1
|
Escolano M, Gaviña D, Alzuet-Piña G, Díaz-Oltra S, Sánchez-Roselló M, Pozo CD. Recent Strategies in the Nucleophilic Dearomatization of Pyridines, Quinolines, and Isoquinolines. Chem Rev 2024; 124:1122-1246. [PMID: 38166390 PMCID: PMC10902862 DOI: 10.1021/acs.chemrev.3c00625] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Dearomatization reactions have become fundamental chemical transformations in organic synthesis since they allow for the generation of three-dimensional complexity from two-dimensional precursors, bridging arene feedstocks with alicyclic structures. When those processes are applied to pyridines, quinolines, and isoquinolines, partially or fully saturated nitrogen heterocycles are formed, which are among the most significant structural components of pharmaceuticals and natural products. The inherent challenge of those transformations lies in the low reactivity of heteroaromatic substrates, which makes the dearomatization process thermodynamically unfavorable. Usually, connecting the dearomatization event to the irreversible formation of a strong C-C, C-H, or C-heteroatom bond compensates the energy required to disrupt the aromaticity. This aromaticity breakup normally results in a 1,2- or 1,4-functionalization of the heterocycle. Moreover, the combination of these dearomatization processes with subsequent transformations in tandem or stepwise protocols allows for multiple heterocycle functionalizations, giving access to complex molecular skeletons. The aim of this review, which covers the period from 2016 to 2022, is to update the state of the art of nucleophilic dearomatizations of pyridines, quinolines, and isoquinolines, showing the extraordinary ability of the dearomative methodology in organic synthesis and indicating their limitations and future trends.
Collapse
Affiliation(s)
- Marcos Escolano
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Daniel Gaviña
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Gloria Alzuet-Piña
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Santiago Díaz-Oltra
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - María Sánchez-Roselló
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Carlos Del Pozo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
2
|
Lin D, Liu Y, Yang H, Zhang X, Sun H, Jian Y, Zhang W, Yang J, Gao Z. A General Synthesis of Cross-Conjugated Enynones through Pd Catalyzed Sonogashira Coupling with Triazine Esters. Molecules 2023; 28:molecules28114364. [PMID: 37298843 DOI: 10.3390/molecules28114364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The palladium-catalyzed Sonogashira coupling of α, β-unsaturated acid derivatives offers a diversity-oriented synthetic strategy for cross-conjugated enynones. However, the susceptibility of the unsaturated C-C bonds adjacent to the carbonyl group toward Pd catalysts makes the direct conversion of α, β-unsaturated derivatives as acyl electrophiles to cross-conjugated ketones rare. This work presents a highly selective C-O activation approach to prepare cross-conjugated enynones using α, β-unsaturated triazine esters as acyl electrophiles. Under base and phosphine ligand-free conditions, NHC-Pd(II)-Allyl precatalyst alone catalyzed the cross-coupling of α, β-unsaturated triazine esters with terminal alkynes efficiently, yielding 31 cross-conjugated enynones with diverse functional groups. This method demonstrates the potential of triazine-mediated C-O activation for preparing highly functionalized ketones.
Collapse
Affiliation(s)
- Dezhi Lin
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yunfang Liu
- South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hongyu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xiao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Huaming Sun
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yajun Jian
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jianming Yang
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
3
|
Sreenivasulu G, Raju CE, Palaci MS, Sridhar B, Karunakar GV. Synthesis of Isoquinoline-Derived Diene Esters and Quinolin-2(1 H)-ylidene-Substituted 1,5-Diones from Enynones and (Iso) Quinoline N-Oxides. Org Lett 2023; 25:115-119. [PMID: 36583558 DOI: 10.1021/acs.orglett.2c03915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An efficient synthetic method was developed to access isoquinoline-derived diene esters from enynones and isoquinoline-N-oxides in an atom-economic manner. The isoquinoline-substituted diene esters were obtained in moderate to excellent yields via [3 + 2]-cycloaddition and isoxazole ring opening followed by a [1,5]-sigmatropic rearrangement reaction, which resulted in one C-C and two C-O bond formations. Further, quinolin-2(1H)-ylidene-substituted 1,5-diones were achieved by reaction of enynones with quinoline-N-oxides in very good to high yields.
