1
|
Wang W, Li Q, Xu M, Chen J, Xiang R, Luo Y, Xia Y. Ligand-Controlled Cobalt-Catalyzed Regiodivergent and Stereoselective Ring-Opening Isomerization of Vinyl Cyclopropanes. Org Lett 2024; 26:5004-5009. [PMID: 38825811 DOI: 10.1021/acs.orglett.4c01668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
A ligand-controlled regiodivergent and stereoselective ring-opening isomerization of vinylcyclopropane was developed with cobalt catalysis. Employing the commercially available Xantphos ligand, the reactions afforded exclusively linear-type 1,3-dienes as the products. Interestingly, when switching the ligand to an amido-diphosphine ligand (PNP), branched-type 1,3-dienes were obtained with high regioselectivity and stereoselectivity. Preliminary mechanistic investigations suggested that a π-allyl metal and a metal-hydride species are involved as key intermediates in the two transformations, respectively.
Collapse
Affiliation(s)
- Wei Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Qiao Li
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Man Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jianhui Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ruoyao Xiang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yanshu Luo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
2
|
Meng Y, Gu J, Xin M, Jiang Y, Du Z, Lu G, Jiang J, Chan ASC, Ke Z, Zou Y. Chalcone-Based Synthesis of Tetrahydropyridazines via Cloke-Wilson-Type Rearrangement-Involved Tandem Reaction between Cyclopropyl Ketones and Hydrazines. J Org Chem 2024; 89:2726-2740. [PMID: 38307838 DOI: 10.1021/acs.joc.3c02824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
A facile and efficient approach for the synthesis of multisubstituted tetrahydropyridazines starting from cyclopropyl ketones and hydrazines has been developed. The transformation is chalcone-based and takes place via a Cloke-Wilson-type rearrangement-involved tandem reaction catalyzed by TfOH in HFIP.
Collapse
Affiliation(s)
- Yingfen Meng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jiayi Gu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Meixiu Xin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yi Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhibo Du
- Zhongshan WanHan Pharmceutical Company, Ltd., Zhongshan 528451, People's Republic of China
| | - Guoqing Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Jiayao Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Albert S C Chan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhuofeng Ke
- School of Materials Science & Engineering, PCFM Lab, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yong Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
3
|
Geng HQ, Wu XF. Copper-catalyzed synthesis of β-boryl cyclopropanes via 1,2-borocyclopropanation of aryl olefins with CO as the C1 source. Chem Sci 2023; 14:5638-5642. [PMID: 37265722 PMCID: PMC10231323 DOI: 10.1039/d3sc01090b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/04/2023] [Indexed: 06/03/2023] Open
Abstract
Cyclopropane represents one of the most critical rings and has been found present in various bioactive compounds, especially in clinical medicines. It can be synthesized by the reaction of olefins with diazo-derived carbenoids which are potentially hazardous. Carbonylation is a powerful tool for synthesizing carbonylated or carbon-extended compounds. In this communication, we describe a straightforward approach for synthesizing β-boryl cyclopropane derivatives catalyzed by an inexpensive copper catalyst with CO as the C1 source. This reaction was mediated by an in situ generated carbene intermediate and afforded a wide range of cyclopropane-containing organoboron compounds in moderate to good yields.
Collapse
Affiliation(s)
- Hui-Qing Geng
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
4
|
Lu D, Chen C, Zheng L, Ying J, Lu Z. Regio- and Stereoselective Cobalt-Catalyzed Hydroboration of Vinylcyclopropanes to Access Homoallylic Boronates. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Dongpo Lu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Chenhui Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Lixuan Zheng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Jiale Ying
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Zhan Lu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, People’s Republic of China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, People’s Republic of China
| |
Collapse
|
5
|
Ligand cooperativity enables highly enantioselective C–C σ-bond hydroboration of cyclopropanes. Chem 2022. [DOI: 10.1016/j.chempr.2022.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Chen C, Wang H, Li T, Lu D, Li J, Zhang X, Hong X, Lu Z. Cobalt‐Catalyzed Asymmetric Sequential Hydroboration/Isomerization/Hydroboration of 2‐Aryl Vinylcyclopropanes. Angew Chem Int Ed Engl 2022; 61:e202205619. [DOI: 10.1002/anie.202205619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Chenhui Chen
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Hongliang Wang
- Department of Chemistry Zhejiang University Hangzhou 310058 China
- School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Tongtong Li
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Dongpo Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Jiajing Li
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Xie Zhang
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Xin Hong
- Department of Chemistry Zhejiang University Hangzhou 310058 China
