1
|
Abonia R, Insuasty D, Castillo JC, Laali KK. Recent Advances in the Synthesis of Organic Thiocyano (SCN) and Selenocyano (SeCN) Compounds, Their Chemical Transformations and Bioactivity. Molecules 2024; 29:5365. [PMID: 39598754 PMCID: PMC11596349 DOI: 10.3390/molecules29225365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
New approaches for the synthesis of organic thio- and selenocyanates, and methods to incorporate them into more complex structures, including a wide variety of heterocyclic and polycylic derivatives, are reviewed. Protocols that convert the SCN and SeCN moieties into the thio and seleno derivatives by transforming the cyano group are also examined. In representative cases, the bioactivity data for these classes of compounds are reviewed.
Collapse
Affiliation(s)
- Rodrigo Abonia
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, Cali A. A. 25360, Colombia;
| | - Daniel Insuasty
- Grupo de Investigación en Química y Biología, Departamento de Química y Biología, Universidad del Norte, Km 5 vía Puerto Colombia 1569, Barranquilla Atlántico 081007, Colombia;
| | - Juan-Carlos Castillo
- Escuela de Ciencias Químicas, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja 150003, Colombia;
| | - Kenneth K. Laali
- Department of Chemistry and Biochemistry, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224, USA
| |
Collapse
|
2
|
Castro-Godoy WD, Heredia AA, Bouchet LM, Argüello JE. Synthesis of Selenium Derivatives using Organic Selenocyanates as Masked Selenols: Chemical Reduction with Rongalite as a Simpler Tool to give Nucleophilic Selenides. Chempluschem 2024; 89:e202400183. [PMID: 38648466 DOI: 10.1002/cplu.202400183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The chemical reduction within a family of organic selenocyanates, as masked selenols, using reducing agents, such as Rongalite, sodium dithionite, and sodium thiosulfate is investigated. Using Rongalite, the corresponding diselenides were obtained quantitatively and selectively in very good to excellent yields (51-100 %) starting from alkyl, aryl, and benzyl selenocyanates. The scope of the reaction is unaffected by the electronic nature of the substituents. Furthermore, the reducing agent, Rongalite, is compatible with hydrolysable and reducing-sensitive functional groups. Additionally, a simple methodology employing the in-situ generated benzyl selenolate anion (PhCH2Se-) to promote aliphatic nucleophilic substitution, epoxide ring opening, and Michael addition reactions has been developed; thus, extending the structural diversity of the synthesized selenium derivatives.
Collapse
Affiliation(s)
- Willber D Castro-Godoy
- Dpto. de Química, Física y Matemática, Facultad de Química y Farmacia, Universidad de El Salvador, Final Av. de Mártires y Héroes del 30 de Julio, San, Salvador, 1101, El Salvador
| | - Adrián A Heredia
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Lydia M Bouchet
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Juan E Argüello
- INFIQC-CONICET-UNC, Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|
3
|
Sonego JM, de Diego SI, Szajnman SH, Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds: Chemistry and Applications in Organic Synthesis. Chemistry 2023; 29:e202300030. [PMID: 37378970 DOI: 10.1002/chem.202300030] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2023]
Abstract
Selenium, originally described as a toxin, turns out to be a crucial trace element for life that appears as selenocysteine and its dimer, selenocystine. From the point of view of drug developments, selenium-containing drugs are isosteres of sulfur and oxygen with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. In this article, we have focused on the relevant features of the selenium atom, above all, the corresponding synthetic approaches to access a variety of organoselenium molecules along with the proposed reaction mechanisms. The preparation and biological properties of selenosugars, including selenoglycosides, selenonucleosides, selenopeptides, and other selenium-containing compounds will be treated. We have attempted to condense the most important aspects and interesting examples of the chemistry of selenium into a single article.
Collapse
Affiliation(s)
- Juan M Sonego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sheila I de Diego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
4
|
Radzhabov AD, Soldatova NS, Ivanov DM, Yusubov MS, Kukushkin VY, Postnikov PS. Metal-free and atom-efficient protocol for diarylation of selenocyanate by diaryliodonium salts. Org Biomol Chem 2023; 21:6743-6749. [PMID: 37552120 DOI: 10.1039/d3ob00833a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
We developed an atom- and reaction mass efficient strategy for the preparation of diarylselenides using iodonium salts as reactants. The developed approach allows the obtaining of diarylselenides from the corresponding trimethoxyphenyl-substituted iodonium salts via a two-step one-pot reaction sequence. The proposed metal-free methodology is based on the involvement of both iodonium aryl groups for diarylation.
Collapse
Affiliation(s)
- Amirbek D Radzhabov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.
| | - Natalia S Soldatova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.
| | - Daniil M Ivanov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Mekhman S Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.
| | - Vadim Yu Kukushkin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russian Federation
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.
- Department of Solid State Engineering, Institute of Chemical Technology, Prague 16628, Czech Republic
| |
Collapse
|
5
|
Azeem Z, Mandal PK. Atom-Economic Synthesis of Unsymmetrical gem-Diarylmethylthio/Seleno Glycosides via Base Mediated C(O)-S/Se Bond Cleavage and Acyl Transfer Approach of Glycosylthio/Selenoacetates. J Org Chem 2023; 88:1695-1712. [PMID: 36633914 DOI: 10.1021/acs.joc.2c02704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Herein, we invented the Cs2CO3-mediated atom economic method that streamlines the scission of the C(O)-S/Se bond involving the in situ generation of an anomeric thiolate/selenolate anion, which reacted with p-QMs to yield novel unsymmetrical gem-diarylmethylthio/seleno glycosides while retaining the anomeric stereochemistry. Notably, the key features of this protocol involve unprecedented long-range acyl transfer (from S/Se to O), thus affording acylation of the final product which is not yet reported by classical methods. This straightforward protocol offers a mild, short reaction time, synthetically simple approach, and compatibility with 8 types of sugar along with phenylthio/benzylseleno esters.
Collapse
Affiliation(s)
- Zanjila Azeem
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pintu Kumar Mandal
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
6
|
He WB, Tang LL, Jiang J, Li X, Xu X, Yang TB, He WM. Paired Electrolysis Enabled Cyanation of Diaryl Diselenides with KSCN Leading to Aryl Selenocyanates. Molecules 2023; 28:molecules28031397. [PMID: 36771059 PMCID: PMC9919590 DOI: 10.3390/molecules28031397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
The first example of paired electrolysis-enabled cyanation of diaryl diselenides, with KSCN as the green cyanating agent, has been developed. A broad range of aryl selenocyanates can be efficiently synthesized under chemical-oxidant- and additive-free, energy-saving and mild conditions.
