1
|
Zhang Y, Fu D, Chen Z, Cui R, He W, Wang H, Chen J, Chen Y, Li SJ, Lan Y, Duan C, Jin Y. Bifunctional iron-catalyzed alkyne Z-selective hydroalkylation and tandem Z-E inversion via radical molding and flipping. Nat Commun 2024; 15:8619. [PMID: 39366970 PMCID: PMC11452693 DOI: 10.1038/s41467-024-53021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024] Open
Abstract
The challenging synthesis of thermodynamic-unfavored cis-olefins through catalytic cross-coupling reactions requires the synergistic interaction of substrate-activating units and configuration-regulating catalysts. Successfully hitting these two birds with one stone, we herein develop a convenient photoredox access to Z-alkenes from alkynes and light alkanes with a bifunctional iron-catalyzed system possessing both C(sp3)-H activation and configuration-controlling abilities. The protocol exhibits 100% atom utilization, mild conditions, a broad substrate scope, and compatibility with multitudinous functional groups. The detailed reaction mechanism and the origin of geometry regulation are well investigated by experimental and computational studies. Progressively, a catalytic amount of diaryl disulfides is introduced for consecutive photoinduced Z-E isomerization via reversible radical addition and flipping. Big steric hindrance substituents assembled on the disulfide emerge necessity for suppressing double-bond migration. This tandem strategy paves a promising way for stereoselective alkene construction and will bring significant inspiration for the development of transition metal photocatalysis.
Collapse
Affiliation(s)
- Yongqiang Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Dongmin Fu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Ziyang Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Rongqi Cui
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Wenlong He
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Hongyao Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Jiajin Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yufei Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Shi-Jun Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Lan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China.
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
2
|
Zhang T, Pabst TP, Hoyt JM, Pecoraro MV, Chirik PJ. Mechanistic Studies and Identification of Catalyst Deactivation Pathways for Pyridine(diimine) Iron Catalyzed C(sp 2)-H Borylation. ACS Catal 2024; 14:13999-14011. [PMID: 39555381 PMCID: PMC11563351 DOI: 10.1021/acscatal.4c03744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The synthesis and application of aryl-substituted pyridine(diimine) iron complexes (RPDI)FeCH3 to the catalytic borylation of heteroarenes under thermal conditions is described. Improvements in catalyst design and performance were guided by precatalyst activation studies, where investigations into stoichiometric reactivities of iron borohydride (4- t Bu- iPrPDI)Fe(H2BPin) and iron furyl (4- t Bu- iPrPDI)Fe(2-methylfuryl) complexes revealed facile C(sp2)-H activation and a slower and potentially turnover-limiting C(sp2)-B formation step. Formation of the flyover dimer, [(4- t Bu- iPrPDI)Fe]2 was identified as a catalyst deactivation pathway and formally iron(0) complexes were found to be inactive for borylation. The pyridine(diimine) iron borohydride, flyover dimer and furyl complexes were characterized by X-ray diffraction and their electronic structures determined by a combination of NMR, EPR, and Mössbauer spectroscopies corroborated by DFT calculations. The role of the redox-active pyridine(diimine) ligand in catalytic C-H borylation was also investigated.
Collapse
Affiliation(s)
- Tianyi Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tyler P Pabst
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jordan M Hoyt
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Matthew V Pecoraro
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
3
|
Meher NK, Suryavansi M, Geetharani K. Regioselective Hydroboration of Unsymmetrical Internal Alkynes Catalyzed by a Cobalt Pincer-NHC Complex. Org Lett 2024; 26:5862-5867. [PMID: 38935048 DOI: 10.1021/acs.orglett.4c02216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Highly regioselective hydroboration of unsymmetrical internal alkynes remains a significant challenge for synthesizing valuable alkenylboronate esters. Herein, we describe an easily synthesizable pincer NHC-based Co complex as a catalyst for the cis-α selective hydroboration of unactivated internal alkynes and the cis-β selective hydroboration of activated internal alkynes with pinacolborane. The reaction showcases high chemo-, regio-, and stereoselectivity, and the catalyst displays high efficiency and very low loading under base-free reaction conditions. The reaction scope was demonstrated by alkynes having a variety of functional groups. The mechanistic studies suggest a feasible Co-boryl intermediate to explain the unusual regioselectivity.
Collapse
Affiliation(s)
- Naresh Kumar Meher
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Maruti Suryavansi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - K Geetharani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
Pawar RB, Karmur MH, Punji B. Ligand-free MnBr 2-Catalyzed Chemo- and Stereoselective Hydroboration of Terminal Alkynes. Chem Asian J 2024; 19:e202400158. [PMID: 38512720 DOI: 10.1002/asia.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Developing simple and benign protocols for synthesizing alkenylboronates is crucial as they are synthetically valuable compounds in various organic transformations. In this work, we report a straightforward ligand-free protocol for synthesizing alkenylboronates via atom-economical hydroboration of alkynes with HBpin catalyzed by a manganese salt. The reaction shows a high level of chemo and regioselectivity for the terminal alkynes and exclusively produces E-selective alkenylboronates. The hydroboration scope is vast, with the resilience of a range of synthetically beneficial functionalities, such as halides, ether, alkenyl, silyl and thiophenyl groups. This reaction proceeds through the involvement of a metal-hydride intermediate. The developed alkenylboronate can be smoothly converted to useful C-C, C-N and C-I bond-forming reactions.
Collapse
Affiliation(s)
- Rameshwar B Pawar
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Mital H Karmur
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
5
|
Wen J, Huang Y, Zhang Y, Grützmacher H, Hu P. Cobalt catalyzed practical hydroboration of terminal alkynes with time-dependent stereoselectivity. Nat Commun 2024; 15:2208. [PMID: 38467660 PMCID: PMC10928171 DOI: 10.1038/s41467-024-46550-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Stereodefined vinylboron compounds are important organic synthons. The synthesis of E-1-vinylboron compounds typically involves the addition of a B-H bond to terminal alkynes. The selective generation of the thermodynamically unfavorable Z-isomers remains challenging, necessitating improved methods. Here, such a proficient and cost-effective catalytic system is introduced, comprising a cobalt salt and a readily accessible air-stable CNC pincer ligand. This system enables the transformation of terminal alkynes, even in the presence of bulky substituents, with excellent Z-selectivity. High turnover numbers (>1,600) and turnover frequencies (>132,000 h-1) are achieved at room temperature, and the reaction can be scaled up to 30 mmol smoothly. Kinetic studies reveal a formal second-order dependence on cobalt concentration. Mechanistic investigations indicate that the alkynes exhibit a higher affinity for the catalyst than the alkene products, resulting in exceptional Z-selective performance. Furthermore, a rare time-dependent stereoselectivity is observed, allowing for quantitative conversion of Z-vinylboronate esters to the E-isomers.