- Center of Chemistry for Frontier Technologies State Key Laboratory of Clean Energy Utilization Zhejiang University Hangzhou 310027 China
- Beijing National Laboratory for Molecular Sciences Zhongguancun North First Street NO. 2 Beijing 100190 China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Zhan Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
- College of Chemistry Zhengzhou University Zhengzhou 450001 China
- Center of Chemistry for Frontier Technologies Zhejiang University Hangzhou 310027 China
| |
Collapse
|
7
|
Narro AL, Arman HD, Tonzetich ZJ. Mechanistic Studies of Alkyne Hydroboration by a Well-Defined Iron Pincer Complex: Direct Comparison of Metal-Hydride and Metal-Boryl Reactivity. Inorg Chem 2022; 61:10477-10485. [PMID: 35766905 DOI: 10.1021/acs.inorgchem.2c01325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron-hydride and iron-boryl complexes supported by a pyrrole-based pincer ligand, tBuPNP (PNP = anion of 2,5-bis(di-tert-butylphosphinomethyl)pyrrole), were employed for a detailed mechanistic study on the hydroboration of internal alkynes. Several novel complexes were isolated and fully characterized, including iron-vinyl and iron-boryl species, which represent likely intermediates in the catalytic hydroboration pathway. In addition, the products of alkyne insertion into the Fe-B bond have been isolated and structurally characterized. Mechanistic studies of the hydroboration reaction favor a pathway involving an active iron-hydride species, [FeH(tBuPNP)], which readily inserts alkyne and undergoes subsequent reaction with hydroborane to generate product. The iron-boryl species, [Fe(BR2)(tBuPNP)] (R2 = pin or cat), was found to be chemically competent, although its use in catalysis entailed an induction period whereby the iron-hydride species was generated. Stoichiometric reactions and kinetic experiments were performed to paint a fuller picture of the mechanism of alkyne hydroboration, including pathways for catalyst deactivation and the influence of substrate bulk on catalytic efficacy.
Collapse
Affiliation(s)
- Ana L Narro
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Hadi D Arman
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| | - Zachary J Tonzetich
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, Texas 78249, United States
| |
Collapse
|
8
|
Cobalt‐Catalyzed Asymmetric Sequential Hydroboration/Isomerization/Hydroboration of 2‐Aryl Vinylcyclopropanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Mondal R, Guin AK, Chakraborty G, Paul ND. Metal-ligand cooperative approaches in homogeneous catalysis using transition metal complex catalysts of redox noninnocent ligands. Org Biomol Chem 2022; 20:296-328. [PMID: 34904619 DOI: 10.1039/d1ob01153g] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Catalysis offers a straightforward route to prepare various value-added molecules starting from readily available raw materials. The catalytic reactions mostly involve multi-electron transformations. Hence, compared to the inexpensive and readily available 3d-metals, the 4d and 5d-transition metals get an extra advantage for performing multi-electron catalytic reactions as the heavier transition metals prefer two-electron redox events. However, for sustainable development, these expensive and scarce heavy metal-based catalysts need to be replaced by inexpensive, environmentally benign, and economically affordable 3d-metal catalysts. In this regard, a metal-ligand cooperative approach involving transition metal complexes of redox noninnocent ligands offers an attractive alternative. The synergistic participation of redox-active ligands during electron transfer events allows multi-electron transformations using 3d-metal catalysts and allows interesting chemical transformations using 4d and 5d-metals as well. Herein we summarize an up-to-date literature report on the metal-ligand cooperative approaches using transition metal complexes of redox noninnocent ligands as catalysts for a few selected types of catalytic reactions.
Collapse
Affiliation(s)
- Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| | - Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic Garden, Howrah 711103, India.
| |
Collapse
|
10
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
11
|
Hu J, Ferger M, Shi Z, Marder TB. Recent advances in asymmetric borylation by transition metal catalysis. Chem Soc Rev 2021; 50:13129-13188. [PMID: 34709239 DOI: 10.1039/d0cs00843e] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral organoboronates have played a critical role in organic chemistry and in the development of materials science and pharmaceuticals. Much effort has been devoted to exploring synthetic methodologies for the preparation of these compounds during the past few decades. Among the known methods, asymmetric catalysis has emerged as a practical and highly efficient strategy for their straightforward preparation, and recent years have witnessed remarkable advances in this respect. Approaches such as asymmetric borylative addition, asymmetric allylic borylation and stereospecific cross-coupling borylation, have been extensively explored and well established employing transition-metal catalysis with a chiral ligand. This review provides a comprehensive overview of transition metal-catalysed asymmetric borylation processes to construct carbon-boron, carbon-carbon, and other carbon-heteroatom bonds. It summarises a range of recent achievements in this area of research, with considerable attention devoted to the reaction modes and the mechanisms involved.