Collapse
Affiliation(s)
- Wei-Bao He
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Luo-Lin Tang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xiao Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xinhua Xu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Correspondence: (X.X.); (W.-M.H.)
| | - Tian-Bao Yang
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Min He
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Correspondence: (X.X.); (W.-M.H.)
| |
Collapse
|
7
|
Xu-Xu QF, Nishii Y, Miura M. Synthesis of Diarylselenides through Rh-Catalyzed Direct Diarylation of Elemental Selenium with Benzamides. J Org Chem 2022; 87:16887-16894. [DOI: 10.1021/acs.joc.2c02131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- Qing-Feng Xu-Xu
- Innovative Catalysis Science Division, Institute for Open and Transitionary Research Initiative (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Innovative Catalysis Science Division, Institute for Open and Transitionary Research Initiative (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Wang J, Lu XX, Yang RP, Xiang ZH, Zhang BB, Chao S, Liu L, Yan Y, Shang X. Synthesis of Spiro[5.5]trienones- and Spiro[4.5]trienones-Fused Selenocyanates via Electrophilic Selenocyanogen Cyclization and Dearomative Spirocyclization. J Org Chem 2022; 87:13089-13101. [PMID: 36170059 DOI: 10.1021/acs.joc.2c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A practical strategy for the synthesis of spiro[5.5]trienones-fused selenocyanates and spiro[4.5]trienones-fused selenocyanates through electrophilic selenocyanogen cyclization and dearomative spirocyclization is reported. This approach was conducted under mild conditions with broad substrate scope and good functional group tolerance. The utility of this procedure is exhibited in the late-stage functionalization of nature product and drug molecules.
Collapse
Affiliation(s)
- Jia Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xiao-Xiao Lu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Run-Ping Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Zhi-Hao Xiang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Bing-Bing Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Shujun Chao
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Lixia Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yunhui Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xuefang Shang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| |
Collapse
|
9
|
Alfuth J, Jeannin O, Fourmigué M. Topochemical, Single-Crystal-to-Single-Crystal [2+2] Photocycloadditions Driven by Chalcogen-Bonding Interactions. Angew Chem Int Ed Engl 2022; 61:e202206249. [PMID: 35797220 PMCID: PMC9546344 DOI: 10.1002/anie.202206249] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 12/04/2022]
Abstract
The face-to-face association of (E)-1,2-di(4-pyridyl)ethylene (bpen) molecules into rectangular motifs stabilized for the first time by chalcogen bonding (ChB) interactions is shown to provide photoreactive systems leading to cyclobutane formation through single-crystal-to-single-crystal [2+2] photodimerizations. The chelating chalcogen bond donors are based on original aromatic, ortho-substituted bis(selenocyanato)benzene derivatives 1-3, prepared from ortho-diboronic acid bis(pinacol) ester precursors and SeO2 and malononitrile in 75-90 % yield. The very short intramolecular Se⋅⋅⋅Se distance in 1-3 (3.22-3.24 Å), a consequence of a strong intramolecular ChB interaction, expands to 3.52-3.54 Å in the chalcogen-bonded adducts with bpen, a distance (<4 Å) well adapted to the face-to-face association of the bpen molecules into the reactive position toward photochemical dimerization.
Collapse
Affiliation(s)
- Jan Alfuth
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), 35000, Rennes, France
- Department of Organic Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 80-233, Gdańsk, Poland
| | - Olivier Jeannin
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), 35000, Rennes, France
| | - Marc Fourmigué
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), 35000, Rennes, France
| |
Collapse
|
10
|
Jiang C, Zhu Y, Li H, Liu P, Sun P. Direct Cyanation of Thiophenols or Thiols to Access Thiocyanates under Electrochemical Conditions. J Org Chem 2022; 87:10026-10033. [PMID: 35866614 DOI: 10.1021/acs.joc.2c00995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A novel electrochemical cross-coupling method for the synthesis of thiocyanates via the direct cyanation of readily available thiophenols or thiols with trimethylsilyl cyanide (TMSCN) was developed. This approach was also suitable for selenols. External oxidant-free, transition-metal-free and mild operating conditions were the main advantages of this protocol. A series of thiocyanates and selenocyanates could be obtained in moderate to high yields.
Collapse
Affiliation(s)
- Cong Jiang
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Yan Zhu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Heng Li
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Ping Liu
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| | - Peipei Sun
- School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
11
|
Alfuth J, Jeannin O, Fourmigue M. Topochemical, Single‐Crystal‐to‐Single‐Crystal [2+2] Photocycloadditions Driven by Chalcogen‐Bonding Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jan Alfuth
- Gdańsk University of Technology: Politechnika Gdanska Organic chemistry Gdansk POLAND
| | | | - Marc Fourmigue
- UMR 6226 CNRS-Universite Rennes1 Institut des Sciences Chimiques de Rennes Campus de BeaulieuBatiment 10C 35042 Rennes FRANCE
| |
Collapse
|
12
|
Karmaker PG, huo F. Organic Selenocyanates: Rapid Advancements and Applications in the Field of Organic Chemistry. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pran Gopal Karmaker
- Neijiang Normal University Chemistry & Chemical Engineering 705#, Dongtong Road, Neijiang, China, 641100Neijiang Normal University 641100 Neijiang CHINA
| | - feng huo
- Neijiang Normal University Chemistry Dongtong Rood #705 641100 Neijiang CHINA
| |
Collapse
|
13
|
Tao S, Xu L, Yang K, Zhang J, Du Y. Construction of the 2-Amino-1,3-selenazole Skeleton via PhICl 2/KSeCN-Mediated Selenocyanation/Cyclization. Org Lett 2022; 24:4187-4191. [PMID: 35670516 DOI: 10.1021/acs.orglett.2c01468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The construction of 2-amino-1,3-selenazole skeleton was realized via the PhICl2/KSeCN-enabled electrophilic selenocyanation of β-enaminones and β-enamino esters followed by intramolecular cyclization under basic conditions. Compared to the classical Hantzsch strategy that utilizes selenourea or its analogues as starting materials or crucial intermediates, this method might represent an alternative approach for the assembly of 1,3-selenazole framework through a different pathway.