Collapse
Affiliation(s)
- Jinglan Wen
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yahao Huang
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yu Zhang
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Hansjörg Grützmacher
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Peng Hu
- Institute of Green Chemistry and Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China.
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, PR China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, PR China.
| |
Collapse
|
6
|
Duran Arroyo V, Arevalo R. Tandem manganese catalysis for the chemo-, regio-, and stereoselective hydroboration of terminal alkynes: in situ precatalyst activation as a key to enhanced chemoselectivity. RSC Adv 2024; 14:5514-5523. [PMID: 38352676 PMCID: PMC10863604 DOI: 10.1039/d3ra08747f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
The manganese(ii) complex [Mn(iPrPNP)Cl2] (iPrPNP = 2,6-bis(diisopropylphosphinomethyl)pyridine) was found to catalyze the stereo- and regioselective hydroboration of terminal alkynes employing HBPin (pinacolborane). In the absence of in situ activators, mixtures of alkynylboronate and E-alkenylboronate esters were formed, whereas when NaHBEt3 was employed as the in situ activator, E-alkenylboronate esters were exclusively accessed. Mechanistic studies revealed a tandem C-H borylation/semihydrogenation pathway accounting for the formation of the products. Stoichiometric reactions hint toward reaction of a Mn-H active species with the terminal alkyne as the catalyst entry pathway to the cycle, whereas reaction with HBPin led to catalyst deactivation.
Collapse
Affiliation(s)
- Victor Duran Arroyo
- Department of Chemistry and Biochemistry, University of California 5200 North Lake Road 95343 Merced California USA
| | - Rebeca Arevalo
- Department of Chemistry and Biochemistry, University of California 5200 North Lake Road 95343 Merced California USA
| |
Collapse
|
7
|
Hood T, Lau S, Diefenbach M, Firmstone L, Mahon M, Krewald V, Webster RL. The Complex Reactivity of [(salen)Fe] 2(μ-O) with HBpin and Its Implications in Catalysis. ACS Catal 2023; 13:11841-11850. [PMID: 37671182 PMCID: PMC10476159 DOI: 10.1021/acscatal.3c02898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/01/2023] [Indexed: 09/07/2023]
Abstract
We report a detailed study into the method of precatalyst activation during alkyne cyclotrimerization. During these studies we have prepared a homologous series of Fe(III)-μ-oxo(salen) complexes and use a range of techniques including UV-vis, reaction monitoring studies, single crystal X-ray diffraction, NMR spectroscopy, and LIFDI mass spectrometry to provide experimental evidence for the nature of the on-cycle iron catalyst. These data infer the likelihood of ligand reduction, generating an iron(salan)-boryl complex as a key on-cycle intermediate. We use DFT studies to interrogate spin states, connecting this to experimentally identified diamagnetic and paramagnetic species. The extreme conformational flexibility of the salan system appears connected to challenges associated with crystallization of likely on-cycle species.
Collapse
Affiliation(s)
- Thomas
M. Hood
- Department
of Chemistry, University of Bath, Claverton Down, Bath, United Kingdom BA2 7AY
| | - Samantha Lau
- Department
of Chemistry, University of Bath, Claverton Down, Bath, United Kingdom BA2 7AY
| | - Martin Diefenbach
- Department
of Chemistry, TU Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| | - Leah Firmstone
- Department
of Chemistry, University of Bath, Claverton Down, Bath, United Kingdom BA2 7AY
| | - Mary Mahon
- Department
of Chemistry, University of Bath, Claverton Down, Bath, United Kingdom BA2 7AY
| | - Vera Krewald
- Department
of Chemistry, TU Darmstadt, Peter-Grünberg-Str. 4, 64287 Darmstadt, Germany
| | - Ruth L. Webster
- Department
of Chemistry, University of Bath, Claverton Down, Bath, United Kingdom BA2 7AY
| |
Collapse
|
8
|
Tendera L, Fantuzzi F, Marder TB, Radius U. Nickel boryl complexes and nickel-catalyzed alkyne borylation. Chem Sci 2023; 14:2215-2228. [PMID: 36845942 PMCID: PMC9945561 DOI: 10.1039/d2sc04690c] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/27/2023] [Indexed: 01/28/2023] Open
Abstract
The first nickel bis-boryl complexes cis-[Ni( i Pr2ImMe)2(Bcat)2], cis-[Ni( i Pr2ImMe)2(Bpin)2] and cis-[Ni( i Pr2ImMe)2(Beg)2] are reported, which were prepared via the reaction of a source of [Ni( i Pr2ImMe)2] with the diboron(4) compounds B2cat2, B2pin2 and B2eg2 ( i Pr2ImMe = 1,3-di-iso-propyl-4,5-dimethylimidazolin-2-ylidene; B2cat2 = bis(catecholato)diboron; B2pin2 = bis(pinacolato)diboron; B2eg2 = bis(ethylene glycolato)diboron). X-ray diffraction and DFT calculations strongly suggest that a delocalized, multicenter bonding scheme dictates the bonding situation of the NiB2 moiety in these square planar complexes, reminiscent of the bonding situation of "non-classical" H2 complexes. [Ni( i Pr2ImMe)2] also efficiently catalyzes the diboration of alkynes using B2cat2 as the boron source under mild conditions. In contrast to the known platinum-catalyzed diboration, the nickel system follows a different mechanistic pathway, which not only provides the 1,2-borylation product in excellent yields, but also provides an efficient approach to other products such as C-C coupled borylation products or rare tetra-borylated compounds. The mechanism of the nickel-catalyzed alkyne borylation was examined by means of stoichiometric reactions and DFT calculations. Oxidative addition of the diboron reagent to nickel is not dominant; the first steps of the catalytic cycle are coordination of the alkyne to [Ni( i Pr2ImMe)2] and subsequent borylation at the coordinated and, thus, activated alkyne to yield complexes of the type [Ni(NHC)2(η2-cis-(Bcat)(R)C[double bond, length as m-dash]C(R)(Bcat))], exemplified by the isolation and structural characterization of [Ni( i Pr2ImMe)2(η2-cis-(Bcat)(Me)C[double bond, length as m-dash]C(Me)(Bcat))] and [Ni( i Pr2ImMe)2(η2-cis-(Bcat)(H7C3)C[double bond, length as m-dash]C(C3H7)(Bcat))].