Collapse
Affiliation(s)
- Jiefeng Hu
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany. .,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816 Nanjing, China
| | - Matthias Ferger
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093 Nanjing, China.
| | - Todd B Marder
- Institute of Inorganic Chemistry, and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
12
|
Feng FF, Ma JA, Cahard D. Radical 1,5-Chloropentafluorosulfanylation of Unactivated Vinylcyclopropanes and Transformation into α-SF 5 Ketones. J Org Chem 2021; 86:13808-13816. [PMID: 34514785 DOI: 10.1021/acs.joc.1c01886] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The radical 1,5-chloropentafluorosulfanylation of vinyl cyclopropanes (VCPs) initiated by Et3B/O2 affords allylic pentafluorosulfanyl/homoallylic chloride products through the ring-strain release of the cyclopropane. The VCP substitution pattern was investigated. The utility of this reaction was illustrated in post-transformation of the C═C bond by ozonolysis, giving access to valuable α-SF5 carbonyl compounds.
Collapse
Affiliation(s)
- Fang-Fang Feng
- UMR 6014 CNRS COBRA, Normandie Université, INSA Rouen, 1 rue Tesnière, Mont Saint Aignan 76821, France.,Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Dominique Cahard
- UMR 6014 CNRS COBRA, Normandie Université, INSA Rouen, 1 rue Tesnière, Mont Saint Aignan 76821, France
| |
Collapse
|
13
|
Wurzer N, Klimczak U, Babl T, Fischer S, Angnes RA, Kreutzer D, Pattanaik A, Rehbein J, Reiser O. Heck-Type Coupling of Fused Bicyclic Vinylcyclopropanes: Synthesis of 1,2-Dihydropyridines, 2,3-Dihydro-1 H-azepines, 1,4-Cyclohexadienes, and 2 H-Pyrans. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Nikolai Wurzer
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Urszula Klimczak
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Tobias Babl
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Sebastian Fischer
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Ricardo A. Angnes
- Institute of Chemistry, University of Campinas, Rua Carlos Gomes, 241, Cidade Universitária, Campinas, 13083-970 São Paulo, Brazil
| | - Dominik Kreutzer
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Aryaman Pattanaik
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Julia Rehbein
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| |
Collapse
|
14
|
Wu J, Wu H, Li X, Liu X, Zhao Q, Huang G, Zhang C. Copper-Catalyzed Highly Selective Protoboration of CF 3 -Containing 1,3-Dienes. Angew Chem Int Ed Engl 2021; 60:20376-20382. [PMID: 34146388 DOI: 10.1002/anie.202105896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Indexed: 12/15/2022]
Abstract
The copper-catalyzed highly selective protoboration of CF3 -containing conjugated diene with proton source and B2 Pin2 has been developed. This chemistry could suppress the well-known defluorination and provide borated reagents with an intact CF3 -group. Further studies indicated that the functional group tolerance of this chemistry is very well, and the products could be used as versatile precursors for different types of transformations. Importantly, using chiral diphosphine ligand, we have developed the first example for using such starting material to synthesis allylic boron-reagents which bearing a CF3 -containing chiral center. Notably, the reaction mechanism was intensively studied by DFT calculations, which could reveal the reason that defluorination was inhibited.
Collapse
Affiliation(s)
- Juanjuan Wu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Hongli Wu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xinzhi Li
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xinyu Liu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Qian Zhao
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Genping Huang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
15
|
Wu J, Wu H, Li X, Liu X, Zhao Q, Huang G, Zhang C. Copper‐Catalyzed Highly Selective Protoboration of CF
3
‐Containing 1,3‐Dienes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Juanjuan Wu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Hongli Wu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Xinzhi Li
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Xinyu Liu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Qian Zhao
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Genping Huang
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| | - Chun Zhang
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Science Department of Chemistry School of Science Tianjin University Tianjin 300072 China
| |
Collapse
|
16
|
Lou Y, Qiu J, Yang K, Zhang F, Wang C, Song Q. Ni-Catalyzed Reductive Allylation of α-Chloroboronates to Access Homoallylic Boronates. Org Lett 2021; 23:4564-4569. [PMID: 34061544 DOI: 10.1021/acs.orglett.1c01213] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The transition-metal-catalyzed allylation reaction is an efficient strategy for the construction of new carbon-carbon bonds alongside allyl or homoallylic functionalization. Herein we describe a Ni-catalyzed reductive allylation of α-chloroboronates to efficiently render the corresponding homoallylic boronates, which could be readily converted into valuable homoallylic alcohols or amines or 1,4-diboronates. This reaction features a broad substrate scope with good functional group compatibility that is complementary to the existing methods for the preparation of homoallylic boronates.
