heterocycle-fused tetrahydrocarbazoles, the ubiquitous core structures embedded in strychnos and akuammiline-type monoterpene indole alkaloids. The synthetic utility of this novel method has been preliminarily explored by the first total synthesis of (+)-alsmaphorazine C and formal synthesis of (+)-strictamine in a concise and efficient manner.
Collapse
Affiliation(s)
- Beiling Gao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Fengjie Yao
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhaodong Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Gao B, Yao F, Zhang Z, Ding H. Total Synthesis of (+)‐Alsmaphorazine C and Formal Synthesis of (+)‐Strictamine: A Photo‐Fries Approach. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Beiling Gao
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Fengjie Yao
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Zhaodong Zhang
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Hanfeng Ding
- Department of Chemistry Zhejiang University Hangzhou 310058 China
- State Key Laboratory of Elemento-Organic Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
8
|
Paul D, Das S, Saha S, Sharma H, Goswami RK. Intramolecular Heck Reaction in Total Synthesis of Natural Products: An Update. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100071] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Debobrata Paul
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Subhendu Das
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Sanu Saha
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Himangshu Sharma
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Rajib Kumar Goswami
- School of Chemical Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| |
Collapse
|
9
|
Zhang B, Wang X, Li C. Enantioselective Total Synthesis of (+)-Corymine and (-)-Deformylcorymine. J Am Chem Soc 2020; 142:3269-3274. [PMID: 31992040 DOI: 10.1021/jacs.0c00302] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report herein the first enantioselective total synthesis of akuammiline alkaloids (+)-corymine and (-)-deformylcorymine. Starting from commercially available N-nosyltryptamine, the target molecules are both achieved in 11 steps. Key elements of the design include (a) a copper-catalyzed enantioselective addition of dimethyl malonate to a 3-bromooxindole to secure the C7 all-carbon quaternary stereocenter, (b) a one-step construction of cyclohexyl and pyrrolidinyl rings via intramolecular nucleophilic C- and N-addition, and (c) a nickel-promoted 7-endo cyclization of alkenyl bromide to furnish the azepanyl ring. The strategy is further extended to the synthesis of another three members of the akuammiline family, namely, (-)-10-demethoxyvincorine, (-)-2(S)-cathafoline, and (-)-3-epi-dihydrocorymine 17-acetate.
Collapse
Affiliation(s)
- Benxiang Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , P.R. China
| | - Xiaoqing Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , P.R. China
| | - Chaozhong Li
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , 345 Lingling Road , Shanghai 200032 , P.R. China.,School of Materials and Chemical Engineering , Ningbo University of Technology , No. 201 Fenghua Road , Ningbo 315211 , P.R. China
| |
Collapse
|
10
|
Li W, Chen Z, Yu D, Peng X, Wen G, Wang S, Xue F, Liu X, Qin Y. Asymmetric Total Syntheses of the Akuammiline Alkaloids (−)‐Strictamine and (−)‐Rhazinoline. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wenfei Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Zhitao Chen
- School of Pharmaceutic ScienceChongqing University Chongqing 401331 P. R. China
| | - Di Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Xin Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Guohua Wen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Siqi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Fei Xue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Xiao‐Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| |
Collapse
|
11
|
Li W, Chen Z, Yu D, Peng X, Wen G, Wang S, Xue F, Liu X, Qin Y. Asymmetric Total Syntheses of the Akuammiline Alkaloids (−)‐Strictamine and (−)‐Rhazinoline. Angew Chem Int Ed Engl 2019; 58:6059-6063. [DOI: 10.1002/anie.201901074] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Wenfei Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Zhitao Chen
- School of Pharmaceutic ScienceChongqing University Chongqing 401331 P. R. China
| | - Di Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Xin Peng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Guohua Wen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Siqi Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Fei Xue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Xiao‐Yu Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan University Chengdu 610041 P. R. China
| |
Collapse
|
12
|
Zhang X, Kakde BN, Guo R, Yadav S, Gu Y, Li A. Total Syntheses of Echitamine, Akuammiline, Rhazicine, and Pseudoakuammigine. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Badrinath N. Kakde
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Rui Guo
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Sonyabapu Yadav
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yucheng Gu
- SyngentaJealott's Hill International Research Centre Bracknell Berkshire RG42 6EY UK
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products ChemistryCenter for Excellence in Molecular SynthesisShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
13
|
Sato K, Kogure N, Kitajima M, Takayama H. Total Syntheses of Pleiocarpamine, Normavacurine, and C-Mavacurine. Org Lett 2019; 21:3342-3345. [PMID: 30998375 DOI: 10.1021/acs.orglett.9b01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The total syntheses of C-mavacurine-type indole alkaloids, (±)-pleiocarpamine, (±)-normavacurine, and (±)- C-mavacurine, were accomplished. The key step in the syntheses was the cyclization between the metal carbenoid at C16 and the N1 position in a Corynanthe-type compound that was equipped with a diazo function. For this cyclization, the N4 modification of the substrate using an amine-borane complex was indispensable to fix the molecular conformation.