Collapse
Affiliation(s)
- Lukas Tendera
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Felipe Fantuzzi
- School of Chemistry and Forensic Science, University of KentPark Wood RdCanterburyCT2 7NHUK
| | - Todd B. Marder
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität WürzburgAm Hubland97074 WürzburgGermany,Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität WürzburgAm Hubland97074 WürzburgGermany
| | - Udo Radius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
9
|
Zhang G, Zheng S, Neary MC. An ionic Fe-based metal-organic-framework with 4'-pyridyl-2,2':6',2''-terpyridine for catalytic hydroboration of alkynes. RSC Adv 2023; 13:2225-2232. [PMID: 36741180 PMCID: PMC9834911 DOI: 10.1039/d2ra08040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
An ionic metal-organic-framework (MOF) containing nanoscale channels was readily assembled from ditopic 4'-pyridyl-2,2':6',2''-terpyridine (pytpy) and a simple iron(ii) salt. X-ray structural analysis revealed a two-dimensional grid-like framework assembled by classic octahedral (pytpy)2FeII cations as linkers (with pytpy as a new ditopic pyridyl ligand) and octa-coordinate FeCl2 centers as nodes. The layer-by-layer assembly of the 2-D framework resulted in the formation of 3-D porous materials consisting of nano-scale channels. The charges of the cationic framework were balanced with anionic Cl3FeOFeCl3 in its void channels. The new Fe-based MOF material was employed as a precatalyst for syn-selective hydroboration of alkynes under mild, solvent-free conditions in the presence of an activator, leading to the synthesis of a range of trans-alkenylboronates in good yields. The larger scale applicability and recyclability of the new MOF catalyst was further explored. This represents a rare example of an ionic MOF material that can be utilized in hydroboration catalysis.
Collapse
Affiliation(s)
- Guoqi Zhang
- Department of Sciences, John Jay College, PhD Program in Chemistry, The Graduate Center, The City University of New York New York NY 10019 USA
| | - Shengping Zheng
- Department of Chemistry, Hunter College, The City University of New York New York 10065 NY USA
| | - Michelle C Neary
- Department of Chemistry, Hunter College, The City University of New York New York 10065 NY USA
| |
Collapse
|
10
|
Dai Y, Yuan B, Li Z, Zhang L, Li L, Pu M, Lei M. Density Functional Theory Study on the H 2-Acceptorless Dehydrogenative Boration of Alkenes Catalyzed by a Zirconium Complex. J Org Chem 2022; 87:16632-16643. [PMID: 36446027 DOI: 10.1021/acs.joc.2c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the synthesis of vinyl boronate esters, the direct catalytic H2-acceptorless dehydrogenative boration of alkenes is one of the promising strategies. In this paper, the density functional theory method was employed to investigate the reaction mechanism of dehydrogenative boration and transfer boration of alkenes catalyzed by a zirconium complex (Cp2ZrH2). There are two possible pathways for this reaction: the alkene insertion followed by the dehydrogenative boration (path A) and the alkene insertion after the dehydrogenative boration (path B). The calculated results showed that path A is more favorable than path B, and that the rate-determining step is the C-B coupling step with an energy barrier of 18.7 kcal/mol. The reaction modes of the C-B coupling assisted dehydrogenative boration and the alkene insertion were also discussed. These analyses reveal a novel hydrogen release behavior in dehydrogenative boration and the alkene insertion modes and sequences were proposed to be of importance in the chemoselectivity of this reaction. In addition, the X ligand effect (X = H, Cl) on the catalytic activity of the zirconium complex was explored, indicating that the H ligand could enhance the catalytic activity of the complex for styrene dehydrogenative boration.
Collapse
Affiliation(s)
- Yulan Dai
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Binfang Yuan
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Zhewei Li
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Longfei Li
- College of Pharmaceutical Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Gregori BJ, Schmotz MWS, Jacobi von Wangelin A. Stereoselective Semi-Hydrogenations of Alkynes by First-Row (3d) Transition Metal Catalysts. ChemCatChem 2022; 14:e202200886. [PMID: 36632425 PMCID: PMC9825939 DOI: 10.1002/cctc.202200886] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Indexed: 01/14/2023]
Abstract
The chemo- and stereoselective semi-hydrogenation of alkynes to alkenes is a fundamental transformation in synthetic chemistry, for which the use of precious 4d or 5d metal catalysts is well-established. In mankind's unwavering quest for sustainability, research focus has considerably veered towards the 3d metals. Given their high abundancy and availability as well as lower toxicity and noxiousness, they are undoubtedly attractive from both an economic and an environmental perspective. Herein, we wish to present noteworthy and groundbreaking examples for the use of 3d metal catalysts for diastereoselective alkyne semi-hydrogenation as we embark on a journey through the first-row transition metals.
Collapse
Affiliation(s)
- Bernhard J. Gregori
- Dept. of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | | | | |
Collapse
|
12
|
Narro AL, Arman HD, Tonzetich ZJ. Insertion chemistry of iron(II) boryl complexes. Dalton Trans 2022; 51:15475-15483. [PMID: 36156616 DOI: 10.1039/d2dt02879d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron(II) boryl complexes of the pyrrole-based pincer ligand, CyPNP (CyPNP = anion of 2,5-bis(dicyclohexylphophinomethyl)pyrrole) have been synthesized and their insertion reactivity interrogated. Compounds of the type [Fe(BE)(CyPNP)] (E = pinacholato or catecholato) can be generated by treatment of the precursors, [Fe(OPh)(py)(CyPNP)] or [FeMe(CyPNP)], with B2E2. The boryl complexes are meta stable, but permit additional reactivity with several unsaturated substrates. Reaction with alkynes, RCCR', leads to rapid insertion into the Fe-B bond to generate stable vinyl boronate complexes of the type [Fe(C{R}C{R'}BE)(CyPNP)] (R, R' = H, Me, Ph, -CCPh). Each of the compounds is five-coordinate in the solid state by virtue of coordination of one of the oxygen atoms of the boronate ester. Similar reaction with nitriles, RCN (R = Ph, Me), results in facile de-cyanation to produce the correpsonding hydrocarbon complexes, [FeR(CyPNP)]. In the case of the bulky nitrile 1-AdCN, the insertion intermediate, [Fe(C{Ad}NBpin)(CyPNP)], has been isolated and structurally characterized. Treatment of the boryl complexes with styrene derivatives results in initial insertion to give an alkylboronate complex followed by either β-H elimination or protonation to give the products of C-H borylation and hydroboration, respectively.