Collapse
Affiliation(s)
- Yixian Lou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jian Qiu
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Feng Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chenglan Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qiuling Song
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.,Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China.,Institute of Next Generation Matter Transformation, College of Materials Science Engineering at Huaqiao University, Xiamen, Fujian 361021, China
| |
Collapse
|
17
|
Guo J, Cheng Z, Chen J, Chen X, Lu Z. Iron- and Cobalt-Catalyzed Asymmetric Hydrofunctionalization of Alkenes and Alkynes. Acc Chem Res 2021; 54:2701-2716. [PMID: 34011145 DOI: 10.1021/acs.accounts.1c00212] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transition metal catalyzed asymmetric hydrofunctionalization of readily available unsaturated hydrocarbons presents one of the most straightforward and atom-economic protocols to access valuable optically active products. For decades, noble transition metal catalysts have laid the cornerstone in this field, on account of their superior reactivity and selectivity. In recent years, from an economical and sustainable standpoint, first-row, earth-abundant transition metals have received considerable attention, due to their high natural reserves, affordable costs, and low toxicity. Meanwhile, the earth-abundant metal catalyzed hydrofunctionalization reactions have also gained much interest and been investigated gradually. However, since chiral ligand libraries for earth-abundant transition-metal catalysis are limited to date, the development of highly enantioselective versions remains a significant challenge.This Account summarizes our recent efforts in developing suitable chiral ligands for iron and cobalt catalysts and their applications in the highly enantioselective hydrofunctionalization reactions (hydroboration and hydrosilylation) of alkenes and alkynes. In ligand design, we envisioned that chiral unsymmetric NNN-tridentate (UNT) ligand scaffolds could promote these enantioselective transformations with earth-abundant metals. Therefore, several types of chiral UNT ligands were designed and prepared in our laboratory, utilizing readily available natural amino acids as chiral sources. In the very beginning, chiral oxazoline iminopyridine (OIP) ligands were proposed and investigated through the rational combination of nitrogen-containing ligand scaffolds. After a systematic survey of the ligand effects, the imine moiety in the rigid OIP ligands was replaced by a conformationally more flexible amine unit, leading to the construction of reactive oxazoline aminoisopropylpyridine (OAP) ligands. Subsequently, imidazoline iminopyridine (IIP) and thiazoline iminopyridine (TIP) ligands were prepared by altering the oxygen atom of oxazoline with nitrogen and sulfur linkers, respectively. To further expand the chiral ligand library, other tridentate ligands containing a twisted pincer, anionic, and nonrigid backbone were also designed and synthesized, including iminophenyl oxazolinyl phenylamine (IPOPA) and imidazoline phenyl picolinamide (ImPPA). The efficacy of these chiral UNT ligands for asymmetric induction in iron and cobalt catalysis has been demonstrated through asymmetric hydrofunctionalization of alkenes and asymmetric sequential hydrofunctionalization of alkynes, which exhibit excellent reactivity as well as high chemo-, regio-, and stereoselectivity with broad functional group tolerance. Notably, highly regio- and enantioselective hydrofunctionalization of challenging substrates, such as 1,1-disubstituted aryl alkenes and terminal aliphatic alkenes, was also achieved. Furthermore, the development of asymmetric sequential isomerization/hydroboration of internal alkenes and sequential hydrofunctionalization of alkynes further demonstrates the synthetic power of these catalytic systems. The chiral enantioenriched products obtained by these methodologies could be potentially utilized in organic synthesis, medicinal chemistry, and materials science. We believe that our continuous efforts in this field would be beneficial to the development of asymmetric earth-abundant metal catalysis.
Collapse
Affiliation(s)
- Jun Guo
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhaoyang Cheng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jianhui Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xu Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
18
|
Bi X, Zhang Q, Gu Z. Transition‐Metal‐Catalyzed Carbon‐Carbon
Bond Activation in Asymmetric Synthesis. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiufen Bi
- Hefei National Laboratory for Physical Science at the Microscale, and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Qiuchi Zhang
- Hefei National Laboratory for Physical Science at the Microscale, and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Zhenhua Gu
- Ocean College Minjiang University Fuzhou Fujian 350108 China
- Hefei National Laboratory for Physical Science at the Microscale, and Department of Chemistry, Center for Excellence in Molecular Synthesis, University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
19
|
Pineschi M. Boron Reagents and Catalysts for the Functionalization of Strained Heterocycles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mauro Pineschi
- Department of Pharmacy University of Pisa Via Bonanno 33 56126 Pisa Italy Tel
| |
Collapse
|
20
|
Yu X, Zheng H, Zhao H, Lee BC, Koh MJ. Iron‐Catalyzed Regioselective Alkenylboration of Olefins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaolong Yu
- Department of Chemistry National University of Singapore 12 Science Drive 2 117549 Singapore Republic of Singapore
| | - Hongling Zheng
- Department of Chemistry National University of Singapore 12 Science Drive 2 117549 Singapore Republic of Singapore
| | - Haonan Zhao
- Department of Chemistry National University of Singapore 12 Science Drive 2 117549 Singapore Republic of Singapore
| | - Boon Chong Lee
- Department of Chemistry National University of Singapore 12 Science Drive 2 117549 Singapore Republic of Singapore
| | - Ming Joo Koh
- Department of Chemistry National University of Singapore 12 Science Drive 2 117549 Singapore Republic of Singapore
| |
Collapse
|
21
|
Zhang P, Zou C, Zhao Q, Zhang C. Nickel-catalyzed alkenylboration of alkenylarenes to access homoallylic boronic esters. Org Chem Front 2021. [DOI: 10.1039/d1qo00100k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A practical nickel-catalyzed alkenylboration of alkenylarenes with excellent chemo- and regio-selectivity has been developed.