Collapse
Affiliation(s)
- Gottam Sreenivasulu
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Chittala Emmaniel Raju
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Manda Shareni Palaci
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Balasubramanian Sridhar
- Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Galla V Karunakar
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
4
|
Zhang Z, Cao X, Song X, Wang G, Shi B, Li X, Ma N, Liu L, Zhang G. Metal-free nucleophilic 7,8-dearomatization of quinolines: Spiroannulation of aminoquinoline protected amino acids. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Das S. Recent applications of quinolinium salts in the synthesis of annulated heterocycles. SYNOPEN 2022. [DOI: 10.1055/a-1834-2189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Quinoline derivatives are frequently found in natural products and biologically active compounds, however, construction of quinoline fused polyheterocycles is the challenging goal in synthetic organic chemistry. In this regard, quinolinium salts meet the demand to a great level, as they can be synthesized readily and employed effectively for the rapid construction of condensed heterocyclic core. The present review focuses on recent (2015-2021) applications of different quinolinium salts that react with suitable partners to access diverse annulated products. Most of the reactions discussed here involve easily available starting materials, operationally simple, high atom efficiency and environmentally benign. Mechanistic aspects of representative transformations have also been highlighted for better understanding of reaction pathway.
Collapse
|
6
|
Raju CE, Balasubramanian S, Karunakar GV. Copper(I)-Catalyzed Formation of Isoquinoline and Quinoline Substituted Isobenzofurans. Org Lett 2022; 24:2899-2904. [DOI: 10.1021/acs.orglett.2c00864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chittala Emmaniel Raju
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India and
| | - Sridhar Balasubramanian
- Center for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Galla V. Karunakar
- Fluoro and Agrochemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India and
| |
Collapse
|
7
|
Wan Q, Xin L, Zhang J, Huang X. Efficient access to 1,3,4-trisubstituted pyrroles via gold-catalysed cycloisomerization of 1,5-diynes. Org Biomol Chem 2022; 20:1647-1651. [PMID: 35137761 DOI: 10.1039/d1ob02393d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A gold-catalysed cycloisomerization of 1,5-diynes is described, which offers a selective approach to access 1,3,4-trisubstituted pyrroles. In this reaction, the cationic gold catalyst activates the ynamide moiety, initiating the cycloisomerization to produce the pyrrole core, and H2O acts as an external nucleophile to trap the vinyl cationic species, thus leading to the formation of 1,3,4-trisubstituted pyrroles with high selectivity.
Collapse
Affiliation(s)
- Qiuling Wan
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China
| | - Luoting Xin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China.
| | - Xueliang Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China.
| |
Collapse
|
8
|
Sinha AK, Equbal D, Rastogi SK, Kumar S, Kumar R. An overview on Indole aryl sulfide/sulfone (IAS) as anti‐HIV non‐nucleoside reverse transcriptase inhibitors (NNRTIs). ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Arun Kumar Sinha
- CSIR-CDRI (Central Drug Research Institute) Medicinal and Process Chemistry Sitapur Road 226031 Lucknow INDIA
| | | | - Sumit K. Rastogi
- CSIR-CDRI: Central Drug Research Institute Medicinal and Process Chemistry INDIA
| | - Santosh Kumar
- CSIR-CDRI: Central Drug Research Institute Medicinal and process chemistry INDIA
| | - Ravindra Kumar
- CSIR-CDRI: Central Drug Research Institute Medicinal and process chemistry INDIA
| |
Collapse
|
9
|
Das S. Stereoselective synthesis of fused-, spiro- and bridged heterocycles via cyclization of isoquinolinium salts: A recent update. Org Biomol Chem 2022; 20:1838-1868. [DOI: 10.1039/d1ob02478g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Isoquinoline and its derivatives are ubiquitous in natural alkaloids, synthetic materials and pharmaceuticals with broad spectrum of biological activities. In particular, isoquinolinium salts are important in organic synthesis because they...