Collapse
Affiliation(s)
- Ana L Narro
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA.
| | - Hadi D Arman
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA.
| | - Zachary J Tonzetich
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA.
| |
Collapse
|
13
|
Narro AL, Arman HD, Tonzetich ZJ. Mechanistic Studies of Alkyne Hydroboration by a Well-Defined Iron Pincer Complex: Direct Comparison of Metal-Hydride and Metal-Boryl Reactivity. Inorg Chem 2022; 61:10477-10485. [PMID: 35766905 DOI: 10.1021/acs.inorgchem.2c01325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron-hydride and iron-boryl complexes supported by a pyrrole-based pincer ligand, tBuPNP (PNP = anion of 2,5-bis(di-tert-butylphosphinomethyl)pyrrole), were employed for a detailed mechanistic study on the hydroboration of internal alkynes. Several novel complexes were isolated and fully characterized, including iron-vinyl and iron-boryl species, which represent likely intermediates in the catalytic hydroboration pathway. In addition, the products of alkyne insertion into the Fe-B bond have been isolated and structurally characterized. Mechanistic studies of the hydroboration reaction favor a pathway involving an active iron-hydride species, [FeH(tBuPNP)], which readily inserts alkyne and undergoes subsequent reaction with hydroborane to generate product. The iron-boryl species, [Fe(BR2)(tBuPNP)] (R2 = pin or cat), was found to be chemically competent, although its use in catalysis entailed an induction period whereby the iron-hydride species was generated. Stoichiometric reactions and kinetic experiments were performed to paint a fuller picture of the mechanism of alkyne hydroboration, including pathways for catalyst deactivation and the influence of substrate bulk on catalytic efficacy.
Collapse
Affiliation(s)
- Ana L Narro
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Hadi D Arman
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Zachary J Tonzetich
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| |
Collapse
|
14
|
Jia J, Wu T, Fu Y, Hu Z, Tang H, Pan Y, Huang F. Integrating Terminal CoBr
n
Salts into a 2D Cobalt(II) Coordination Polymer to Promote the
β
‐(
E)−
Selective Hydroboration of Alkynes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jun‐Song Jia
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Tai‐Xue Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Yi‐Jia Fu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Zhi‐Rong Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Fu‐Ping Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| |
Collapse
|
15
|
Zhang G, Zeng H, Zheng S, Neary MC, Dub PA. Vanadium-Catalyzed Stereo- and Regioselective Hydroboration of Alkynes to Vinyl Boronates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Guoqi Zhang
- Department of Sciences, John Jay College and PhD in Chemistry Program, The Graduate Center of City University of New York, New York, New York 10019, United States
| | - Haisu Zeng
- Department of Sciences, John Jay College and PhD in Chemistry Program, The Graduate Center of City University of New York, New York, New York 10019, United States
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
| | - Shengping Zheng
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
| | - Michelle C. Neary
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10065, United States
| | - Pavel A. Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
16
|
Yang M, Yu Y, Ma W, Feng Y, Zhang G, Wu Y, Zhou F, Yang Y, Liu D. Palladium-catalyzed hydroboration reaction of unactivated alkynes with bis (pinacolato) diboron in water. RSC Adv 2022; 12:9815-9820. [PMID: 35424934 PMCID: PMC8961796 DOI: 10.1039/d1ra09136k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Abstract
A highly efficient and mild palladium-catalyzed hydroboration of unactivated internal alkynes in water is described. Both aryl- and alkyl-substituted alkynes proceeded smoothly within the reaction time to afford the desired vinylboronates in moderate to high yields. Bis (pinacolato) diboron was used to afford α- and β-hydroborated products in the presence of HOAc. These reactions showed high reactivities and tolerance, thus providing a promising method for the synthesis of alkenyl boron compounds.
Collapse
Affiliation(s)
- Ming Yang
- School of Chemistry and Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University 1 Textile Road Wuhan 430073 Hubei China
| | - Yunzi Yu
- School of Chemistry and Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University 1 Textile Road Wuhan 430073 Hubei China
| | - Wenxia Ma
- School of Chemistry and Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University 1 Textile Road Wuhan 430073 Hubei China
| | - Yuqin Feng
- School of Chemistry and Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University 1 Textile Road Wuhan 430073 Hubei China
| | - Gang Zhang
- School of Chemistry and Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University 1 Textile Road Wuhan 430073 Hubei China
| | - Yaqi Wu
- School of Chemistry and Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University 1 Textile Road Wuhan 430073 Hubei China
| | - Fanyu Zhou
- School of Chemistry and Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University 1 Textile Road Wuhan 430073 Hubei China
| | - Yongsheng Yang
- School of Chemistry and Engineering, Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, Wuhan Textile University 1 Textile Road Wuhan 430073 Hubei China
| | - Dezheng Liu
- School of Mechanical Engineering, Hubei University of Arts and Science No. 296 Longzhong Road Xiangyang Hubei Province 41053 P. R. China
| |
Collapse
|
17
|
Geier SJ, Vogels CM, Melanson JA, Westcott SA. The transition metal-catalysed hydroboration reaction. Chem Soc Rev 2022; 51:8877-8922. [DOI: 10.1039/d2cs00344a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers the development of the transition metal-catalysed hydroboration reaction, from its beginnings in the 1980s to more recent developments including earth-abundant catalysts and an ever-expanding array of substrates.