Collapse
Affiliation(s)
- Penglin Zhang
- Institute of Molecular Plus
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
| | - Chenchen Zou
- Institute of Molecular Plus
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
| | - Qian Zhao
- Institute of Molecular Plus
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
| | - Chun Zhang
- Institute of Molecular Plus
- Tianjin Key Laboratory of Molecular Optoelectronic Science
- Department of Chemistry
- School of Sciences
- Tianjin University
| |
Collapse
|
22
|
Rana S, Biswas JP, Paul S, Paik A, Maiti D. Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chem Soc Rev 2021; 50:243-472. [DOI: 10.1039/d0cs00688b] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The promising aspects of iron in synthetic chemistry are being explored for three-four decades as a green and eco-friendly alternative to late transition metals. This present review unveils these rich iron-chemistry towards different transformations.
Collapse
Affiliation(s)
- Sujoy Rana
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | | | - Sabarni Paul
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Aniruddha Paik
- Department of Chemistry
- University of North Bengal
- Darjeeling
- India
| | - Debabrata Maiti
- Department of Chemistry
- IIT Bombay
- Mumbai-400076
- India
- Tokyo Tech World Research Hub Initiative (WRHI)
| |
Collapse
|
23
|
Yu X, Zheng H, Zhao H, Lee BC, Koh MJ. Iron‐Catalyzed Regioselective Alkenylboration of Olefins. Angew Chem Int Ed Engl 2020; 60:2104-2109. [DOI: 10.1002/anie.202012607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaolong Yu
- Department of Chemistry National University of Singapore 12 Science Drive 2 117549 Singapore Republic of Singapore
| | - Hongling Zheng
- Department of Chemistry National University of Singapore 12 Science Drive 2 117549 Singapore Republic of Singapore
| | - Haonan Zhao
- Department of Chemistry National University of Singapore 12 Science Drive 2 117549 Singapore Republic of Singapore
| | - Boon Chong Lee
- Department of Chemistry National University of Singapore 12 Science Drive 2 117549 Singapore Republic of Singapore
| | - Ming Joo Koh
- Department of Chemistry National University of Singapore 12 Science Drive 2 117549 Singapore Republic of Singapore
| |
Collapse
|
24
|
Chen P, Zhou Q, Chen Z, Liu YK, Liang Y, Tang KW, Liu Y. Silver-promoted oxidative sulfonylation and ring-expansion of vinylcyclopropanes with sodium sulfinates leading to dihydronaphthalene derivatives. Org Biomol Chem 2020; 18:7345-7354. [PMID: 32909577 DOI: 10.1039/d0ob01570a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Silver-promoted sulfonylation and ring-expansion of vinylcyclopropanes with sodium sulfinates is established for the construction of 1-sulfonylmethylated 3,4-dihydronaphthalenes. This sulfonylation process involves a radical pathway, including sulfonyl radical formation, radical addition, ring-opening and cyclization. The 1-sulfonylmethylated 3,4-dihydronaphthalenes can be converted into other useful products.
Collapse
Affiliation(s)
- Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Quan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Zan Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu-Kui Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yun Liang
- Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China.
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China. and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
25
|
Wang M, Shi Z. Methodologies and Strategies for Selective Borylation of C-Het and C-C Bonds. Chem Rev 2020; 120:7348-7398. [PMID: 32597639 DOI: 10.1021/acs.chemrev.9b00384] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Organoborons have emerged as versatile building blocks in organic synthesis to achieve molecular diversity and as carboxylic acid bioisosteres with broad applicability in drug discovery. Traditionally, these compounds are prepared by the substitution of Grignard/lithium reagents with electrophilic boron species and Brown hydroboration. Recent developments have provided new routes for the efficient preparation of organoborons by applying reactions using chemical feedstocks with leaving groups. As compared to the previous methods that used organic halides (I, Br, and Cl), the direct borylation of less reactive C-Het and C-C bonds has become highly important to get efficiency and functional-group compatibility. This Review aims to provide a comprehensive overview of this topic, including (1) C-F bond borylation, (2) C-O bond borylation, (3) C-S bond borylation, (4) C-N bond borylation, and (5) C-C bond borylation. Considerable attention is given to the strategies and mechanisms involved. We expect that this Review will inspire chemists to discover more efficient transformations to expand this field.