Collapse
|
10
|
Ghosh A, Hegde RV, Rode HB, Ambre R, Mane MV, Patil SA, Sridhar B, Dateer RB. Catalyst- and Additive-Free Approach to Constructing Benzo-oxazine, Benzo-oxazepine, and Benzo-oxazocine: O Atom Transfer and C═O, C-N, and C-O Bond Formation at Room Temperature. Org Lett 2021; 23:8189-8193. [PMID: 34643397 DOI: 10.1021/acs.orglett.1c02895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An exclusive synthesis of benzo-oxazine, benzo-oxazepine, and benzo-oxazocine from aryl propanal and 2-(hydroxyamino)phenyl alcohol under metal-free conditions is described. O atom transfer and formation of new C═O, C-N, and C-O bonds occur at room temperature to form six-, seven-, and eight-membered heterocycles under one-pot reaction conditions without using an external oxidant and base. The photophysical properties are studied using ultraviolet-visible absorption and photoluminescence. The mechanistic elucidation is well supported by control experiment and literature precedents.
Collapse
Affiliation(s)
- Arnab Ghosh
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Rajeev V Hegde
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Haridas B Rode
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India.,Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Ram Ambre
- Institute of Chemistry, Academia Sinica, Nangang, Taipei 11529, Taiwan, Republic of China
| | - Manoj V Mane
- KAUST Catalysis Centre, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Siddappa A Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Balasubramanian Sridhar
- Center for X-ray Crystallography Analytical Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana 500007, India
| | - Ramesh B Dateer
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| |
Collapse
|
11
|
Kumar R, Nguyen QH, Um TW, Shin S. Recent Progress in Enolonium Chemistry under Metal-Free Conditions. CHEM REC 2021; 22:e202100172. [PMID: 34418282 DOI: 10.1002/tcr.202100172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022]
Abstract
Umpolung approach through inversion of the polarity of conventional enolates, has opened up an unprecedented opportunity in the cross-coupling via alkylation. The enolonium equivalents can be accessed either by hypervalent iodine reagents, activation/oxidation of amides, or the oxidation of alkynes. Under umpolung conditions, highly basic conditions required for classical enolate chemistry can be avoided, and they can couple with unmodified nucleophiles such as heteroatom donors and electron-rich arenes.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Quynh H Nguyen
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Tae-Woong Um
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| | - Seunghoon Shin
- Department of Chemistry, Center for New Directions in Organic Chemistry (CNOS), and Institute for Natural Sciences, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Korea
| |
Collapse
|
12
|
Asymmetric transfer hydrogenation of unsaturated ketones; factors influencing 1,4- vs 1,2- regio- and enantioselectivity, and alkene vs alkyne directing effects. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Yang WW, Ye YF, Chen LL, Fu JY, Zhu JY, Wang YB. Catalyst- and Additive-Free Annulation of Ynediones and (Iso)Quinoline N-Oxides: An Approach to Synthesis of Pyrrolo[2,1- a]Isoquinolines and Pyrrolo[1,2- a]Quinolines. J Org Chem 2020; 86:169-177. [PMID: 33252226 DOI: 10.1021/acs.joc.0c01932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A simple and effective annulation of ynediones and (iso)quinoline N-oxides was developed to afford various functionalized pyrrolo[2,1-a]isoquinolines and pyrrolo[1,2-a]quinolines in moderate to excellent yields. This protocol underwent a tandem [3 + 2] cycloaddition/ring-opening/N-nucleophilic addition, which exhibited high regioselectivity, broad substrate tolerance, and atom economy under catalyst-, additive-free, and air conditions. Moreover, indolizine was also successfully prepared using pyridine N-oxide.