Collapse
Affiliation(s)
- Shanqing Tao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Lingzhi Xu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Kaiyue Yang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jianing Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yunfei Du
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Wang J, Lu X, Tan X, Yan Y, Zhang P, Chao S, Liu L, Shang X, Chu Z. Electrophilic Selenocyanogen Cyclization of Alkynes; Synthesis of Benzofurylselenocyanates, Benzothienylselenocyanates and Indolylselenocyanates. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Jia Wang
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Xiao‐Xiao Lu
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Xin‐Qiang Tan
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Yun‐Hui Yan
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Pengbo Zhang
- School of Public Health Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Shu‐Jun Chao
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Lixia Liu
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Xuefang Shang
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| | - Zhi‐Li Chu
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan, 453003 People's Republic of China
| |
Collapse
|
15
|
Zhu YS, Shi L, Fu L, Chen X, Zhu X, Hao XQ, Song MP. Iodine-catalyzed amination of benzothiazoles with KSeCN in water to access primary 2-aminobenzothiazoles. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Wang J, Wang Y, Liu Y, Yan X, Yan Y, Chao S, Shang X, Ni T, Zhou P. Synthesis of Isoquinolylselenocyanates and Quinolylselenocyanates via Electrophilic Selenocyanogen Cyclization Induced by Pseudohalogen (SeCN)
2
Generated
in situ. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jia Wang
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Yun‐Zhe Wang
- School of Pharmaceutical Sciences Zhengzhou University Zhengzhou Henan 450001 People's Republic of China
| | - Yu‐Jie Liu
- College of Pharmacy Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Xin‐Xin Yan
- College of Pharmacy Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Yun‐Hui Yan
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Shu‐Jun Chao
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Xuefang Shang
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Tianjun Ni
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| | - Ping‐Xin Zhou
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan 453003 People's Republic of China
| |
Collapse
|
17
|
Fukuo H, Suzuki T, Shimabukuro J, Komura N, Tanaka H, Imamura A, Ishida H, Ando H. Synthesis of Diverse Seleno‐Glycolipids
via
the Transacetalization of Selenoacetals. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hayata Fukuo
- Department of Applied Bioorganic Chemistry Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Tatsuya Suzuki
- Department of Applied Bioorganic Chemistry Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Current address: Faculty of Pharmaceutical Sciences Aomori University 2-3-1 Koubata Aomori-shi Aomori 030-0943 Japan
| | - Junpei Shimabukuro
- Department of Applied Bioorganic Chemistry Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Naoko Komura
- Institute for Glyco-core Research (iGCORE) Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Hide‐Nori Tanaka
- Institute for Glyco-core Research (iGCORE) Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE) Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Institute for Glyco-core Research (iGCORE) Gifu University 1-1 Yanagido Gifu 501-1193 Japan
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN) Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| | - Hiromune Ando
- Institute for Glyco-core Research (iGCORE) Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| |
Collapse
|
18
|
Wentz KE, Molino A, Freeman LA, Dickie DA, Wilson DJD, Gilliard RJ. Reactions of 9-Carbene-9-Borafluorene Monoanion and Selenium: Synthesis of Boryl-Substituted Selenides and Diselenides. Inorg Chem 2021; 60:13941-13949. [PMID: 34472333 DOI: 10.1021/acs.inorgchem.1c02124] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactions of 9-carbene-9-borafluorene monoanion (1) with elemental selenium and selenium-containing reagents are reported. When compound 1 is reacted with grey selenium in THF, various boryl-substituted selenides and diselenides are produced (2-6), including molecules resulting from migration of the carbene ligand Dipp group (Dipp = 2,6-diisopropylphenyl). However, when a similar reaction between 1 and grey selenium is performed in toluene in the presence of 18-crown-6, boryl-substituted selenide 7 is obtained as the sole boron-containing product. As compound 7 is the monomeric variant of organoselenide 3, 18-crown-6 promotes both product selectivity and solubility in a nonpolar solvent. Diselenide 5, which features a trans-bent B-Se-Se-B core, was directly isolated via reaction of 1 with Se2Cl2 in THF. Computational modeling suggests that the formation of 5 proceeds via a radical mechanism. This was supported by an experiment demonstrating that the CAAC-borafluorene radical also reacts with SeCl2 to yield 5 [CAAC = (2,6-diisopropylphenyl)-4,4-diethyl-2,2-dimethyl-pyrrolidin-5-ylidene]. Energy decomposition analysis of 5 indicates a covalent borafluorene-diselenide bond (ΔEint, -168.9 kcal mol-1). All of the new compounds were fully characterized via single-crystal X-ray diffraction and multinuclear nuclear magnetic resonance (1H, 13C, 11B, and 77Se).
Collapse
Affiliation(s)
- Kelsie E Wentz
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Andrew Molino
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Lucas A Freeman
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - David J D Wilson
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
19
|
Yu F, Li C, Wang C, Zhang H, Cao ZY. (1-Selenocyanatoethyl)benzene: A Selenocyanation Reagent for Site-Selective Selenocyanation of Inert Alkyl C(sp 3)-H Bonds. Org Lett 2021; 23:7156-7160. [PMID: 34468157 DOI: 10.1021/acs.orglett.1c02564] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A new, simple, yet easily accessible, (1-selenocyanatoethyl)benzene has been designed and applied as a SeCN group transfer reagent for selenocyanation of aliphatic C(sp3)-H bonds for the first time. This protocol is featured with mild reaction conditions and wide substrate scope. Control experiments reveal that a radical-group transfer mechanism might be involved.