Collapse
Affiliation(s)
- Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
26
|
Geng S, Zhang J, Chen S, Liu Z, Zeng X, He Y, Feng Z. Development and Mechanistic Studies of Iron-Catalyzed Construction of Csp2–B Bonds via C–O Bond Activation. Org Lett 2020; 22:5582-5588. [DOI: 10.1021/acs.orglett.0c01937] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shasha Geng
- Sichuan Key Laboratory of Medical Imaging & Department of Chemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Juan Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Shuo Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Zhengli Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xiaoqin Zeng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Zhang Feng
- Sichuan Key Laboratory of Medical Imaging & Department of Chemistry, School of Preclinical Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, China
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
27
|
Zeng X, Zhang Y, Liu Z, Geng S, He Y, Feng Z. Iron-Catalyzed Borylation of Aryl Ethers via Cleavage of C–O Bonds. Org Lett 2020; 22:2950-2955. [DOI: 10.1021/acs.orglett.0c00679] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiaoqin Zeng
- School of Pharmaceutical Sciences, Chongqing University, Chongqing Key Laboratory of Natural Product Synthesis
and Drug Research, Chongqing 401331, P. R. China
| | - Yuxuan Zhang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing Key Laboratory of Natural Product Synthesis
and Drug Research, Chongqing 401331, P. R. China
| | - Zhengli Liu
- School of Pharmaceutical Sciences, Chongqing University, Chongqing Key Laboratory of Natural Product Synthesis
and Drug Research, Chongqing 401331, P. R. China
| | - Shasha Geng
- School of Pharmaceutical Sciences, Chongqing University, Chongqing Key Laboratory of Natural Product Synthesis
and Drug Research, Chongqing 401331, P. R. China
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing University, Chongqing Key Laboratory of Natural Product Synthesis
and Drug Research, Chongqing 401331, P. R. China
| | - Zhang Feng
- School of Pharmaceutical Sciences, Chongqing University, Chongqing Key Laboratory of Natural Product Synthesis
and Drug Research, Chongqing 401331, P. R. China
- School of Preclinical Medicine, North Sichuan Medical College, Sichuan Key Laboratory of Medical Imaging & Department of Chemistry, Nanchong, Sichuan 637000, China
| |
Collapse
|
28
|
|
29
|
Chen C, Wang H, Sun Y, Cui J, Xie J, Shi Y, Yu S, Hong X, Lu Z. Iron-Catalyzed Asymmetric Hydrosilylation of Vinylcyclopropanes via Stereospecific C-C Bond Cleavage. iScience 2020; 23:100985. [PMID: 32240952 PMCID: PMC7115165 DOI: 10.1016/j.isci.2020.100985] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/06/2020] [Accepted: 03/10/2020] [Indexed: 11/17/2022] Open
Abstract
An iron-catalyzed highly anti-Markovnikov selective, enantioselective hydrosilylation of vinylcyclopropanes with PhSiH3 was reported for the preparation of valuable chiral allylic silanes via stereospecific C-C bond cleavage. Simultaneously, difficultly prepared chiral VCPs could be also obtained with moderate to excellent enantioselectivity via this kinetic resolution pathway. The chiral Z-allylic silanes could be converted to various chiral allylic derivatives. A possible mechanism via an iron-silyl species was proposed based on experimental and computational studies. Iron-catalyzed 1,5-hydrosilylation of VCPs via C-C bond cleavage was first established Chiral allyl silanes and chiral VCPs were obtained with high enantioselectivity Various chiral allylic derivatives were delivered from chiral Z-allylic silanes A possible mechanism via an iron-silyl species was proposed
Collapse
Affiliation(s)
- Chenhui Chen
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hongliang Wang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yufeng Sun
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiayan Cui
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianbo Xie
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yang Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shijia Yu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
30
|
Liu L, Lee W, Yuan M, Acha C, Geherty MB, Williams B, Gutierrez O. Intra- and intermolecular Fe-catalyzed dicarbofunctionalization of vinyl cyclopropanes. Chem Sci 2020; 11:3146-3151. [PMID: 34122819 PMCID: PMC8157325 DOI: 10.1039/d0sc00467g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 02/18/2020] [Indexed: 01/01/2023] Open
Abstract
Design and implementation of the first (asymmetric) Fe-catalyzed intra- and intermolecular difunctionalization of vinyl cyclopropanes (VCPs) with alkyl halides and aryl Grignard reagents has been realized via a mechanistically driven approach. Mechanistic studies support the diffusion of alkyl radical intermediates out of the solvent cage to participate in an intra- or intermolecular radical cascade with a range of VCPs followed by re-entering the Fe radical cross-coupling cycle to undergo (stereo)selective C(sp2)-C(sp3) bond formation. This work provides a proof-of-concept of the use of vinyl cyclopropanes as synthetically useful 1,5-synthons in Fe-catalyzed conjunctive cross-couplings with alkyl halides and aryl/vinyl Grignard reagents. Overall, we provide new design principles for Fe-mediated radical processes and underscore the potential of using combined computations and experiments to accelerate the development of challenging transformations.