Collapse
Affiliation(s)
- Wan-Wan Yang
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 75004, China
| | - Ya-Fang Ye
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 75004, China
| | - Lu-Lu Chen
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 75004, China
| | - Ji-Ya Fu
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 75004, China
| | - Jun-Yan Zhu
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 75004, China
| | - Yan-Bo Wang
- Institute of Functional Organic Molecular Engineering, Henan Engineering Laboratory of Flame-Retardant and Functional Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 75004, China
| |
Collapse
|
14
|
Recent Advances in the Synthesis of C2‐Functionalized Pyridines and Quinolines Using
N
‐Oxide Chemistry. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000910] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
He Q, Xie F, Xia C, Liang W, Guo Z, Zhu Z, Li Y, Chen X. Copper-Catalyzed Selective 1,2-Difunctionalization of N-Heteroaromatics through Cascade C-N/C═C/C═O Bond Formation. Org Lett 2020; 22:7976-7980. [PMID: 32997943 DOI: 10.1021/acs.orglett.0c02910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study presents an efficient strategy for constructing 1,2-difunctionalized quinoline derivatives via the multicomponent cascade coupling of N-heteroaromatics with alkyl halides and different terminal alkynes. This reaction was achieved through sequential functionalization at the one- and two-positions of quinolines, which displayed a broad substrate scope, environmental friendliness, excellent functional group tolerance, high atom efficiency, and chemoselectivity. The multicomponent coupling involved the abnormal construction of new C-N, C═C, and C═O bonds in one pot. The applicability of this method was further demonstrated by the late-stage functionalization of complex drug molecules under the established conditions.
Collapse
Affiliation(s)
- Qianlin He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Chuanjiang Xia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Wanyi Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Ziyin Guo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhongzhi Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
16
|
Baykov SV, Boyarskiy VP. Metal-Free Functionalization of Azine N-Oxides with Electrophilic Reagents. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02737-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Yang WW, Chen LL, Chen P, Ye YF, Wang YB, Zhang X. Solvent-controlled divergent annulation of ynones and (iso)quinoline N-oxides: of 3-((iso)quinolin-1-yl)-4H-chromen-4-ones and 13H-isoquinolino[2,1-a]quinolin-13-ones. Chem Commun (Camb) 2020; 56:1183-1186. [PMID: 31894780 DOI: 10.1039/c9cc08713c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An effective annulation of ynones and (iso)quinoline N-oxides was developed to deliver various functionalized 3-((iso)quinolin-1-yl)-4H-chromen-4-ones and 13H-isoquinolino[2,1-a]quinolin-13-ones in moderate to excellent yields, respectively. This protocol exhibits high regioselectivity and broad substrate scope under transition-metal-free conditions. Moreover, the key reaction intermediate was successfully isolated and determined unambiguously by single crystal X-ray crystallography.
Collapse
Affiliation(s)
- Wan-Wan Yang
- Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | | | | | | | | | | |
Collapse
|
18
|
Liu J, Ba D, Chen Y, Wen S, Cheng G. Synthesis of 3-(2-quinolyl) chromones from ynones and quinoline N-oxides via tandem reactions under transition metal- and additive-free conditions. Chem Commun (Camb) 2020; 56:4078-4081. [DOI: 10.1039/c9cc09460a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The synthesis of 3-(2-quinolyl) chromones from ynones and quinoline N-oxides via a sequential [3+2] cycloaddition/ring-opening/O-arylation reaction under transition metal- and additive-free conditions is reported.