Collapse
Affiliation(s)
- Keigo Sato
- Graduate School of Pharmaceutical Sciences , Chiba University , 1-8-1 Inohana, Chuo-ku , Chiba 260-8675 , Japan
| | - Noriyuki Kogure
- Graduate School of Pharmaceutical Sciences , Chiba University , 1-8-1 Inohana, Chuo-ku , Chiba 260-8675 , Japan
| | - Mariko Kitajima
- Graduate School of Pharmaceutical Sciences , Chiba University , 1-8-1 Inohana, Chuo-ku , Chiba 260-8675 , Japan
| | - Hiromitsu Takayama
- Graduate School of Pharmaceutical Sciences , Chiba University , 1-8-1 Inohana, Chuo-ku , Chiba 260-8675 , Japan
| |
Collapse
|
14
|
Zhang Z, Xie S, Cheng B, Zhai H, Li Y. Enantioselective Total Synthesis of (+)-Arboridinine. J Am Chem Soc 2019; 141:7147-7154. [DOI: 10.1021/jacs.9b02362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Sujun Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Bin Cheng
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hongbin Zhai
- State Key Laboratory of Chemical Oncogenomics and Key Laboratory of Chemical Genomics, Shenzhen Engineering Laboratory of Nano Drug Slow-Release, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Yun Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
15
|
Zhang X, Kakde BN, Guo R, Yadav S, Gu Y, Li A. Total Syntheses of Echitamine, Akuammiline, Rhazicine, and Pseudoakuammigine. Angew Chem Int Ed Engl 2019; 58:6053-6058. [PMID: 30803132 DOI: 10.1002/anie.201901086] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Indexed: 01/30/2023]
Abstract
Echitamine (1) and akuammiline (2) are representative members of a fascinating class of monoterpenoid indole alkaloids. We report the syntheses of 2 and its congener deacetylakuammiline (3). The azabicyclo[3.3.1]nonane motif was assembled through silver-catalyzed internal alkyne cyclization, and one-pot C-O bond cleavage/C-N bond formation furnished the pentacyclic scaffold. Compound 3 then served as a common intermediate for preparing a series of structurally diverse and synthetically challenging congeners including 1. A position-selective Polonovski-Potier reaction followed by formal N-4 migration built the core of N-demethylechitamine (4) and 1. An alternative route featuring Meisenheimer rearrangement gave 4 as well. Oxidation of the alcohol within 3 gave rhazimal (5), which underwent tandem indolenine hydrolysis, hemiaminalization, and hemiketalization to form rhazicine (6). A sequence of N,O-ketalization and reductive amination secured the chemoselectivity of N-methylation, leading to pseudoakuammigine (7).