Collapse
Affiliation(s)
- Stephen J. Geier
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Jennifer A. Melanson
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|
18
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
19
|
González MJ, Bauer F, Breit B. Cobalt-Catalyzed Hydroboration of Terminal and Internal Alkynes. Org Lett 2021; 23:8199-8203. [PMID: 34618449 DOI: 10.1021/acs.orglett.1c02854] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel methodology to access synthetically versatile vinylboronic esters through a ligand-controlled cobalt-catalyzed hydroboration of terminal and internal alkynes is reported. The approach relies on the in situ reduction of Co(II) by H-BPin in the presence of bisphosphine ligands generating catalytically active Co(I) hydride complexes. This procedure avoids the use of stoichiometric amounts of base, and no boron-containing byproducts are generated which is translated into high functional group tolerance and atom economy.
Collapse
Affiliation(s)
- María J González
- Institut für Organische Chemie, Albert-Ludwigs-Universität 21, 79104 Freiburg, Germany
| | - Felix Bauer
- Institut für Organische Chemie, Albert-Ludwigs-Universität 21, 79104 Freiburg, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität 21, 79104 Freiburg, Germany
| |
Collapse
|
20
|
Rej S, Das A, Panda TK. Overview of Regioselective and Stereoselective Catalytic Hydroboration of Alkynes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100950] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Supriya Rej
- Institut für Chemie Technische Universität Berlin Berlin, Strasse des 17. Juni 115 10623 Berlin Germany
| | - Amrita Das
- Department of Applied Chemistry Faculty of Engineering Osaka University 565-0871 Suita Osaka Japan
| | - Tarun K. Panda
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi 502285 Sangareddy Telangana India
| |
Collapse
|
21
|
Ton NNH, Mai BK, Nguyen TV. Tropylium-Promoted Hydroboration Reactions: Mechanistic Insights Via Experimental and Computational Studies. J Org Chem 2021; 86:9117-9133. [PMID: 34134487 DOI: 10.1021/acs.joc.1c01208] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydroboration reaction of alkynes is one of the most synthetically powerful tools to access organoboron compounds, versatile precursors for cross-coupling chemistry. This type of reaction has traditionally been mediated by transition-metal or main group catalysts. Herein, we report a novel method using tropylium salts, typically known as organic oxidants and Lewis acids, to promote the hydroboration reaction of alkynes. A broad range of vinylboranes can be easily accessed via this metal-free protocol. Similar hydroboration reactions of alkenes and epoxides can also be efficiently catalyzed by the same tropylium catalysts. Experimental studies and DFT calculations suggested that the reaction follows an uncommon mechanistic pathway, which is triggered by the hydride abstraction of pinacolborane with tropylium ion. This is followed by a series of in situ counterion-activated substituent exchanges to generate boron intermediates that promote the hydroboration reaction.
Collapse
Affiliation(s)
- Nhan N H Ton
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
22
|
Collett JD, Ransohoff RW, Krause JA, Guan H. An Iron‐Hydrogen Bond Resistant to Protonation and Oxidation. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Joel D. Collett
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati Ohio 45221-0172 United States
| | - Rebecca W. Ransohoff
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati Ohio 45221-0172 United States
| | - Jeanette A. Krause
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati Ohio 45221-0172 United States
| | - Hairong Guan
- Department of Chemistry University of Cincinnati P.O. Box 210172 Cincinnati Ohio 45221-0172 United States
| |
Collapse
|
23
|
Rana S, Biswas JP, Paul S, Paik A, Maiti D. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chem Soc Rev 2021; 50:243-472. [DOI: 10.1039/d0cs00688b] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | | | - Sabarni Paul
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Aniruddha Paik
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Debabrata Maiti
- Department of Chemistry
- IIT Bombay
- Mumbai-400076
- India
- Tokyo Tech World Research Hub Initiative (WRHI)
| |
Collapse
|
24
|
Wei D, Darcel C. Organophosphorus and Iron Catalysis: Good Partners for Hydrometalation of Olefins and Alkynes. J Org Chem 2020; 85:14298-14306. [PMID: 33169607 DOI: 10.1021/acs.joc.0c01637] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The last decades have seen an impressive development of iron complexes involving organophosphorus ligands applied in homogeneous catalyzed hydrometalation of olefins and alkynes. Two main topics will be covered in this JOCSynopsis: (i) an overview of the achievements in the area of iron-catalyzed hydrophosphination and then (ii) hydrosilylation, hydroborylation, and hydromagnesiation reactions promoted by catalysts based on organophosphorus ligands and iron.
Collapse
Affiliation(s)
- Duo Wei
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France
| | | |
Collapse
|
25
|
Blasius CK, Vasilenko V, Matveeva R, Wadepohl H, Gade LH. Reaction Pathways and Redox States in α-Selective Cobalt-Catalyzed Hydroborations of Alkynes. Angew Chem Int Ed Engl 2020; 59:23010-23014. [PMID: 32889757 PMCID: PMC7756293 DOI: 10.1002/anie.202009625] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/04/2020] [Indexed: 11/19/2022]
Abstract
Cobalt(II) alkyl complexes supported by a monoanionic NNN pincer ligand are pre‐catalysts for the regioselective hydroboration of terminal alkynes, yielding the Markovnikov products with α:β‐(E) ratios of up to 97:3. A cobalt(II) hydride and a cobalt(II) vinyl complex appear to determine the main reaction pathway. In a background reaction the highly reactive hydrido species specifically converts to a coordinatively unsaturated cobalt(I) complex which was found to re‐enter the main catalytic cycle.
Collapse
Affiliation(s)
- Clemens K Blasius
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Vladislav Vasilenko
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Regina Matveeva
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hubert Wadepohl
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Lutz H Gade
- Anorganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
26
|
Reaction Pathways and Redox States in α‐Selective Cobalt‐Catalyzed Hydroborations of Alkynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Garhwal S, Fridman N, de Ruiter G. Z-Selective Alkyne Functionalization Catalyzed by a trans-Dihydride N-Heterocyclic Carbene (NHC) Iron Complex. Inorg Chem 2020; 59:13817-13821. [PMID: 32955248 DOI: 10.1021/acs.inorgchem.0c02057] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Z-selective functionalization of terminal alkynes is a useful transformation in organic chemistry and mainly catalyzed by noble metals. Here, we present the Z-selective hydroboration of terminal alkynes catalyzed by a stable trans-dihydride iron complex [(PCNHCP)Fe(H)2N2)] (2). Overall, the reaction occurs at room temperature and provides near quantitative yields of the Z-vinylboronate ester. Interestingly, the same catalyst could also provide the E-vinylboronate by heating the reaction mixture at slightly elevated temperatures (50 °C). If, however, the reaction is performed in the absence of HBpin, rapid Z-selective alkyne dimerization is observed, which is further discussed in this report.
