1
|
Dong X, Zhang Z, Xiao H, Liu G, Lei SN, Wang Z, Yan X, Wang S, Tung CH, Wu LZ, Cong H. Assembly and Utility of a Drawstring-Mimetic Supramolecular Complex. Angew Chem Int Ed Engl 2024; 63:e202318368. [PMID: 38165266 DOI: 10.1002/anie.202318368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/03/2024]
Abstract
Inspired by the drawstring structure in daily life, here we report the development of a drawstring-mimetic supramolecular complex at the molecular scale. This complex consists of a rigid figure-of-eight macrocyclic host molecule and a flexible linear guest molecule which could interact through three-point non-covalent binding to form a highly selective and efficient host-guest assembly. The complex not only resembles the drawstring structure, but also mimics the properties of a drawstring with regard to deformations under external forces. The supramolecular drawstring can be utilized as an interlocked crosslinker for poly(methyl acrylate), and the corresponding polymer samples exhibit comprehensive enhancement of macroscopic mechanical performance including stiffness, strength, and toughness.
Collapse
Affiliation(s)
- Xiangyu Dong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guoquan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sheng-Nan Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhao Wang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shutao Wang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
2
|
Han H, Seale JSW, Feng L, Qiu Y, Stoddart JF. Sequence‐controlled synthesis of rotaxanes. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Han Han
- Department of Chemistry Northwestern University Evanston Illinois USA
| | - James S. W. Seale
- Department of Chemistry Northwestern University Evanston Illinois USA
| | - Liang Feng
- Department of Chemistry Northwestern University Evanston Illinois USA
| | - Yunyan Qiu
- Department of Chemistry National University of Singapore Singapore Republic of Singapore
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University Evanston Illinois USA
- School of Chemistry University of New South Wales Sydney Australia
- Department of Chemistry, Stoddart Institute of Molecular Science Zhejiang University Hangzhou China
- ZJU‐Hangzhou Global Scientific and Technological Innovation Center Hangzhou China
| |
Collapse
|
3
|
Pearce N, Tarnowska M, Andersen NJ, Wahrhaftig-Lewis A, Pilgrim BS, Champness NR. Mechanically interlocked molecular handcuffs. Chem Sci 2022; 13:3915-3941. [PMID: 35440998 PMCID: PMC8985514 DOI: 10.1039/d2sc00568a] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/27/2022] [Indexed: 01/20/2023] Open
Abstract
The field of mechanically interlocked molecules that employ a handcuff component are reviewed. The variety of rotaxane and catenane structures that use the handcuff motif to interlock different components are discussed and a new nomenclature, distilling diverse terminologies to a single approach, is proposed. By unifying the interpretation of this class of molecules we identify new opportunities for employing this structural unit for new architectures. Mechanically interlocked molecules that employ a handcuff component provide a pathway to highly unusual structures, a new nomenclature is proposed which helps to identify opportunities for employing this structural unit for new architectures.![]()
Collapse
Affiliation(s)
- Nicholas Pearce
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Marysia Tarnowska
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Nathan J Andersen
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | | | - Ben S Pilgrim
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Neil R Champness
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
4
|
Nhien PQ, Cuc TTK, Khang TM, Wu CH, Hue BTB, Wu JI, Mansel BW, Chen HL, Lin HC. Highly Efficient Förster Resonance Energy Transfer Modulations of Dual-AIEgens between a Tetraphenylethylene Donor and a Merocyanine Acceptor in Photo-Switchable [2]Rotaxanes and Reversible Photo-Patterning Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47921-47938. [PMID: 32936605 PMCID: PMC8141944 DOI: 10.1021/acsami.0c12726] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A series of novel photo-switchable [2]rotaxanes (i.e., Rot-A-SP and Rot-B-SP before and after shuttling controlled by acid-base, respectively) containing one spiropyran (SP) unit (as a photochromic stopper) on the axle and two tetraphenylethylene (TPE) units on the macrocycle were synthesized via click reaction. Upon UV/visible light exposure, both mono-fluorophoric rotaxanes Rot-A-SP and Rot-B-SP with the closed form (i.e., non-emissive SP unit) could be transformed into the open form (i.e., red-emissive merocyanine (MC) unit) to acquire their respective bi-fluorophoric Rot-A-MC and Rot-B-MC reversibly. The aggregation-induced emission (AIE) properties of bi-fluorophoric TPE combined with MC AIEgens of these designed rotaxanes and mixtures in semi-aqueous solutions induced interesting ratiometric photoluminescence (PL) and Förster resonance energy transfer (FRET) behaviors, which were further investigated and verified by dynamic light scattering (DLS), X-ray diffraction (XRD), and time-resolved photoluminescence (TRPL) measurements along with theoretical studies. Accordingly, in contrast to the model axle (Axle-MC) and the analogous mixture (Mixture-MC, containing the axle and macrocycle components in a 1:1 molar ratio), more efficient FRET behaviors and stronger red PL emissions were obtained from dual-AIEgens between a blue-emissive TPE donor (PL emission at 468 nm) and a red-emissive MC acceptor (PL emission at 668 nm) in both novel photo-switchable [2]rotaxanes Rot-A-MC and Rot-B-MC under various external modulations, including water content, UV/Vis irradiation, pH value, and temperature. Furthermore, the reversible fluorescent photo-patterning applications of Rot-A-SP in a powder form and a solid film with excellent photochromic and fluorescent behaviors are first investigated in this report.