Collapse
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Badrinath N Kakde
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Rui Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Sonyabapu Yadav
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Yucheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Ang Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
16
|
Yang X, Zhou YH, Yang H, Wang SS, Ouyang Q, Luo QL, Guo QX. Asymmetric Diels–Alder Reaction of 3-Vinylindoles and Nitroolefins Promoted by Multiple Hydrogen Bonds. Org Lett 2019; 21:1161-1164. [DOI: 10.1021/acs.orglett.9b00104] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xi Yang
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yu-Hao Zhou
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Han Yang
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shan-Shan Wang
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Qun-Li Luo
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Qi-Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing Municipality and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
17
|
Wu SY, Chen WL, Ma XP, Liang C, Su GF, Mo DL. Copper-Catalyzed [3+2] Cycloaddition and Interrupted Fischer Indolization to Prepare Polycyclic Furo[2,3-b]indolines from N
-Aryl Isatin Nitrones and Methylenecyclopropanes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801327] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Si-Yi Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004 People's Republic of China
| | - Wei-Li Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004 People's Republic of China
| | - Xiao-Pan Ma
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004 People's Republic of China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004 People's Republic of China
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004 People's Republic of China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education of China; School of Chemistry and Pharmaceutical Sciences; Guangxi Normal University; 15 Yu Cai Road Guilin 541004 People's Republic of China
| |
Collapse
|
18
|
Krishnan P, Lee FK, Chong KW, Mai CW, Muhamad A, Lim SH, Low YY, Ting KN, Lim KH. Alstoscholactine and Alstolaxepine, Monoterpenoid Indole Alkaloids with γ-Lactone-Bridged Cycloheptane and Oxepane Moieties from Alstonia scholaris. Org Lett 2018; 20:8014-8018. [PMID: 30543301 DOI: 10.1021/acs.orglett.8b03592] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Two new monoterpenoid indole alkaloids, alstoscholactine (1) and alstolaxepine (2), were isolated from Alstonia scholaris. Compound 1 represents a rearranged stemmadenine alkaloid with an unprecedented C-6-C-19 connectivity, whereas compound 2 represents a 6,7- seco-angustilobine B-type alkaloid incorporating a rare γ-lactone-bridged oxepane ring system. Their structures and absolute configurations were determined by spectroscopic analyses. Compound 1 was successfully semisynthesized from 19 E-vallesamine. Compound 2 induced marked vasorelaxation in rat isolated aortic rings precontracted with phenylephrine.
Collapse
Affiliation(s)
| | | | - Kam-Weng Chong
- Department of Chemistry, Faculty of Science , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | | | - Azira Muhamad
- Malaysia Genome Institute , Jalan Bangi, 43000 Kajang , Selangor , Malaysia
| | - Siew-Huah Lim
- Department of Chemistry, Faculty of Science , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | - Yun-Yee Low
- Department of Chemistry, Faculty of Science , University of Malaya , 50603 Kuala Lumpur , Malaysia
| | | | | |
Collapse
|
19
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Picazo E, Morrill LA, Susick RB, Moreno J, Smith JM, Garg NK. Enantioselective Total Syntheses of Methanoquinolizidine-Containing Akuammiline Alkaloids and Related Studies. J Am Chem Soc 2018; 140:6483-6492. [PMID: 29694031 PMCID: PMC6085837 DOI: 10.1021/jacs.8b03404] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The akuammiline alkaloids are a structurally diverse class of bioactive natural products isolated from plants found in various parts of the world. A particularly challenging subset of akuammiline alkaloids are those that contain a methanoquinolizidine core. We describe a synthetic approach to these compounds that has enabled the first total syntheses of (+)-strictamine, (-)-2( S)-cathafoline, (+)-akuammiline, and (-)-Ψ-akuammigine. Our strategy relies on the development of the reductive interrupted Fischer indolization reaction to construct a common pentacyclic intermediate bearing five contiguous stereocenters, in addition to late-stage formation of the methanoquinolizidine framework using a deprotection-cyclization cascade. The total syntheses of (-)-Ψ-akuammigine and (+)-akuammiline mark the first preparations of akuammiline alkaloids containing both a methanoquinolizidine core and vicinal quaternary centers. Lastly, we describe the bioinspired reductive rearrangements of (+)-strictamine and (+)-akuammiline to ultimately provide (-)-10-demethoxyvincorine and a new analogue thereof.
Collapse
Affiliation(s)
- Elias Picazo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Lucas A. Morrill
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Robert B. Susick
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Jesus Moreno
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Joel M. Smith
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neil K. Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
21
|
Jarret M, Tap A, Kouklovsky C, Poupon E, Evanno L, Vincent G. Bioinspired Oxidative Cyclization of the Geissoschizine Skeleton for the Total Synthesis of (−)-17-nor-Excelsinidine. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802610] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Maxime Jarret
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); Equipe MSMT; Univ. Paris-Sud, CNRS; Université Paris-Saclay; 15, rue Georges Clémenceau 91405 Orsay, Cedex France
| | - Aurélien Tap
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); Equipe MSMT; Univ. Paris-Sud, CNRS; Université Paris-Saclay; 15, rue Georges Clémenceau 91405 Orsay, Cedex France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); Equipe MSMT; Univ. Paris-Sud, CNRS; Université Paris-Saclay; 15, rue Georges Clémenceau 91405 Orsay, Cedex France
| | - Erwan Poupon
- Pharmacognosie et chimie des substances naturelles; BioCIS; Univ. Paris-Sud, Université Paris-Saclay, CNRS; 92290 Châtenay-Malabry France
| | - Laurent Evanno
- Pharmacognosie et chimie des substances naturelles; BioCIS; Univ. Paris-Sud, Université Paris-Saclay, CNRS; 92290 Châtenay-Malabry France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO); Equipe MSMT; Univ. Paris-Sud, CNRS; Université Paris-Saclay; 15, rue Georges Clémenceau 91405 Orsay, Cedex France
| |
Collapse
|
22
|
Jarret M, Tap A, Kouklovsky C, Poupon E, Evanno L, Vincent G. Bioinspired Oxidative Cyclization of the Geissoschizine Skeleton for the Total Synthesis of (-)-17-nor-Excelsinidine. Angew Chem Int Ed Engl 2018; 57:12294-12298. [PMID: 29575642 DOI: 10.1002/anie.201802610] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/19/2018] [Indexed: 11/10/2022]
Abstract
We report the first total synthesis of (-)-17-nor-excelsinidine, a zwitterionic monoterpene indole alkaloid that displays an unusual N4-C16 connection. Inspired by the postulated biosynthesis, we explored an oxidative coupling approach from the geissoschizine framework to forge the key ammonium-acetate connection. Two strategies allowed us to achieve this goal, namely an intramolecular nucleophilic substitution on a 16-chlorolactam with the N4 nitrogen atom or a direct I2 -mediated N4-C16 oxidative coupling from the enolate of geissoschizine.