Collapse
Affiliation(s)
- Fei Yu
- Department of Chemistry, College of Science, China University of Petroleum (East China) Qingdao, Shandong 266580, China
| | - Chuang Li
- Department of Chemistry, College of Science, China University of Petroleum (East China) Qingdao, Shandong 266580, China
| | - Chuangye Wang
- Department of Chemistry, College of Science, China University of Petroleum (East China) Qingdao, Shandong 266580, China
| | - Hongwei Zhang
- Department of Chemistry, College of Science, China University of Petroleum (East China) Qingdao, Shandong 266580, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
20
|
Singh PR, Kalaramna P, Ali S, Goswami A. Synthesis of Thio‐/Selenopyrrolines
via
SnCl
4
‐Catalyzed (3+2)‐Cycloadditions of Donor‐Acceptor Cyclopropanes with Thio‐/Selenocyanates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Prasoon Raj Singh
- Department of Chemistry SS Bhatnagar Block Main Campus Indian Institute of Technology Ropar Rupnagar, Punjab 140001 India
| | - Pratibha Kalaramna
- Department of Chemistry SS Bhatnagar Block Main Campus Indian Institute of Technology Ropar Rupnagar, Punjab 140001 India
| | - Shamsad Ali
- Department of Chemistry SS Bhatnagar Block Main Campus Indian Institute of Technology Ropar Rupnagar, Punjab 140001 India
| | - Avijit Goswami
- Department of Chemistry SS Bhatnagar Block Main Campus Indian Institute of Technology Ropar Rupnagar, Punjab 140001 India
| |
Collapse
|
21
|
Ding YN, Huang YC, Shi WY, Zheng N, Wang CT, Chen X, An Y, Zhang Z, Liang YM. Modular Synthesis of Aryl Thio/Selenoglycosides via the Catellani Strategy. Org Lett 2021; 23:5641-5646. [PMID: 34251824 DOI: 10.1021/acs.orglett.1c01723] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We described a novel palladium-catalyzed domino procedure for the preparation of (hetero)aryl thio/selenoglycosides. Readily available (hetero)aryl iodides and easily accessible 1-thiosugars/1-selenosugars are utilized as the substrates. Meanwhile, 10 types of sugars are quite compatible with this reaction with good regio- and stereoselectivity, high efficiency, and broad applicability (up to 89%, 53 examples). This method enables the straightforward formation of the C(sp2)-S/Se bond of (hetero)aryl thio/selenoglycosides.
Collapse
Affiliation(s)
- Ya-Nan Ding
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yan-Chong Huang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Wei-Yu Shi
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Nian Zheng
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Cui-Tian Wang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhe Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
22
|
Manna T, Rana A, Misra AK. Synthesis of unsymmetrical glycosyl diselenides by the treatment of symmetrical diselenides with glycosyl selenocyanates. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Kalaramna P, Goswami A. Transition-Metal-Free HFIP-Mediated Organo Chalcogenylation of Arenes/Indoles with Thio-/Selenocyanates. J Org Chem 2021; 86:9317-9327. [PMID: 34190557 DOI: 10.1021/acs.joc.1c00478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We have developed a protocol for the synthesis of diaryl thio-/selenoethers by the reaction of aryl chalcogenocyanates with electron rich arenes/hetero arenes via HFIP promoted C-H activation. The reaction produces chalcogenides in good to excellent yields under mild conditions without the need of a transition metal as a catalyst. The HFIP-mediated reactions tolerated a wide range of functional groups and set the stage for the synthesis of diversely decorated chalcogenides. A mechanism involving activation of the C-H bond through hydrogen bonding is proposed.
Collapse
Affiliation(s)
- Pratibha Kalaramna
- Department of Chemistry, SS Bhatnagar Block, Main Campus, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| | - Avijit Goswami
- Department of Chemistry, SS Bhatnagar Block, Main Campus, Indian Institute of Technology Ropar, Rupnagar, Punjab, 140001, India
| |
Collapse
|
24
|
Rai V, Sorabad GS, Maddani MR. Efficient and Direct Selenocyanation of Ketene Dithioacetals Using Malononitrile‐SeO
2
Under Transition‐Metal‐Free Conditions. ChemistrySelect 2021. [DOI: 10.1002/slct.202101208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Vishakha Rai
- Department of Chemistry Mangalore University, Mangalgangothri- 574199 Karnataka India
| | - Ganesh S. Sorabad
- Department of Chemistry Mangalore University, Mangalgangothri- 574199 Karnataka India
| | | |
Collapse
|
25
|
Thurow S, Abenante L, Anghinoni JM, Lenardão EJ. SELENIUM AS A VERSATILE REAGENT IN ORGANIC SYNTHESIS: MORE THAN ALLYLIC OXIDATION. Curr Org Synth 2021; 19:331-365. [PMID: 34036912 DOI: 10.2174/1570179418666210525152001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/07/2021] [Accepted: 03/20/2021] [Indexed: 11/22/2022]
Abstract
For many years since its discovery, Selenium has played the role of a bad boy who became a hero in organic transformations. Selenium dioxide, for instance, is one of the most remembered reagents in allylic oxidations, having been applied in the synthesis of several naturally occurring products. The main goal of this review is to show the recent advances in the use of classical and new selenium reagents in organic synthesis. As demonstrated through around 60 references discussed in this study, selenium can go even forward as a versatile reagent. We bring a collection of selenium reagents and their transformations that are still hidden from most synthetic organic chemists.
Collapse
Affiliation(s)
- Samuel Thurow
- Institute of Chemistry, State University of Campinas, Rua Monteiro Lobato, 270, 13083-862, Campinas, SP, Brazil
| | - Laura Abenante
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA. Universidade Federal de Pelotas - UFPel, P. O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - João Marcos Anghinoni
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA. Universidade Federal de Pelotas - UFPel, P. O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Eder João Lenardão
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA. Universidade Federal de Pelotas - UFPel, P. O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
26
|
Gao M, Vuagnat M, Chen MY, Pannecoucke X, Jubault P, Besset T. Design and Use of Electrophilic Thiocyanating and Selenocyanating Reagents: An Interesting Trend for the Construction of SCN- and SeCN-Containing Compounds. Chemistry 2021; 27:6145-6160. [PMID: 33283371 DOI: 10.1002/chem.202004974] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 01/01/2023]
Abstract
Organothiocyanate and organoselenocyanate compounds are of paramount importance in organic chemistry as they are key intermediates to access sulfur- and selenium-containing compounds. Therefore, among the different synthetic pathways to get SCN- and SeCN-containing molecules, original methodologies using electrophilic reagents have recently been explored. This Minireview will showcase the recent advances that have been made. In particular, the design of several electrophilic sources and their applications for the thiocyanation and the selenocyanation of various classes of compounds will be highlighted and discussed.