Collapse
Affiliation(s)
- Lei Liu
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| | - Wes Lee
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| | - Mingbin Yuan
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| | - Chris Acha
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| | - Michael B Geherty
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| | - Brandon Williams
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland College Park Maryland 20742 USA
| |
Collapse
|
31
|
Ligand-promoted cobalt-catalyzed radical hydroamination of alkenes. Nat Commun 2020; 11:783. [PMID: 32034130 PMCID: PMC7005876 DOI: 10.1038/s41467-020-14459-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Highly regio- and enantioselective intermolecular hydroamination of alkenes is a challenging process potentially leading to valuable chiral amines. Hydroamination of alkenes via metal-catalyzed hydrogen atom transfer (HAT) with good regioselectivity and functional group tolerance has been reported, however, high enantioselectivity has not been achieved due to the lack of suitable ligands. Here we report a ligand-promoted cobalt-catalyzed Markovnikov-type selective radical hydroamination of alkenes with diazo compounds. This operationally simple protocol uses unsymmetric NNN-tridentate (UNT) ligand, readily available alkenes and hydrosilanes to construct hydrazones with good functional group tolerance. The hydrazones can undergo nitrogen–nitrogen bond cleavage smoothly to deliver valuable amine derivatives. Additionally, asymmetric intermolecular hydroamination of unactivated aliphatic terminal alkenes using chiral N-imidazolinylphenyl 8-aminoquinoline (IPAQ) ligands has also been achieved to afford chiral amine derivatives with good enantioselectivities. Asymmetric intermolecular hydroamination of alkenes is a challenging process, potentially leading to useful chiral amines. Here, the authors report unsymmetric NNN tridentate ligands promoting the cobalt-catalyzed radical hydroamination of alkenes via hydrogen atom transfer, also in an asymmetric fashion.
Collapse
|
32
|
Affiliation(s)
- Jiajin Zhao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Biao Cheng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Chenhui Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Liu J, Yao H, Li X, Wu H, Lin A, Yao H, Xu J, Xu S. Organocatalytic 1,5-trifluoromethylthio-sulfonylation of vinylcyclopropane mediated by visible light in the water phase. Org Chem Front 2020. [DOI: 10.1039/d0qo00343c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
1,2-Difunctionalization has developed into a robust tool for the preparation of complex organic molecules, and remote difunctionalization has also aroused widespread interest to achieve pluripotency of difunctionalization.
Collapse
Affiliation(s)
- Junkai Liu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Hong Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Xinnan Li
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Hongyu Wu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Jinyi Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| | - Shengtao Xu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry
- China Pharmaceutical University
- Nanjing 210009
- P. R. China
| |
Collapse
|
34
|
Duan XF. Iron catalyzed stereoselective alkene synthesis: a sustainable pathway. Chem Commun (Camb) 2020; 56:14937-14961. [DOI: 10.1039/d0cc04882h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Replacing expensive or toxic transition metals with iron has become an important trend. This article summarises the recent progresses of a wide range of Fe-catalyzed reactions for accessing various stereodefined alkenes.
Collapse
|
35
|
Chai H, Yu K, Liu B, Tan W, Zhang G. A Highly Selective Manganese-Catalyzed Synthesis of Imines under Phosphine-Free Conditions. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Huining Chai
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, People’s Republic of China
| | - Kun Yu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences; Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, People’s Republic of China
| | - Bo Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences; Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, People’s Republic of China
| | - Weiqiang Tan
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, People’s Republic of China
| | - Guangyao Zhang
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People’s Republic of China
| |
Collapse
|
36
|
Zhang ZQ, Meng XY, Sheng J, Lan Q, Wang XS. Enantioselective Copper-Catalyzed 1,5-Cyanotrifluoromethylation of Vinylcyclopropanes. Org Lett 2019; 21:8256-8260. [DOI: 10.1021/acs.orglett.9b03012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zi-Qi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xiang-Yu Meng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jie Sheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Quan Lan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
37
|
Wu D, Cui SS, Lin Y, Li L, Yu W. Visible Light-Driven Azidation/Difunctionalization of Vinyl Arenes with Azidobenziodoxole under Copper Catalysis. J Org Chem 2019; 84:10978-10989. [DOI: 10.1021/acs.joc.9b01569] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Danhua Wu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Shuang-Shuang Cui
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Yajun Lin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Lin Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, PR China
| |
Collapse
|
38
|