Collapse
Affiliation(s)
- Jing Liu
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Dan Ba
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Yanhui Chen
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Si Wen
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| | - Guolin Cheng
- College of Materials Science & Engineering
- Huaqiao University
- Xiamen 361021
- China
| |
Collapse
|
19
|
Zhang S, Wu C, Zhang Z, Wang T. Metal-Free Synthesis of 3-(Iso)quinolinyl 4-Chromenones and 3-(Iso)quinolinyl 4-Quinolones from (Iso)quinoline N-Oxides and Ynones. Org Lett 2019; 21:9995-9998. [PMID: 31794231 DOI: 10.1021/acs.orglett.9b03921] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No.620 West Chang’an Avenue, Xi’an 710119, China
| | - Chun Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No.620 West Chang’an Avenue, Xi’an 710119, China
| | - Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No.620 West Chang’an Avenue, Xi’an 710119, China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No.620 West Chang’an Avenue, Xi’an 710119, China
| |
Collapse
|
20
|
Li Y, Yu J, Bi Y, Yan G, Huang D. Tandem Reactions of Ynones:viaConjugate Addition of Nitrogen‐, Carbon‐, Oxygen‐, Boron‐, Silicon‐, Phosphorus‐, and Sulfur‐Containing Nucleophiles. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900611] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yang Li
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| | - Jian Yu
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| | - Yicheng Bi
- Department of ChemistryQingdao University of Science & Technology Qingdao Shandong People's Republic of China
| | - Guobing Yan
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| | - Dayun Huang
- Department of ChemistryLishui University No. 1 Xueyuan Road Lishui City 323000 Zhejiang Province People's Republic of China
| |
Collapse
|
21
|
Li X, Zhou G, Du X, Wang T, Zhang Z. Catalyst- and Additive-Free Cascade Reaction of Isoquinoline N-Oxides with Alkynones: An Approach to Benzoazepino[2,1-a]isoquinoline Derivatives. Org Lett 2019; 21:5630-5633. [PMID: 31287323 DOI: 10.1021/acs.orglett.9b01966] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xuetong Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| | - Guanghua Zhou
- Department of Chemistry, Nanchang Normal University, No. 889 Ruixiang Road, Nanchang 330032, China
| | - Xinru Du
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| | - Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, No. 620 West Chang’an Avenue, Xi’an 710119, China
| |
Collapse
|
22
|
Sharma P, Singh RR, Giri SS, Chen LY, Cheng MJ, Liu RS. Gold-Catalyzed Oxidation of Thioalkynes To Form Phenylthio Ketene Derivatives via a Noncarbene Route. Org Lett 2019; 21:5475-5479. [PMID: 31274331 DOI: 10.1021/acs.orglett.9b01768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gold-catalyzed oxidations of thioalkynes with 8-methylquinoline oxides afford 2-phenylthioketenes that can be trapped efficiently with alcohols. The synthetic utility is manifested by terminal and internal thioalkynes over a wide scope, bearing esters, ketones, alkyl, and oxime substituents. Our density functional theory calculations suggest that gold-catalyzed oxidations of terminal and internal thioalkynes with 8-methylquinoline oxides generate gold-bound ketene intermediates without the intermediacy of α-oxo gold carbene.