Collapse
Affiliation(s)
- Mélissa Gao
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Martin Vuagnat
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Mu-Yi Chen
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Xavier Pannecoucke
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Philippe Jubault
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Tatiana Besset
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| |
Collapse
|
27
|
Manna T, Misra AK. On-water synthesis of glycosyl selenocyanate derivatives and their application in the metal free organocatalytic preparation of nonglycosidic selenium linked pseudodisaccharide derivatives. RSC Adv 2021; 11:10902-10911. [PMID: 35423588 PMCID: PMC8695869 DOI: 10.1039/d1ra00711d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/02/2021] [Indexed: 12/23/2022] Open
Abstract
Glycosyl selenocyanate derivatives were prepared in very good yield by the treatment of glycosyl halide or triflate derivatives with potassium selenocyanate in water. A variety of selenium linked pseudodisaccharide derivatives were prepared in excellent yield using glycosyl selenocyanates as stable building blocks in the presence of hydrazine hydrate under metal-free organocatalytic reaction conditions.
Collapse
Affiliation(s)
- Tapasi Manna
- Division of Molecular Medicine, Bose Institute P-1/12, C.I.T. Scheme VII M Kolkata 700054 India +91-33-2355-3886
| | - Anup Kumar Misra
- Division of Molecular Medicine, Bose Institute P-1/12, C.I.T. Scheme VII M Kolkata 700054 India +91-33-2355-3886
| |
Collapse
|
28
|
Kundu D. Synthetic strategies for aryl/heterocyclic selenides and tellurides under transition-metal-catalyst free conditions. RSC Adv 2021; 11:6682-6698. [PMID: 35423206 PMCID: PMC8694912 DOI: 10.1039/d0ra10629a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/29/2021] [Indexed: 02/03/2023] Open
Abstract
Aryl and heteroaryl selenides and tellurides are found to have broad applications in the diverse fields such as medicine, biology, materials science, pharmaceutical etc. and thus their synthesis remains a challenging field for synthetic chemists in last decade. Although a large no of methodologies have been developed based on metal catalyzed C-Se/Te coupling, a large number of researches has been focused on developing metal catalyst free protocols due to their sustainability in recent times. This review covers all the recent developments in last decade on their synthesis under metal catalyst free conditions by using different sustainable techniques e.g. greener reagents and solvents, ball milling, visible light photocatalysis, microwave, ultrasound etc.
Collapse
Affiliation(s)
- Debasish Kundu
- Department of Chemistry, Government General Degree College at Mangalkote (Affiliated to The University of Burdwan) Khudrun, Purba Bardhaman 713143 India
| |
Collapse
|
29
|
Hou H, Sun Y, Pan Y, Yu H, Han Y, Shi Y, Yan C, Zhu S. Visible-Light Mediated Diarylselenylative Cyclization of 1,6-Enynes. J Org Chem 2021; 86:1273-1280. [PMID: 33283502 DOI: 10.1021/acs.joc.0c02529] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We herein described a selenylative cyclization reaction of enynes by the utilization of diselenides as radical sources. The visible-light irradiation of the reaction mixture enables the generation of the selenium atom radical to trigger the radical addition/cyclization/selenation sequences. Both terminal alkyne and internal alkyne derived 1,6-enynes were tested and suitable for the current synthetic protocol, delivering various kinds of selenium-containing cycles in good yields.
Collapse
Affiliation(s)
- Hong Hou
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yue Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Pan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Huaguang Yu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University, Wuhan 430056, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yaocheng Shi
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Chaoguo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Shaoqun Zhu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
30
|
Iadonisi A, Traboni S, Capasso D, Bedini E, Cuomo S, Di Gaetano S, Vessella G. Switchable synthesis of glycosyl selenides or diselenides with direct use of selenium as the selenating agent. Org Chem Front 2021. [DOI: 10.1039/d1qo00045d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chemoselective synthesis of either diglycosyl selenides or diselenides. Elementary selenium as the selenating agent.
Collapse
Affiliation(s)
- Alfonso Iadonisi
- Department of Chemical Sciences
- University of Naples Federico II
- 80126 Naples
- Italy
| | - Serena Traboni
- Department of Chemical Sciences
- University of Naples Federico II
- 80126 Naples
- Italy
| | - Domenica Capasso
- Department of Pharmacy
- University of Naples Federico II
- 80134 Naples
- Italy
| | - Emiliano Bedini
- Department of Chemical Sciences
- University of Naples Federico II
- 80126 Naples
- Italy
| | - Sabrina Cuomo
- Department of Chemical Sciences
- University of Naples Federico II
- 80126 Naples
- Italy
| | | | - Giulia Vessella
- Department of Chemical Sciences
- University of Naples Federico II
- 80126 Naples
- Italy
| |
Collapse
|
31
|
Yan K, Liu M, Wen J, Liu W, Li X, Liu X, Sui X, Shang W, Wang X. Copper-catalyzed domino synthesis of benzo[ d]imidazo[5,1- b][1,3]selenazoles involving sequential intermolecular cycloaddition and intramolecular Ullmann-type C–Se bond formation. Org Chem Front 2021. [DOI: 10.1039/d1qo00851j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A copper-catalyzed domino synthesis of benzo[d]imidazo[5,1-b][1,3]selenazoles involving sequential intermolecular cycloaddition and intramolecular Ullmann-type C–Se bond formation has been developed.
Collapse
Affiliation(s)
- Kelu Yan
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Min Liu
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Jiangwei Wen
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Weihua Liu
- Network Security and Information Management Center, Jining University, Qufu, 273165, P. R. China
| | - Xue Li
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiao Liu
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xinlei Sui
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Wenda Shang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Xiu Wang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| |
Collapse
|
32
|
Hu M, Ren Y. Lewis acid-promoted formation of benzoselenazole derivatives using SeO 2 as a selenium source. Org Biomol Chem 2021; 19:6692-6696. [PMID: 34286789 DOI: 10.1039/d1ob01070k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new one-pot method of using both ortho-inactivated anilines and acetophenones (or methylquinolines) which possess an active H in the α-position of ketones (or benzyl positions) as starting materials to make benzoselenazole derivatives has been developed, which uses SeO2 as a selenium agent. This method first establishes SeO2 as a source of selenium to form benzoselenazole derivatives, which enriches the synthesis method of benzoselenazole. This method has several advantages, including good yields, simple operation, and availability of raw materials. Furthermore, the reaction could be easily scaled and its practical value in organic synthesis is displayed.