Collapse
Affiliation(s)
- Maxime Jarret
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Equipe MSMT, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 15, rue Georges Clémenceau, 91405, Orsay, Cedex, France
| | - Aurélien Tap
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Equipe MSMT, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 15, rue Georges Clémenceau, 91405, Orsay, Cedex, France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Equipe MSMT, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 15, rue Georges Clémenceau, 91405, Orsay, Cedex, France
| | - Erwan Poupon
- Pharmacognosie et chimie des substances naturelles, BioCIS, Univ. Paris-Sud, Université Paris-Saclay, CNRS, 92290, Châtenay-Malabry, France
| | - Laurent Evanno
- Pharmacognosie et chimie des substances naturelles, BioCIS, Univ. Paris-Sud, Université Paris-Saclay, CNRS, 92290, Châtenay-Malabry, France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Equipe MSMT, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 15, rue Georges Clémenceau, 91405, Orsay, Cedex, France
| |
Collapse
|
23
|
Liu X, Zhou Y, Yang Z, Li Q, Zhao L, Liu P. Iodine-Catalyzed C–H Amidation and Imination at the 2α-Position of 2,3-Disubstituted Indoles with Chloramine Salts. J Org Chem 2018; 83:4665-4673. [DOI: 10.1021/acs.joc.8b00286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaozu Liu
- Pharmacy School, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Yuxiang Zhou
- Pharmacy School, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Zhongqin Yang
- Pharmacy School, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Qin Li
- Pharmacy School, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Liang Zhao
- Pharmacy School, Zunyi Medical University, Zunyi 563003, P. R. China
| | - Peijun Liu
- Pharmacy School, Zunyi Medical University, Zunyi 563003, P. R. China
| |
Collapse
|
24
|
Affiliation(s)
- Lei Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Zhuang Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Xiwu Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| | - Yanxing Jia
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
25
|
Chen ZT, Xiao T, Tang P, Zhang D, Qin Y. Total synthesis of akuammiline alkaloid (+)-strictamine. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.01.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Yang B, Gao S. Recent advances in the application of Diels–Alder reactions involving o-quinodimethanes, aza-o-quinone methides and o-quinone methides in natural product total synthesis. Chem Soc Rev 2018; 47:7926-7953. [DOI: 10.1039/c8cs00274f] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes recent advances in Diels–Alder reactions involving o-QDMs, o-QMs and aza-o-QMs. The power and potential of this strategy in organic synthesis and natural product total synthesis is highlighted.
Collapse
Affiliation(s)
- Baochao Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| | - Shuanhu Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- China
| |
Collapse
|
27
|
Wang C, Zhang S, Wang Y, Huang SH, Hong R. Total synthesis of strictamine: a tutorial for novel and efficient synthesis. Org Chem Front 2018. [DOI: 10.1039/c7qo00837f] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The novelty and efficiency of the overall synthetic route are the key values being imparted to the younger generation of synthetic chemists. In this Highlights, synthesis of strictamine was tutored to students on the creativity of synthetic design.