Collapse
Affiliation(s)
- Pankaj Sharma
- Frontier Research Center on Fundamental and Applied Sciences of Matters, Department of Chemistry , National Tsing-Hua University , Hsinchu , Taiwan , Republic of China
| | - Rahulkumar Rajmani Singh
- Frontier Research Center on Fundamental and Applied Sciences of Matters, Department of Chemistry , National Tsing-Hua University , Hsinchu , Taiwan , Republic of China
| | - Sovan Sundar Giri
- Frontier Research Center on Fundamental and Applied Sciences of Matters, Department of Chemistry , National Tsing-Hua University , Hsinchu , Taiwan , Republic of China
| | - Liang-Yu Chen
- Department of Chemistry , National Cheng Kung University , Tainan 701 , Taiwan , Republic of China
| | - Mu-Jeng Cheng
- Department of Chemistry , National Cheng Kung University , Tainan 701 , Taiwan , Republic of China
| | - Rai-Shung Liu
- Frontier Research Center on Fundamental and Applied Sciences of Matters, Department of Chemistry , National Tsing-Hua University , Hsinchu , Taiwan , Republic of China
| |
Collapse
|
23
|
Golovanov AA, Gusev DM, Odin IS, Zlotskii SS. Conjugated 2,4,1- and 1,4,3-enynones as polycentricelectrophiles in synthesis of heterocyclic compounds. Chem Heterocycl Compd (N Y) 2019. [DOI: 10.1007/s10593-019-02462-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Wagh SB, Singh RR, Sahani RL, Liu RS. Gold-Catalyzed Oxidative Hydrative Alkenylations of Propargyl Aryl Thioethers with Quinoline N-Oxides Involving a 1,3-Sulfur Migration. Org Lett 2019; 21:2755-2758. [DOI: 10.1021/acs.orglett.9b00705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | | | | | - Rai-Shung Liu
- Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan, ROC
| |
Collapse
|
25
|
Golovanov AA, Odin IS, Zlotskii SS. Conjugated enynones: preparation, properties and applications in organic synthesis. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4808] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Wagh SB, Sharma P, Patil MD, Liu RS. Gold-catalyzed oxidative cycloalkenations of alkynes with quinoline N-oxides. Org Chem Front 2019. [DOI: 10.1039/c8qo01175c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports gold-catalyzed oxidative cycloalkenations of phenyl propargyl ethers and phenoxyalkynes with quinoline N-oxides to afford 4-alkylidenechroman-2-ones and 3-alkylidenebenzofuran-2-ones respectively.
Collapse
Affiliation(s)
- Sachin Bhausaheb Wagh
- Frontier Research Center on Fundamental and Applied Science of Matters
- Department of Chemistry
- National Tsing-Hua University
- Hsinchu
- Republic of China
| | - Pankaj Sharma
- Frontier Research Center on Fundamental and Applied Science of Matters
- Department of Chemistry
- National Tsing-Hua University
- Hsinchu
- Republic of China
| | - Manoj D. Patil
- Frontier Research Center on Fundamental and Applied Science of Matters
- Department of Chemistry
- National Tsing-Hua University
- Hsinchu
- Republic of China
| | - Rai-Shung Liu
- Frontier Research Center on Fundamental and Applied Science of Matters
- Department of Chemistry
- National Tsing-Hua University
- Hsinchu
- Republic of China
| |
Collapse
|
27
|
Li X, Wang T, Zhang Z. Synthesis of 4-(Iso)Quinolinyl-3(2H
)-furanones from (Iso)Quinoline N
-oxides and 1,4-Diyn-3-ones: A Comparison of Copper Catalysis and Metal-free Reaction. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801382] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xuetong Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering; Shaanxi Normal University; No.620 West Chang'an Avenue Xi'an 710119 People's Republic of China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering; Shaanxi Normal University; No.620 West Chang'an Avenue Xi'an 710119 People's Republic of China
| | - Zunting Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering; Shaanxi Normal University; No.620 West Chang'an Avenue Xi'an 710119 People's Republic of China
| |
Collapse
|
28
|
Zarkoob F, Ariafard A. Mechanistic Elucidation of Gold(I)-Catalyzed Oxidation of a Propargylic Alcohol by a N-Oxide in the Presence of an Imine Using DFT Calculations. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Fatemeh Zarkoob
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran
| | - Alireza Ariafard
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran
- School of Natural Sciences (Chemistry), University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia
| |
Collapse
|
29
|
Zhang YQ, Zhu XQ, Chen YB, Tan TD, Yang MY, Ye LW. Synthesis of Isothiochroman-3-ones via Metal-Free Oxidative Cyclization of Alkynyl Thioethers. Org Lett 2018; 20:7721-7725. [PMID: 30444375 DOI: 10.1021/acs.orglett.8b03462] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel Brønsted acid-catalyzed oxidative C-H functionalization of alkynyl thioethers has been developed. This method allows the practical synthesis of valuable isothiochroman-3-ones in mostly moderate to good yields under mild reaction conditions and features a broad substrate scope and wide functional group tolerance. Moreover, this metal-free oxidation can also be used to promote formal N-H insertion involving an unexpected 1,2-sulfur migration, affording useful 1,4-benzothiazin-3-ones.