Collapse
Affiliation(s)
- Minhui Hu
- Law School, Nanjing University, Hankou Road 22, Nanjing City, Jiangsu 210093, China.
| | - Yaokun Ren
- Pharmacy School, Jiangsu University, Xuefu Road 301, Zhenjiang City, Jiangsu 212013, China.
| |
Collapse
|
33
|
Zhang X, Huang X, Zhou Y, Liu M, Wu H. Metal‐Free Synthesis of Aryl Selenocyanates and Selenaheterocycles with Elemental Selenium. Chemistry 2020; 27:944-948. [DOI: 10.1002/chem.202004005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/03/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Xue Zhang
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
| | - Xiao‐Bo Huang
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
| | - Yun‐Bing Zhou
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
| | - Miao‐Chang Liu
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
| | - Hua‐Yue Wu
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 P. R. China
| |
Collapse
|
34
|
Wang X, Zhong Y, Mo Z, Wu S, Xu Y, Tang H, Pan Y. Synthesis of Seleno Oxindoles
via
Electrochemical Cyclization of
N
‐arylacrylamides with Diorganyl Diselenides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001192] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xin‐Yu Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Yuan‐Fang Zhong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Zu‐Yu Mo
- Pharmacy School of Guilin Medical University Guilin 541004 People's Republic of China
| | - Shi‐Hong Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Yan‐Li Xu
- Pharmacy School of Guilin Medical University Guilin 541004 People's Republic of China
| | - Hai‐Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| | - Ying‐Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University Guilin 541004 People's Republic of China
| |
Collapse
|
35
|
Liu J, Tian M, Li Y, Shan X, Li A, Lu K, Fagnoni M, Protti S, Zhao X. Metal‐Free Synthesis of Unsymmetrical Aryl Selenides and Tellurides via Visible Light‐Driven Activation of Arylazo Sulfones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001386] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Junjie Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic‐Organic Hybrid Functional Materials Chemistry Tianjin Normal University 300387 Tianjin P. R. China
| | - Miaomiao Tian
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic‐Organic Hybrid Functional Materials Chemistry Tianjin Normal University 300387 Tianjin P. R. China
| | - Yuxuan Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic‐Organic Hybrid Functional Materials Chemistry Tianjin Normal University 300387 Tianjin P. R. China
- PhotoGreen Lab Department of Chemistry University of Pavia V. Le Taramelli 12 Pavia Italy
| | - Xiwen Shan
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic‐Organic Hybrid Functional Materials Chemistry Tianjin Normal University 300387 Tianjin P. R. China
| | - Ankun Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic‐Organic Hybrid Functional Materials Chemistry Tianjin Normal University 300387 Tianjin P. R. China
| | - Kui Lu
- College of Biotechnology Tianjin University of Science & Technology 300457 Tianjin China
| | - Maurizio Fagnoni
- PhotoGreen Lab Department of Chemistry University of Pavia V. Le Taramelli 12 Pavia Italy
| | - Stefano Protti
- PhotoGreen Lab Department of Chemistry University of Pavia V. Le Taramelli 12 Pavia Italy
| | - Xia Zhao
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules MOE Key Laboratory of Inorganic‐Organic Hybrid Functional Materials Chemistry Tianjin Normal University 300387 Tianjin P. R. China
| |
Collapse
|
36
|
Sweet Selenium: Synthesis and Properties of Selenium-Containing Sugars and Derivatives. Pharmaceuticals (Basel) 2020; 13:ph13090211. [PMID: 32859124 PMCID: PMC7558951 DOI: 10.3390/ph13090211] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
In the last decades, organoselenium compounds gained interest due to their important biological features. However, the lack of solubility, which characterizes most of them, makes their actual clinical exploitability a hard to reach goal. Selenosugars, with their intrinsic polarity, do not suffer from this issue and as a result, they can be conceived as a useful alternative. The aim of this review is to provide basic knowledge of the synthetic aspects of selenosugars, selenonium salts, selenoglycosides, and selenonucleotides. Their biological properties will be briefly detailed. Of course, it will not be a comprehensive dissertation but an analysis of what the authors think is the cream of the crop of this interesting research topic.
Collapse
|
37
|
Zhu M, Alami M, Messaoudi S. Room-Temperature Pd-Catalyzed Synthesis of 1-(Hetero)aryl Selenoglycosides. Org Lett 2020; 22:6584-6589. [PMID: 32806176 DOI: 10.1021/acs.orglett.0c02352] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A general protocol for functionalization of an anomeric selonate anion at room temperature has been reported. By using the PdG3 XantPhos catalyst, the cross-coupling between the in situ-generated glycosyl selenolate and a broad range of (hetero)aryl and alkenyl iodides furnished a series of functionalized selenoglycosides in excellent yields with perfect control of the anomeric configuration.
Collapse
Affiliation(s)
- Mingxiang Zhu
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Mouad Alami
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290 Châtenay-Malabry, France
| | - Samir Messaoudi
- BioCIS, Univ. Paris-Sud, CNRS, University Paris-Saclay, 92290 Châtenay-Malabry, France
| |
Collapse
|
38
|
Zhang J, Wang H, Chen Y, Xie H, Ding C, Tan J, Xu K. Electrochemical synthesis of selenocyanated imidazo[1,5-a]quinolines under metal catalyst- and chemical oxidant-free conditions. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.11.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Liu Z, Jiang Y, Liu C, Zhang L, Wang J, Li T, Zhang H, Li M, Yang X. Metal-Free Synthesis of Phenol-Aryl Selenides via Dehydrogenative C-Se Coupling of Aryl Selenoxides with Phenols. J Org Chem 2020; 85:7386-7398. [PMID: 32370509 DOI: 10.1021/acs.joc.0c00792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herein, we disclose the synthesis of diaryl selenides through an unexpected C-Se coupling between aryl benzyl selenoxides and phenols. The synthetic significance of the method is that it provides a mild, rapid, and metal-free access to organoselenides in high yields with excellent functional group tolerance. This coupling of aryl benzyl selenoxides reveals a completely new reaction possibility compared with aryl sulfoxides. We also probed the reaction mechanism of this unexpected transformation through experimental studies and revealed a special Se(IV)-Se(III)-Se(II) reaction pathway.