Collapse
Affiliation(s)
- Subhash Garhwal
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| |
Collapse
|
28
|
Qiu X, Li Y, Zhou L, Chen P, Li F, Zhang Y, Ling Y. Nickel(II)-Catalyzed Borylation of Alkenyl Methyl Ethers via C-O Bond Cleavage. Org Lett 2020; 22:6424-6428. [PMID: 32806217 DOI: 10.1021/acs.orglett.0c02236] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new protocol has been developed for the borylation of conjugated alkenyl methyl ethers using B2Pin2 via C-O bond cleavage catalyzed by Ni(II). In this cross-coupling reaction, both E/Z isomers of alkenyl ethers are converted into (E)-alkenyl boronic esters with good reactivity. This transformation exhibits high chemoselectivity in the presence of competitive C-O bonds such as aryl ether, ester, amide, and thioether groups, thus providing a new method for the construction of various alkenyl boronates.
Collapse
Affiliation(s)
- Xiaodong Qiu
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Yangyang Li
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Li Zhou
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Peishan Chen
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Fan Li
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Yanan Zhang
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Yong Ling
- School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong 226001, China
| |
Collapse
|
29
|
Zhu D, Gan S, Bao RLY, Shi L. Copper-catalyzed cross-coupling of vinyliodonium salts and diboron reagents to generate alkenyl boronic esters. Org Biomol Chem 2020; 18:5567-5570. [PMID: 32662488 DOI: 10.1039/d0ob01121e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient approach for the synthesis of alkenyl boronic esters through the copper-catalyzed cross-coupling of vinyliodonium salts and diboron reagents is reported. This method is distinguished by its mild conditions and short reaction time of less than 30 min, which should provide an additional way for the construction of alkenyl boronic esters.
Collapse
Affiliation(s)
- Dan Zhu
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Shaoyan Gan
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Robert Li-Yuan Bao
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Lei Shi
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
30
|
Panda TK, Banerjee I, Sagar S. Alkali Metal–Promoted Facile Synthesis of Secondary Amines from Imines and Carbodiimides. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5765] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tarun K. Panda
- Department of ChemistryIndian Institute of Technology Hyderabad Kandi Sangareddy Telangana 502285 India
| | - Indrani Banerjee
- Department of ChemistryIndian Institute of Technology Hyderabad Kandi Sangareddy Telangana 502285 India
| | - Shweta Sagar
- Department of ChemistryIndian Institute of Technology Hyderabad Kandi Sangareddy Telangana 502285 India
| |
Collapse
|
31
|
Merz LS, Ballmann J, Gade LH. Phosphines and
N
‐Heterocycles Joining Forces: an Emerging Structural Motif in PNP‐Pincer Chemistry. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lukas S. Merz
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Joachim Ballmann
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lutz H. Gade
- Anorganisch‐Chemisches Institut Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
32
|
Li C, Yang Z, Wang L, Guo Y, Huang Z, Ma S. Cobalt-Catalyzed Regio- and Stereoselective Hydroboration of Allenes. Angew Chem Int Ed Engl 2020; 59:6278-6283. [PMID: 31916351 DOI: 10.1002/anie.201915716] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Indexed: 12/21/2022]
Abstract
An efficient pincer-ligand-based cobalt-complex-catalyzed allene hydroboration affording Z-allylic boronates is described. The reaction demonstrates an excellent regio- as well as Z-stereoselectivity and a wide substrate scope that tolerates many functional groups. Based on solvent-assisted electrospray ionization mass spectrometry (SAESI-MS) studies, a rationale for the cobalt-catalyzed hydroboration involving the highly selective insertion of an allene into the Co-H bond to form Z-allylic cobalt intermediates is proposed.
Collapse
Affiliation(s)
- Can Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zheng Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China
| | - Lei Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China
| | - Zheng Huang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, P. R. China.,Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, P. R. China
| |
Collapse
|
33
|
Birepinte M, Liautard V, Chabaud L, Pucheault M. Zirconium-Catalyzed Synthesis of Alkenylaminoboranes: From a Reliable Preparation of Alkenylboronates to a Direct Stereodivergent Access to Alkenyl Bromides. Org Lett 2020; 22:2838-2843. [PMID: 32207309 DOI: 10.1021/acs.orglett.0c00908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A simple procedure has been optimized for the preparation of alkenylaminoborane from alkynes using diisopropylaminoborane and HZrCp2Cl. Coupled with a magnesium-catalyzed dehydrogenation, it allowed for the use of air- and moisture-stable diisopropylamine. This synthesis has been extended to a one-pot sequence leading directly to bromoalkenes with controlled stereochemistry. As such, it provides an easy, scalable, cheap process to access alkenylboronates and both (E)- and (Z)-bromoalkenes from commercially available alkynes.