Meng Q, Wang F, Qian P. Density functional calculations for Rh(I)‐catalyzed C–C bond activation of siloxyvinylcyclopropanes and diazoesters. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qingxi Meng
- College of Chemistry and Material ScienceShandong Agricultural University Taian Shandong 271018 China
| | - Fen Wang
- College of Chemistry and Chemical EngineeringTaishan University Taian Shandong 271021 China
| | - Ping Qian
- College of Chemistry and Material ScienceShandong Agricultural University Taian Shandong 271018 China
| |
Collapse
|
39
|
|
40
|
Affiliation(s)
- Xu Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhaoyang Cheng
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
41
|
Chen Y, Li L, Ma Y, Li Z. Cobalt-Catalyzed Three-Component Difluoroalkylation–Peroxidation of Alkenes. J Org Chem 2019; 84:5328-5338. [DOI: 10.1021/acs.joc.9b00339] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yuanjin Chen
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Liangkui Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yangyang Ma
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
42
|
Affiliation(s)
- Duo Wei
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | | |
Collapse
|
43
|
Chen J, Guo J, Lu Z. Recent Advances in Hydrometallation of Alkenes and Alkynes via the First Row Transition Metal Catalysis. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800314] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianhui Chen
- College of Chemistry and Materials Engineering; Wenzhou University; Wenzhou, Zhejiang 325035 China
- Department of chemistry; Zhejiang University; Hangzhou Zhejiang 310027 China
| | - Jun Guo
- Department of chemistry; Zhejiang University; Hangzhou Zhejiang 310027 China
| | - Zhan Lu
- Department of chemistry; Zhejiang University; Hangzhou Zhejiang 310027 China
| |
Collapse
|
44
|
Khoo S, Cao J, Ng F, So CW. Synthesis of a Base-Stabilized Silicon(I)-Iron(II) Complex for Hydroboration of Carbonyl Compounds. Inorg Chem 2018; 57:12452-12455. [PMID: 30246527 DOI: 10.1021/acs.inorgchem.8b01760] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of the amidinatosilicon(I) dimer [LSi:]2 (1; L = PhC(N tBu)2) with FeBr2 in tetrahydrofuran (THF) at ambient temperature afforded the silicon(I)-iron(II) dimer [LSi(FeBr2·THF)]2 (2) after 40 h. Compound 2 can catalyze hydroboration of aliphatic and aromatic ketone compounds with HBpin in the absence of any strong reducing agent. Mechanistic studies show that complex 2 reacts with ketone compounds to form a zwitterionic intermediate in the first step of catalysis. Subsequent reaction with HBpin affords the corresponding boron esters and then regenerates complex 2.
Collapse
Affiliation(s)
- Sabrina Khoo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Jiajia Cao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Fiona Ng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| | - Cheuk-Wai So
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore
| |
Collapse
|
45
|
Wei D, Carboni B, Sortais JB, Darcel C. Iron-Catalyzed Dehydrogenative Borylation of Terminal Alkynes. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800588] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Duo Wei
- Univ Rennes, CNRS; ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-; 35042 Rennes France
| | - Bertrand Carboni
- Univ Rennes, CNRS; ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-; 35042 Rennes France
| | - Jean-Baptiste Sortais
- Univ Rennes, CNRS; ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-; 35042 Rennes France
- LCC-CNRS; Université de Toulouse, CNRS, UPS; Toulouse France
- Institut Universitaire de France; 1 rue Descartes 75231 Paris Cedex 05 France
| | - Christophe Darcel
- Univ Rennes, CNRS; ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-; 35042 Rennes France
| |
Collapse
|
46
|
Li L, Liu E, Cheng J, Zhang G. Iron(ii) coordination polymer catalysed hydroboration of ketones. Dalton Trans 2018; 47:9579-9584. [PMID: 29974086 DOI: 10.1039/c8dt02134a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Catalytic hydroboration of ketones with pinacolborane was achieved with a 2D iron(ii) coordination polymer (CP) of a divergent 4,2';6',4''-terpyridine (tpy) derivative under mild conditions with high efficiency. This solid iron catalyst system is more active towards the hydroboration of ketones than that of aldehydes, displaying a different trend of reactivity from known homogeneous iron hydroboration catalysts.
Collapse
Affiliation(s)
- Li Li
- Hubei Key Laboratory of Drug Synthesis and Optimization, Jingchu University of Technology, Hubei 448000, China
| | | | | | | |
Collapse
|
47
|
Zhang H, Lu Z. Nickel-catalyzed enantioselective sequential Nazarov cyclization/decarboxylation. Org Chem Front 2018. [DOI: 10.1039/c8qo00279g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nickel-catalyzed enantioselective sequential Nazarov cyclization/decarboxylation has been developed.
Collapse
Affiliation(s)
- Heyi Zhang
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| | - Zhan Lu
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
48
|
Chen J, Xi T, Lu Z. 10 gram-scale synthesis of a chiral oxazoline iminopyridine ligand and its applications. Org Chem Front 2018. [DOI: 10.1039/c7qo00816c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This method reports on the preparation of a chiral oxazoline iminopyridine (OIP) ligand and its applications on a scale of 10 grams.
Collapse
Affiliation(s)
- Jianhui Chen
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058
- China
| | - Tuo Xi
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058
- China
| | - Zhan Lu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310058
- China
| |
Collapse
|