Collapse
Affiliation(s)
- Zhengfen Liu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yonggang Jiang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Chunxiang Liu
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Linlin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Jing Wang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Tiantian Li
- Department of Soil and Water Science, Tropical Research and Education Center, University of Florida, Homestead 33031, Florida, USA
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Minyan Li
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China
| |
Collapse
|
40
|
Oxidative umpolung selenocyanation of ketones and arenes: An efficient protocol to the synthesis of selenocyanates. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Kommula D, Li Q, Ning S, Liu W, Wang Q, Zhao ZK. Iodine mediated synthesis of diaryl diselenides using SeO2 as a selenium source. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1728775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dileep Kommula
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qing Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Siyang Ning
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Wujun Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Qian Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zongbao K. Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
42
|
Wu D, Qiu J, Li C, Yuan L, Yin H, Chen FX. Lewis Acid-Catalyzed Asymmetric Selenocyanation of β-Ketoesters with N-Selenocyanatosaccharin. J Org Chem 2019; 85:934-941. [PMID: 31820979 DOI: 10.1021/acs.joc.9b02786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first electrophilic asymmetric selenocyanation has been achieved in the presence of Ni(OTf)2 and (R,R)-DBFOX/Ph using N-selenocyanatosaccharin as the new selenocyanation reagent. Thus, a series of α-selenocyanato-β-keto esters were synthesized with high yields (up to 99%) and good ee values (up to 92% ee). The readily preparation of the reagent and high enantioselectivity make this methodology much practical for the synthesis of chiral selenocyanates.
Collapse
Affiliation(s)
- Di Wu
- School of Chemistry & Chemical Engineering , Beijing Institute of Technology (Liangxiang Campus) , No. 8 Liangxiang East Road Fangshan District , Beijing 102488 , China
| | - Jiashen Qiu
- School of Chemistry & Chemical Engineering , Beijing Institute of Technology (Liangxiang Campus) , No. 8 Liangxiang East Road Fangshan District , Beijing 102488 , China
| | - Chengqiu Li
- School of Chemistry & Chemical Engineering , Beijing Institute of Technology (Liangxiang Campus) , No. 8 Liangxiang East Road Fangshan District , Beijing 102488 , China
| | - Lexia Yuan
- School of Chemistry & Chemical Engineering , Beijing Institute of Technology (Liangxiang Campus) , No. 8 Liangxiang East Road Fangshan District , Beijing 102488 , China
| | - Hongquan Yin
- School of Chemistry & Chemical Engineering , Beijing Institute of Technology (Liangxiang Campus) , No. 8 Liangxiang East Road Fangshan District , Beijing 102488 , China
| | - Fu-Xue Chen
- School of Chemistry & Chemical Engineering , Beijing Institute of Technology (Liangxiang Campus) , No. 8 Liangxiang East Road Fangshan District , Beijing 102488 , China
| |
Collapse
|
43
|
Manna T, Misra AK. Glycosyl selenoacetates: versatile building blocks for the preparation of stereoselective selenoglycosides and selenium linked disaccharides. Org Biomol Chem 2019; 17:8902-8912. [PMID: 31553009 DOI: 10.1039/c9ob01623f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Glycosyl selenoacetate derivatives were prepared by the treatment of glycosyl halide with potassium selenocyanate followed by acetylation of in situ generated glycosyl selenols in one pot. A variety of selenoglycosides and selenium linked disaccharide derivatives were prepared in very good to excellent yields using glycosyl selenoacetates as stable building blocks under mild reaction conditions.
Collapse
Affiliation(s)
- Tapasi Manna
- Bose Institute, Division of Molecular Medicine, P-1/12, C.I.T. Scheme VII M, Kolkata 700054, India.
| | | |
Collapse
|
44
|
Suzuki T, Hayashi C, Komura N, Tamai R, Uzawa J, Ogawa J, Tanaka HN, Imamura A, Ishida H, Kiso M, Yamaguchi Y, Ando H. Synthesis and Glycan-Protein Interaction Studies of Se-Sialosides by 77Se NMR. Org Lett 2019; 21:6393-6396. [PMID: 31393132 DOI: 10.1021/acs.orglett.9b02303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To expand the potential of Se-carbohydrates for multifunctional mimicry of sugars, herein we addressed the synthesis of the highly challenging and biologically significant Se-glycosides of sialic acid (Se-sialosides). An α-sialyl selenolate anion generated in situ smoothly reacted with electrophiles to give α-Se-sialosides as single stereoisomers. A Se-sialoside was sequentially incorporated with selenium, producing a triseleno-sialoside. This molecule was used as a 77Se NMR-active handle for studying glycan-protein interaction, revealing different binding profiles of sialic acid binding proteins.
Collapse
Affiliation(s)
- Tatsuya Suzuki
- Department of Applied Bioorganic Chemistry , Gifu University , 1-1, Yanagido , Gifu-shi, Gifu 501-1193 , Japan
| | - Chieka Hayashi
- Department of Applied Bioorganic Chemistry , Gifu University , 1-1, Yanagido , Gifu-shi, Gifu 501-1193 , Japan
| | - Naoko Komura
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN) , Gifu University , 1-1, Yanagido , Gifu-shi, Gifu 501-1193 , Japan
| | - Rie Tamai
- Department of Applied Bioorganic Chemistry , Gifu University , 1-1, Yanagido , Gifu-shi, Gifu 501-1193 , Japan
| | - Jun Uzawa
- Structural Glycobiology Team, Systems Glycobiology Research Group , RIKEN Global Research Cluster , 2-1 Hirosawa, Wako-shi, Saitama 351-0198 , Japan
| | - Junya Ogawa
- Department of Applied Bioorganic Chemistry , Gifu University , 1-1, Yanagido , Gifu-shi, Gifu 501-1193 , Japan
| | - Hide-Nori Tanaka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN) , Gifu University , 1-1, Yanagido , Gifu-shi, Gifu 501-1193 , Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry , Gifu University , 1-1, Yanagido , Gifu-shi, Gifu 501-1193 , Japan
| | - Hideharu Ishida
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN) , Gifu University , 1-1, Yanagido , Gifu-shi, Gifu 501-1193 , Japan.,Department of Applied Bioorganic Chemistry , Gifu University , 1-1, Yanagido , Gifu-shi, Gifu 501-1193 , Japan
| | - Makoto Kiso
- Department of Applied Bioorganic Chemistry , Gifu University , 1-1, Yanagido , Gifu-shi, Gifu 501-1193 , Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS) , Kyoto University , Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto , Japan
| | - Yoshiki Yamaguchi