Collapse
Affiliation(s)
- Pham Quoc Nhien
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Tu Thi Kim Cuc
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Trang Manh Khang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Chia-Hua Wu
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Bui Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City 94000, Viet Nam
| | - Judy I Wu
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Brad W Mansel
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hsin-Lung Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Hong-Cheu Lin
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
5
|
Zhou HY, Zong QS, Han Y, Chen CF. Recent advances in higher order rotaxane architectures. Chem Commun (Camb) 2020; 56:9916-9936. [PMID: 32638726 DOI: 10.1039/d0cc03057k] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Despite dramatic advances in the template-directed synthesis of archetypal [2]rotaxanes, higher order rotaxanes with multiple molecular components (rings or dumbbells) are relatively daunting subjects owing to their synthetic challenges. With unique interlocked architectures, higher order rotaxanes have found applications in artificial molecular machines. In this feature article, we will focus on the recent advances in higher order rotaxanes with well-defined structures. Different types of rotaxane architectures will be described, and their synthetic approaches will be highlighted. Moreover, the stimuli-responsive molecular motion with increasing complexity in these diverse architectures will also be discussed.
Collapse
Affiliation(s)
- He-Ye Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian-Shou Zong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Ying Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Jin L, Li B, Cui Z, Shang J, Wang Y, Shao C, Pan T, Ge Y, Qi Z. Selenium Substitution-Induced Hydration Changes of Crown Ethers As Tools for Probing Water Interactions with Supramolecular Macrocycles in Aqueous Solutions. J Phys Chem B 2019; 123:9692-9698. [DOI: 10.1021/acs.jpcb.9b09618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lin Jin
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Bo Li
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Zhiliyu Cui
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Jie Shang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Yangxin Wang
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Chenguang Shao
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Tiezheng Pan
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Yan Ge
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| | - Zhenhui Qi
- Sino-German Joint Research Lab for Space Biomaterials and Translational Technology, Synergetic Innovation Center of Flexible Electronics and Healthcare Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China
| |
Collapse
|
7
|
Abstract
Heterorotaxanes, in which at least two types of macrocycles were introduced as the wheel components in rotaxanes, have attracted more and more attention during the past few decades owing to their unique structural features and intriguing properties. The coexistence of varied macrocycles endows the resultant heterorotaxanes not only versatile shuttling and switching behaviors but also great potential for the construction of functional rotaxane systems for applications. In this feature article, a survey of the successful synthesis of heterorotaxanes will be provided based on the various strategies towards the synthesis of heterorotaxanes, i.e. orthogonal binding approach, self-sorting approach, cooperative capture approach, active metal template approach, etc.
Collapse
Affiliation(s)
- Xu-Qing Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, China.
| | | | | | | |
Collapse
|
8
|
Li X, Wang L, Deng Y, Luo Z, Zhang Q, Dong S, Han C. Preparation of cross-linked supramolecular polymers based on benzo-21-crown-7/secondary ammonium salt host-guest interactions. Chem Commun (Camb) 2018; 54:12459-12462. [PMID: 30335096 DOI: 10.1039/c8cc07657j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We found that TC7 not only self-assembles into one-dimensional supramolecular aggregates in chloroform, but also forms cross-linked supramolecular polymers via host-guest complexation between benzo-21-crown-7 and secondary ammonium salts. Compared with one-dimensional linear supramolecular polymers, soft and long viscous fibers were pulled out from a concentrated solution of cross-linked supramolecular polymers as a result of higher viscosity and lower diffusion coefficients.