Collapse
Affiliation(s)
- Mélodie Birepinte
- Institut des Sciences Moléculaires, UMR 5255, CNRS, Université de Bordeaux, 351 Cours de la libération, 33405 Talence, France
| | - Virginie Liautard
- Institut des Sciences Moléculaires, UMR 5255, CNRS, Université de Bordeaux, 351 Cours de la libération, 33405 Talence, France
| | - Laurent Chabaud
- Institut des Sciences Moléculaires, UMR 5255, CNRS, Université de Bordeaux, 351 Cours de la libération, 33405 Talence, France
| | - Mathieu Pucheault
- Institut des Sciences Moléculaires, UMR 5255, CNRS, Université de Bordeaux, 351 Cours de la libération, 33405 Talence, France
| |
Collapse
|
34
|
Birepinte M, Liautard V, Chabaud L, Pucheault M. Magnesium‐Catalyzed Tandem Dehydrogenation‐Dehydrocoupling: An Atom Economical Access to Alkynylboranes. Chemistry 2020; 26:3236-3240. [DOI: 10.1002/chem.201905772] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Mélodie Birepinte
- Institute of Molecular ScienceCNRS, Université de Bordeaux 351 Cours de la libération 33405 Talence Cedex France
| | - Virginie Liautard
- Institute of Molecular ScienceCNRS, Université de Bordeaux 351 Cours de la libération 33405 Talence Cedex France
| | - Laurent Chabaud
- Institute of Molecular ScienceCNRS, Université de Bordeaux 351 Cours de la libération 33405 Talence Cedex France
| | - Mathieu Pucheault
- Institute of Molecular ScienceCNRS, Université de Bordeaux 351 Cours de la libération 33405 Talence Cedex France
| |
Collapse
|
35
|
Sarkar N, Bera S, Nembenna S. Aluminum-Catalyzed Selective Hydroboration of Nitriles and Alkynes: A Multifunctional Catalyst. J Org Chem 2020; 85:4999-5009. [DOI: 10.1021/acs.joc.0c00234] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nabin Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar 752 050 India
| | - Subhadeep Bera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar 752 050 India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar 752 050 India
| |
Collapse
|
36
|
Li C, Yang Z, Wang L, Guo Y, Huang Z, Ma S. Cobalt‐Catalyzed Regio‐ and Stereoselective Hydroboration of Allenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Can Li
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zheng Yang
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
| | - Lei Wang
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
| | - Yinlong Guo
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
| | - Zheng Huang
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
| | - Shengming Ma
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 P. R. China
- Department of ChemistryFudan University 220 Handan Lu Shanghai 200433 P. R. China
| |
Collapse
|
37
|
Bhattacharjee J, Harinath A, Bano K, Panda TK. Highly Chemoselective Hydroboration of Alkynes and Nitriles Catalyzed by Group 4 Metal Amidophosphine-Borane Complexes. ACS OMEGA 2020; 5:1595-1606. [PMID: 32010834 PMCID: PMC6990649 DOI: 10.1021/acsomega.9b03598] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
We report a series of titanium and zirconium complexes supported by dianionic amidophosphine-borane ligands, synthesized by amine elimination and salt metathesis reactions. The TiIV complex [{Ph2P(BH3)N}2C6H4Ti(NMe2)2] (1) was obtained by the reaction between tetrakis-(dimethylamido)titanium(IV) and the protic aminophosphine-borane ligand [{Ph2P(BH3)NH}2C6H4] (LH2) at ambient temperature. Both the heteroleptic zirconium complexes-[η5-(C5H5)2Zr{Ph2P(BH3)N}2C6H4] (2) and [[{Ph2P(BH3)N}2C6H4]ZrCl2] (3)-and the homoleptic zirconium complex [[{Ph2P(BH3)N}2C6H4]2Zr] (4) were obtained in good yield by the salt metathesis reaction of either zirconocene dichloride [η5-(C5H5)2ZrCl2] or zirconium tetrachloride with the dilithium salt of the ligand [{Ph2P(BH3)NLi}2C6H4] (LLi2), which was prepared in situ. The molecular structures of the complexes 1, 2, and 4 in their solid states were confirmed by single-crystal X-ray diffraction analysis. Of these complexes, only titanium complex 1 acts as an effective catalyst for the facile hydroboration of terminal alkynes, yielding exclusive E-isomers. The hydroboration of organic nitriles yielded diborylamines with a broad substrate scope, including broad functional group compatibility. The mechanism of hydroboration occurs through the formation of titanium hydride as an active species.
Collapse
|
38
|
Kumar GS, Harinath A, Narvariya R, Panda TK. Homoleptic Zinc‐Catalyzed Hydroboration of Aldehydes and Ketones in the Presence of HBpin. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201901276] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gobbilla Sai Kumar
- Department of Chemistry Indian Institute of Technology Hyderabad, Kandi ‐502 285 Sangareddy Telangana India
| | - Adimulam Harinath
- Department of Chemistry Indian Institute of Technology Hyderabad, Kandi ‐502 285 Sangareddy Telangana India
| | - Rajrani Narvariya
- Department of Chemistry Indian Institute of Technology Hyderabad, Kandi ‐502 285 Sangareddy Telangana India
| | - Tarun K. Panda
- Department of Chemistry Indian Institute of Technology Hyderabad, Kandi ‐502 285 Sangareddy Telangana India
| |
Collapse
|
39
|
Liu X, Ming W, Friedrich A, Kerner F, Marder TB. Copper-Catalyzed Triboration of Terminal Alkynes Using B 2 pin 2 : Efficient Synthesis of 1,1,2-Triborylalkenes. Angew Chem Int Ed Engl 2020; 59:304-309. [PMID: 31502712 PMCID: PMC6972586 DOI: 10.1002/anie.201908466] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/31/2019] [Indexed: 02/04/2023]
Abstract
We report herein the catalytic triboration of terminal alkynes with B2 pin2 (bis(pinacolato)diboron) using readily available Cu(OAc)2 and Pn Bu3 . Various 1,1,2-triborylalkenes, a class of compounds that have been demonstrated to be potential matrix metalloproteinase (MMP-2) inhibitors, were obtained directly in moderate to good yields. The process features mild reaction conditions, a broad substrate scope, and good functional group tolerance. This copper-catalyzed reaction can be conducted on a gram scale to produce the corresponding 1,1,2-triborylalkenes in modest yields. The utility of these products was demonstrated by further transformations of the C-B bonds to prepare gem-dihaloborylalkenes (F, Cl, Br), monohaloborylalkenes (Cl, Br), and trans-diaryldiborylalkenes, which serve as important synthons and have previously been challenging to prepare.
Collapse
Affiliation(s)
- Xiaocui Liu
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Wenbo Ming
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Alexandra Friedrich
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Florian Kerner
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Todd B. Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with BoronJulius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
40
|
Thompson CV, Tonzetich ZJ. Pincer ligands incorporating pyrrolyl units: Versatile platforms for organometallic chemistry and catalysis. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2020.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Rami F, Bächtle F, Plietker B. Hydroboration of internal alkynes catalyzed by FeH(CO)(NO)(PPh3)2: a case of boron-source controlled regioselectivity. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02461a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Fe–H complex FeH(CO)(NO)(Ph3P)2 catalyzes the stereoselective, regiodivergent hydroboration of internal alkynes using either pinacolborane (HBpin) or bis(pinacolato)diboron (B2pin2) as a boron source.