- Structural Glycobiology Team, Systems Glycobiology Research Group , RIKEN Global Research Cluster , 2-1 Hirosawa, Wako-shi, Saitama 351-0198 , Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN) , Gifu University , 1-1, Yanagido , Gifu-shi, Gifu 501-1193 , Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS) , Kyoto University , Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto , Japan
| |
Collapse
|
45
|
Kalaramna P, Bhatt D, Sharma H, Goswami A. An Expeditious and Environmentally-Benign Approach to 2-Aryl/Heteroaryl Selenopyridines via Ruthenium Catalyzed [2+2+2] Cycloadditions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pratibha Kalaramna
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road, Rupnagar, Punjab 140001 India
| | - Divya Bhatt
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road, Rupnagar, Punjab 140001 India
| | - Himanshu Sharma
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road, Rupnagar, Punjab 140001 India
| | - Avijit Goswami
- Department of Chemistry; Indian Institute of Technology Ropar; Nangal Road, Rupnagar, Punjab 140001 India
| |
Collapse
|
46
|
Craft KM, Townsend SD. Mother Knows Best: Deciphering the Antibacterial Properties of Human Milk Oligosaccharides. Acc Chem Res 2019; 52:760-768. [PMID: 30761895 DOI: 10.1021/acs.accounts.8b00630] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This Account describes the risky proposition of organizing a multidisciplinary team to interrogate a challenging problem in chemical biology: characterizing how human milk, at the molecular level, protects infants from infectious diseases. At the outset, our initial hypothesis was that human milk oligosaccharides (HMOs) possess antimicrobial and antivirulence activities. Early on, we discovered that HMOs do indeed modulate bacterial growth and biofilm production for numerous bacterial pathogens. In light of this discovery, three priorities emerged for our program moving forward. The first was to decode the mode of action behind this activity. The second was to decipher the functional effects of HMO structural diversity as there are ca. 200 unique HMOs present in human milk. Finally, we set our sights on discovering novel uses for HMOs as we believed this would uniquely position our team to achieve a major breakthrough in human health and wellness. Through a combination of fractionation techniques, chemical synthesis, and industrial partnerships, we have determined the identities of several HMOs with potent antimicrobial activity against the important neonate pathogen Group B Streptococcus (Group B Strep; GBS). In addition to a structure-activity relationship (SAR) study, we observed that HMOs are effective adjuvants for intracellular-targeting antibiotics against GBS. This included two antibiotics that GBS has evolved resistance to. At their half maximal inhibitory concentration (IC50), heterogeneous HMOs reduced the minimum inhibitory concentration (MIC) of select antibiotics by up to 32-fold. Similarly, we observed that HMOs potentiate the activity of polymyxin B (Gram-negative-selective antibiotic) against GBS (Gram-positive species). Based on these collective discoveries, we hypothesized that HMOs function by increasing bacterial cell permeability, which would be a novel mode of action for these molecules. This hypothesis was validated as HMOs were found to increase membrane permeability by around 30% compared to an untreated control. The question that remains is how exactly HMOs interact with bacterial membranes to induce permeability changes (i.e., through promiscuous insertion into the bilayer, engagement of proteins involved in membrane synthesis, or HMO-capsular polysaccharide interactions). Our immediate efforts in this regard are to apply chemoproteomics to identify the molecular target(s) of HMOs. These investigations are enabled through manipulation of HMOs produced via total synthesis or enzymatic and whole-cell microbial biotransformation.
Collapse
Affiliation(s)
- Kelly M. Craft
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Science Center, Nashville, Tennessee 37235, United States
| | - Steven D. Townsend
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Science Center, Nashville, Tennessee 37235, United States
| |
Collapse
|
47
|
Ren Y, Xu B, Zhong Z, Pittman CU, Zhou A. Using SeO2 as a selenium source to make RSe-substituted aniline and imidazo[1,2-a]pyridine derivatives. Org Chem Front 2019. [DOI: 10.1039/c9qo00299e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A mild and practical method is developed for the synthesis of ArSe-substituted aniline and imidazo[1,2-a]pyridine derivatives using SeO2 as a selenium agent.
Collapse
Affiliation(s)
- Yaokun Ren
- Pharmacy School
- Jiangsu University
- Zhenjiang City
- China
| | - Baojun Xu
- Pharmacy School
- Jiangsu University
- Zhenjiang City
- China
| | - Zijian Zhong
- Pharmacy School
- Jiangsu University
- Zhenjiang City
- China
| | | | - Aihua Zhou
- Pharmacy School
- Jiangsu University
- Zhenjiang City
- China
| |
Collapse
|
48
|
Zhu J, Zhu W, Xie P, Pittman CU, Zhou A. Nickel-catalyzed C(sp2)-H selenation of imidazo[1,2-α]pyridines with arylboronic acids or alkyl reagents using selenium powder. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Ren Y, Xu B, Zhong Z, Pittman CU, Zhou A. Synthesis of ArSe‐Substituted Aniline Derivatives by C(sp
2
)‐H Functionalization. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yaokun Ren
- Pharmacy SchoolJiangsu University Xuefu Road 301 Zhenjiang Jiangsu 212013 P. R. China
| | - Baojun Xu
- Pharmacy SchoolJiangsu University Xuefu Road 301 Zhenjiang Jiangsu 212013 P. R. China
| | - Zijian Zhong
- Pharmacy SchoolJiangsu University Xuefu Road 301 Zhenjiang Jiangsu 212013 P. R. China
| | - Charles U. Pittman
- Department of ChemistryMississippi State University Mississippi State, MS 39762 USA
| | - Aihua Zhou
- Pharmacy SchoolJiangsu University Xuefu Road 301 Zhenjiang Jiangsu 212013 P. R. China
| |
Collapse
|
50
|
Zhu F, O'Neill S, Rodriguez J, Walczak MA. Stereoretentive Reactions at the Anomeric Position: Synthesis of Selenoglycosides. Angew Chem Int Ed Engl 2018; 57:7091-7095. [DOI: 10.1002/anie.201802847] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/16/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Feng Zhu
- Department of Chemistry and Biochemistry University of Colorado Boulder CO 80309 USA
| | - Sloane O'Neill
- Department of Chemistry and Biochemistry University of Colorado Boulder CO 80309 USA
| | - Jacob Rodriguez
- Department of Chemistry and Biochemistry University of Colorado Boulder CO 80309 USA
| | - Maciej A. Walczak
- Department of Chemistry and Biochemistry University of Colorado Boulder CO 80309 USA
| |
Collapse
|