Collapse
Affiliation(s)
- Ying-Qi Zhang
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Xin-Qi Zhu
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Yang-Bo Chen
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Tong-De Tan
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Ming-Yang Yang
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Long-Wu Ye
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China.,State Key Laboratory of Organometallic Chemistry , Chinese Academy of Sciences , Shanghai 200032 , China
| |
Collapse
|
30
|
Zheng B, Trieu TH, Li FL, Zhu XL, He YG, Fan QQ, Shi XX. Copper-Catalyzed Benign and Efficient Oxidation of Tetrahydroisoquinolines and Dihydroisoquinolines Using Air as a Clean Oxidant. ACS OMEGA 2018; 3:8243-8252. [PMID: 31458961 PMCID: PMC6644811 DOI: 10.1021/acsomega.8b00855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 06/06/2018] [Indexed: 06/10/2023]
Abstract
A green chemical method for mild oxidation of 1,2,3,4-tetrahydroisoquinolines (THIQs) and 3,4-dihydroisoquinolines (DHIQs) has been developed using air (O2) as a clean oxidant. DHIQs and THIQs could be efficiently oxidized to isoquinolines in dimethyl sulfoxide at 25 °C under an open air atmosphere with CuBr2 (20 mol %) as the catalyst; different bases [NaOEt and/or 1,8-diazabicyclo[5,4,0]undec-7-ene] were used for the reaction according to the patterns of substituents (R1, R2).
Collapse
Affiliation(s)
- Bo Zheng
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Tien Ha Trieu
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Feng-Lei Li
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Xing-Liang Zhu
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Yun-Gang He
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Qi-Qi Fan
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| | - Xiao-Xin Shi
- Shanghai
Key Laboratory of Chemical Biology, School of Pharmacy, and Department of
Pharmaceutical Engineering, School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, P. R. China
| |
Collapse
|
31
|
Hamada N, Yamaguchi A, Inuki S, Oishi S, Ohno H. Gold(I)-Catalyzed Oxidative Cascade Cyclization of 1,4-Diyn-3-ones for the Construction of Tropone-Fused Furan Scaffolds. Org Lett 2018; 20:4401-4405. [DOI: 10.1021/acs.orglett.8b01524] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Naoka Hamada
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ayuta Yamaguchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
32
|
Petrosyan A, Hauptmann R, Pospech J. Heteroarene N
-Oxides as Oxygen Source in Organic Reactions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800152] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Andranik Petrosyan
- Leibniz-Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18057 Rostock Germany
| | - Richy Hauptmann
- Leibniz-Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18057 Rostock Germany
| | - Jola Pospech
- Leibniz-Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18057 Rostock Germany
| |
Collapse
|
33
|
Carabineiro SAC, Martins LMDRS, Pombeiro AJL, Figueiredo JL. Commercial Gold(I) and Gold(III) Compounds Supported on Carbon Materials as Greener Catalysts for the Oxidation of Alkanes and Alcohols. ChemCatChem 2018. [DOI: 10.1002/cctc.201701886] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sónia A. C. Carabineiro
- Laboratório de Catálise e Materiais, Laboratório Associado LSRE-LCM, Faculdade de Engenharia; Universidade do Porto; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| | - Luísa M. D. R. S. Martins
- Centro de Química Estrutural, Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico; Universidade de Lisboa; Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - José L. Figueiredo
- Laboratório de Catálise e Materiais, Laboratório Associado LSRE-LCM, Faculdade de Engenharia; Universidade do Porto; Rua Dr. Roberto Frias 4200-465 Porto Portugal
| |
Collapse
|