Collapse
Affiliation(s)
- Fabian Rami
- Institut für Organische Chemie
- Universität Stuttgart
- DE-70569 Stuttgart
- Germany
| | - Franziska Bächtle
- Institut für Organische Chemie
- Universität Stuttgart
- DE-70569 Stuttgart
- Germany
| | - Bernd Plietker
- Institut für Organische Chemie
- Universität Stuttgart
- DE-70569 Stuttgart
- Germany
| |
Collapse
|
42
|
Duan XF. Iron catalyzed stereoselective alkene synthesis: a sustainable pathway. Chem Commun (Camb) 2020; 56:14937-14961. [DOI: 10.1039/d0cc04882h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Replacing expensive or toxic transition metals with iron has become an important trend. This article summarises the recent progresses of a wide range of Fe-catalyzed reactions for accessing various stereodefined alkenes.
Collapse
|
43
|
Banerjee I, Anga S, Bano K, Panda TK. Efficient and chemoselective hydroboration of organic nitriles promoted by TiIV catalyst supported by unsymmetrical acenaphthenequinonediimine ligand. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120958] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
44
|
Singh A, Shafiei‐Haghighi S, Smith CR, Unruh DK, Findlater M. Hydroboration of Alkenes and Alkynes Employing Earth‐Abundant Metal Catalysts. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900615] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Arpita Singh
- Department of Chemistry & Biochemistry Texas Tech University Lubbock, Texas 79409 USA
| | - Sara Shafiei‐Haghighi
- Department of Chemistry & Biochemistry Texas Tech University Lubbock, Texas 79409 USA
| | - Cecilia R. Smith
- Department of Chemistry & Biochemistry Texas Tech University Lubbock, Texas 79409 USA
| | - Daniel K. Unruh
- Department of Chemistry & Biochemistry Texas Tech University Lubbock, Texas 79409 USA
| | - Michael Findlater
- Department of Chemistry & Biochemistry Texas Tech University Lubbock, Texas 79409 USA
| |
Collapse
|
45
|
Liu X, Ming W, Friedrich A, Kerner F, Marder TB. Kupfer‐katalysierte Triborierung terminaler Alkine mit B
2
pin
2
: Effiziente Synthese von 1,1,2‐Triborylalkenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908466] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaocui Liu
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Wenbo Ming
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Alexandra Friedrich
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Florian Kerner
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Todd B. Marder
- Institut für Anorganische Chemie und Institut für Nachhaltige Chemie & Katalyse mit Bor Julius-Maximilians-Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| |
Collapse
|
46
|
Sokolnicki T, Szyling J, Franczyk A, Walkowiak J. Regio‐ and Stereoselective Synthesis of Enynyl Boronates via Ruthenium‐Catalyzed Hydroboration of 1,4‐Diaryl‐Substituted 1,3‐Diynes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Tomasz Sokolnicki
- Adam Mickiewicz University in PoznanCenter for Advanced Technology Uniwersytetu Poznańskiego 10 61–712 Poznań Poland
- Adam Mickiewicz University in Poznan Faculty of Chemistry Uniwersytetu Poznańskiego 8 61-712 Poznań Poland
| | - Jakub Szyling
- Adam Mickiewicz University in PoznanCenter for Advanced Technology Uniwersytetu Poznańskiego 10 61–712 Poznań Poland
- Adam Mickiewicz University in Poznan Faculty of Chemistry Uniwersytetu Poznańskiego 8 61-712 Poznań Poland
| | - Adrian Franczyk
- Adam Mickiewicz University in PoznanCenter for Advanced Technology Uniwersytetu Poznańskiego 10 61–712 Poznań Poland
| | - Jędrzej Walkowiak
- Adam Mickiewicz University in PoznanCenter for Advanced Technology Uniwersytetu Poznańskiego 10 61–712 Poznań Poland
| |
Collapse
|
47
|
Leong BX, Lee J, Li Y, Yang MC, Siu CK, Su MD, So CW. A Versatile NHC-Parent Silyliumylidene Cation for Catalytic Chemo- and Regioselective Hydroboration. J Am Chem Soc 2019; 141:17629-17636. [DOI: 10.1021/jacs.9b06714] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Bi-Xiang Leong
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jiawen Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yan Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Ming-Chung Yang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Chi-Kit Siu
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheuk-Wai So
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
48
|
Shi X, Li S, Wu L. H2‐Acceptorless Dehydrogenative Boration and Transfer Boration of Alkenes Enabled by Zirconium Catalyst. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiaonan Shi
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research Institute of LICPLanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Sida Li
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research Institute of LICPLanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective OxidationSuzhou Research Institute of LICPLanzhou Institute of Chemical Physics (LICP)Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
49
|
Shi X, Li S, Wu L. H
2
‐Acceptorless Dehydrogenative Boration and Transfer Boration of Alkenes Enabled by Zirconium Catalyst. Angew Chem Int Ed Engl 2019; 58:16167-16171. [DOI: 10.1002/anie.201908931] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/26/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaonan Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Sida Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP Lanzhou Institute of Chemical Physics (LICP) Chinese Academy of Sciences Lanzhou 730000 P. R. China
| |
Collapse
|
50
|
Tamang SR, Findlater M. Emergence and Applications of Base Metals (Fe, Co, and Ni) in Hydroboration and Hydrosilylation. Molecules 2019; 24:E3194. [PMID: 31484333 PMCID: PMC6749197 DOI: 10.3390/molecules24173194] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/16/2019] [Accepted: 08/26/2019] [Indexed: 02/08/2023] Open
Abstract
Base metal catalysis offers an alternative to reactions, which were once dominated by precious metals in hydrofunctionalization reactions. This review article details the development of some base metals (Fe, Co, and Ni) in the hydroboration and hydrosilylation reactions concomitant with a brief overview of recent advances in the field. Applications of both commercially available metal salts and well-defined metal complexes in catalysis and opportunities to further advance the field is discussed as well.
Collapse
Affiliation(s)
- Sem Raj Tamang
- Memorial Circle & Boston, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Michael Findlater
- Memorial Circle & Boston, Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|