Collapse
Affiliation(s)
- Chao Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances
- Shanghai Institute of Organic Chemistry (CAS)
- Shanghai 200032
- China
- University of Chinese Academy of Sciences
| | - Shiju Zhang
- College of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- China
| | - Yan Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances
- Shanghai Institute of Organic Chemistry (CAS)
- Shanghai 200032
- China
- University of Chinese Academy of Sciences
| | - Sha-Hua Huang
- College of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai
- China
| | - Ran Hong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances
- Shanghai Institute of Organic Chemistry (CAS)
- Shanghai 200032
- China
- University of Chinese Academy of Sciences
| |
Collapse
|
28
|
Nagaraju K, Ma D. Oxidative coupling strategies for the synthesis of indole alkaloids. Chem Soc Rev 2018; 47:8018-8029. [DOI: 10.1039/c8cs00305j] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct functionalization of indole through oxidative coupling reactions with enolates or phenols provides a powerful tool for assembling indole alkaloids.
Collapse
Affiliation(s)
- Karre Nagaraju
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Science
- Shanghai 200032
- China
| | - Dawei Ma
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Science
- Shanghai 200032
- China
| |
Collapse
|
29
|
Simmons BJ, Hoffmann M, Champagne PA, Picazo E, Yamakawa K, Morrill LA, Houk KN, Garg NK. Understanding and Interrupting the Fischer Azaindolization Reaction. J Am Chem Soc 2017; 139:14833-14836. [PMID: 29022706 PMCID: PMC5726400 DOI: 10.1021/jacs.7b07518] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Experimental and computational studies pertaining to the Fischer azaindolization reaction are reported. These studies explain why pyridylhydrazines are poorly reactive in Fischer indolization reactions, in addition to the origin of hydrazine substituent effects. Additionally, an interrupted variant of Fischer azaindolization methodology is disclosed, which provides a synthetic entryway into fused azaindoline scaffolds.
Collapse
Affiliation(s)
- Bryan J. Simmons
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Marie Hoffmann
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | | | - Elias Picazo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Katsuya Yamakawa
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Lucas A. Morrill
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | | | | |
Collapse
|
30
|
Xie X, Wei B, Li G, Zu L. Unified Total Syntheses of Structurally Diverse Akuammiline Alkaloids. Org Lett 2017; 19:5430-5433. [PMID: 28952737 DOI: 10.1021/acs.orglett.7b02698] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The unified total syntheses of structurally diverse akuammiline alkaloids deformylcorymine (1), strictamine (2), and calophyline A (3) are reported. The strategy mimics the biosynthesis in nature at a strategic level, which allows for structural diversification from a common synthetic precursor by late-stage ring migrations.
Collapse
Affiliation(s)
- Xiaoni Xie
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University , Beijing 100084, China
| | - Bei Wei
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University , Beijing 100084, China
| | - Guang Li
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University , Beijing 100084, China
| | - Liansuo Zu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University , Beijing 100084, China
| |
Collapse
|
31
|
Affiliation(s)
- Shu-An Liu
- Department
of Chemistry and Center for Integrated Protein Science, Ludwig-Maximilian University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Dirk Trauner
- Department
of Chemistry and Center for Integrated Protein Science, Ludwig-Maximilian University Munich, Butenandtstraße 5-13, 81377 Munich, Germany
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
32
|
Xiao T, Chen ZT, Deng LF, Zhang D, Liu XY, Song H, Qin Y. Formal total synthesis of the akuammiline alkaloid (+)-strictamine. Chem Commun (Camb) 2017; 53:12665-12667. [PMID: 29167841 DOI: 10.1039/c7cc08153g] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An asymmetric formal total synthesis of the akuammiline alkaloid (+)-strictamine is reported.
Collapse
Affiliation(s)
- Tao Xiao
- School of Pharmaceutical Sciences and The Innovative Drug Research Centre
- Chongqing University
- Chongqing 401331
- P. R. China
| | - Zhi-Tao Chen
- School of Pharmaceutical Sciences and The Innovative Drug Research Centre
- Chongqing University
- Chongqing 401331
- P. R. China
| | - Lin-Feng Deng
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education
- West China School of Pharmacy and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Dan Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education
- West China School of Pharmacy and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Xiao-Yu Liu
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education
- West China School of Pharmacy and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Hao Song
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education
- West China School of Pharmacy and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Yong Qin
- Key Laboratory of Drug Targeting and Drug Delivery Systems of the Ministry of Education
- West China School of Pharmacy and State Key Laboratory of Biotherapy
- Sichuan University
- Chengdu 610041
- P. R. China
| |
Collapse
|