Collapse
Affiliation(s)
- Xing Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Zheng XL, Tao RR, Gu RR, Wang WZ, Qu DH. A switchable [2]rotaxane with two active alkenyl groups. Beilstein J Org Chem 2018; 14:2074-2081. [PMID: 30202460 PMCID: PMC6122368 DOI: 10.3762/bjoc.14.181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/17/2018] [Indexed: 11/23/2022] Open
Abstract
A novel functional [2]rotaxane containing two alkenyl bonds was designed, synthesized and characterized by 1H, 13C NMR spectroscopy and HRESI mass spectrometry. The introduction of alkenyl bonds endowed the [2]rotaxane a fascinating ability to react with versatile functional groups such as alkenyl and thiol functional groups. The reversible shuttling movement of the macrocycle between two different recognition sites on the molecular thread can be driven by external acid and base. This kind of rotaxane bearing functional groups provides a powerful platform for preparing stimuli-responsive polymers.
Collapse
Affiliation(s)
- Xiu-Li Zheng
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Rong-Rong Tao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Rui-Rui Gu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wen-Zhi Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
10
|
Rao SJ, Zhang Q, Ye XH, Gao C, Qu DH. Integrative Self-Sorting: One-Pot Synthesis of a Hetero[4]rotaxane from a Daisy-Chain-Containing Hetero[4]pseudorotaxane. Chem Asian J 2018; 13:815-821. [PMID: 29424064 DOI: 10.1002/asia.201800011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/06/2018] [Indexed: 12/22/2022]
Abstract
The structural complexity of mechanically interlocked molecules are very attractive to chemists owing to the challenges they present. In this article, novel mechanically interlocked molecules with a daisy-chain-containing hetero[4]rotaxane motif were efficiently synthesized. In addition, a novel integrative self-sorting strategy is demonstrated, involving an ABB-type (A for host, dibenzo-24-crown-8 (DB24C8), and B for guest, ammonium salt sites) monomer and a macrocycle host, benzo-21-crown-7 (B21C7), in which the assembled species in hydrogen-bonding-supported solvent only includes a novel daisy-chain-containing hetero[4]pseudorotaxane. The found self-sorting process involves the integrative recognition between B21C7 macrocycles and carefully designed components simultaneously containing two types of secondary ammonium ions and a host molecule, DB24C8 crown ether. The self-sorting strategy is integrative to undertake self-recognition behavior to form one single species of pseudorotaxane compared with the previous report. This self-sorting system can be used for the efficient one-pot synthesis of a daisy-chain-containing hetero[4]rotaxane in a good yield. The structure of hetero[4]rotaxane was confirmed by 1 H NMR spectroscopy and high-resolution electrospray ionization (HR-ESI) mass spectrometry.
Collapse
Affiliation(s)
- Si-Jia Rao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Xu-Hao Ye
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Chuan Gao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road No. 130, Shanghai, 200237, China
| |
Collapse
|
11
|
Rao SJ, Zhang Q, Mei J, Ye XH, Gao C, Wang QC, Qu DH, Tian H. One-pot synthesis of hetero[6]rotaxane bearing three different kinds of macrocycle through a self-sorting process. Chem Sci 2017; 8:6777-6783. [PMID: 29147501 PMCID: PMC5643886 DOI: 10.1039/c7sc03232c] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 08/03/2017] [Indexed: 12/18/2022] Open
Abstract
A hetero[6]rotaxane bearing three different kinds of macrocycle is designed and successfully synthesized through a one-pot “click” reaction by employing a facile and efficient integrative self-sorting principle.
In this article, a six-component self-sorting process that involves three types of crown ether macrocycle and three types of cation guest molecule was carefully and thoroughly investigated. The six components include three kinds of crown ether, namely bis(p-phenylene-34-crown-10) (BPP34C10), dibenzo-24-crown-8 (DB24C8) and benzo-21-crown-7 (B21C7), and their corresponding cation guest molecules, namely a 4,4′-bipyridine dication (BPY2+) and dibenzylammonium (DBA) and benzylalkylammonium (BAA) ions, respectively. Based on this well-established highly selective six-component self-sorting process, a hetero[6]rotaxane bearing three different kinds of crown ether macrocycle was designed and successfully synthesized through a facile and efficient one-pot “click” stoppering strategy. Such work is proposed to be a significant advance in the construction of mechanically interlocked molecules with high structural complexity, as well as a good supplement in the areas of multi-component self-sorting and noncovalent self-assembly.
Collapse
Affiliation(s)
- Si-Jia Rao
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - Qi Zhang
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - Ju Mei
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - Xu-Hao Ye
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - Chuan Gao
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - Qiao-Chun Wang
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - He Tian
- Key Laboratory for Advanced Materials , Institute of Fine Chemicals , School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai , 200237 , China .
| |
Collapse
|