1
|
Filippov IP, Zakharov TN, Grishin AV, Khlebnikov AF, Novikov MS, Rostovskii NV. DBU-Promoted Cyclizations of Cyclopentyl-Substituted Oxazapolyenes to Cyclopentapyridones and Hydroxypyrroles: Experimental and DFT Study. J Org Chem 2024; 89:15404-15413. [PMID: 39364687 DOI: 10.1021/acs.joc.4c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
1,1-Di(alkoxycarbonyl)-4-cyclopentyl-2-azabuta-1,3-dienes react with DBU to form two types of heterocyclic products: 1H-cyclopenta[c]pyrid-1-ones and 3-hydroxy-1H-pyrroles. These previously unobserved transformations proceed through the formation of 1-azapentadienyl anion which undergoes 1,6-shift of the alkoxycarbonyl group to the cyclopentyl moiety followed by 1,6-cyclization to form the cyclopentapyridone (path a) and 1,5-cyclization accompanied by 1,3-shift of the methoxy group followed by dialkyl carbonate elimination to afford the hydroxypyrrole (path b). The mechanisms of the reactions were studied using DFT calculations. Pyridones can be synthesized in one pot in three steps via Rh(II)-catalyzed isomerization of 4-cyclopentylisoxazoles to 2H-azirines and their subsequent reaction with diazomalonic esters, followed by heating of the resulting 2-azabuta-1,3-dienes with DBU.
Collapse
Affiliation(s)
- Ilya P Filippov
- St. Petersburg State University, Institute of Chemistry, St. Petersburg 199034, Russia
| | - Timofei N Zakharov
- St. Petersburg State University, Institute of Chemistry, St. Petersburg 199034, Russia
| | - Aleksandr V Grishin
- St. Petersburg State University, Institute of Chemistry, St. Petersburg 199034, Russia
| | | | - Mikhail S Novikov
- St. Petersburg State University, Institute of Chemistry, St. Petersburg 199034, Russia
| | - Nikolai V Rostovskii
- St. Petersburg State University, Institute of Chemistry, St. Petersburg 199034, Russia
| |
Collapse
|
2
|
Biswas S, Duari S, Maity S, Roy A, Guchhait S, Elsharif AM, Biswas S. Solvent- and Catalyst-Controlled Regioselective O- and N-Alkylation of 2-Pyridones by 2 H-Azirines. J Org Chem 2024; 89:15091-15102. [PMID: 39374056 DOI: 10.1021/acs.joc.4c01870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The synthesis of O-substituted 2-hydroxypyridines and N-substituted 2-pyridones, crucial for many bioactive compounds and drugs, faces challenges due to the tautomeric nature of 2-pyridones, which complicates selective alkylation. Here we developed an efficient method for regioselective O- and N-alkylation of 2-pyridones using Bro̷nsted acid-catalyzed ring opening of 2H-azirines. The process involves triflic acid for O-alkylation and p-toluenesulfonic acid for N-alkylation, achieving high yields under optimized conditions. For O-alkylation, a variety of 2-pyridones and 2H-azirines were used, resulting in significant yields of the desired products. Similarly, for N-alkylation, the optimized conditions produced excellent yields, highlighting the method's versatility. This methodology was further demonstrated through scaled-up syntheses and subsequent transformations, showcasing its practicality for complex molecular architectures. The proposed mechanism involves the protonation of 2H-azirine, followed by a regioselective SN2-type attack and acid-catalyzed hydrolysis, leading to the desired alkylated products. This innovative approach, emphasizing Bro̷nsted acid catalysis and careful control of reaction conditions, represents a significant advancement in the selective alkylation of 2-pyridones, with broad implications for medicinal chemistry.
Collapse
Affiliation(s)
- Subrata Biswas
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| | - Surajit Duari
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| | - Srabani Maity
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| | - Arnab Roy
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| | - Sourav Guchhait
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| | - Asma M Elsharif
- Department of Chemistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Srijit Biswas
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| |
Collapse
|
3
|
Biswas S, Roy A, Duari S, Maity S, Elsharif AM, Biswas S. Brønsted acid-catalyzed regioselective ring opening of 2 H-azirines by 2-mercaptopyridines and related heterocycles; one pot access to imidazo[1,2- a]pyridines and imidazo[2,1- b]thiazoles. Org Biomol Chem 2024; 22:4697-4703. [PMID: 38775270 DOI: 10.1039/d4ob00410h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
A catalytic and versatile synthetic method for the synthesis of imidazo[1,2-a]pyridines has been developed. Brønsted acid-catalysis plays a major role in the regioselective ring opening of 2H-azirines. Nucleophilic attack via the N-centre of mercaptopyridines and their analogues, followed by cyclisation by cleaving the C-S bond, allowed a library of imidazo[1,2-a]pyridines and related heterocycles to be built. The reaction protocol has been applied to various 2H-azirines, 2-mercaptopyridines, and thiazole-2-thiols, illustrating the generality of reaction conditions. The practical applications include the synthesis of pharmaceuticals, such as anti-tumor agents. This study introduces a novel approach to the synthesis of functional molecules with extensive potential.
Collapse
Affiliation(s)
- Subrata Biswas
- Dept. of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata - 700 009, West Bengal, India.
| | - Arnab Roy
- Dept. of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata - 700 009, West Bengal, India.
| | - Surajit Duari
- Dept. of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata - 700 009, West Bengal, India.
| | - Srabani Maity
- Dept. of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata - 700 009, West Bengal, India.
| | - Asma M Elsharif
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Srijit Biswas
- Dept. of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata - 700 009, West Bengal, India.
| |
Collapse
|
4
|
Fang J, Fang J, Rao Y, Qiu H, Pan Z, Ma Y. Metal-free construction of dihydropyrazino[2,3- b]indoles from 2-aminoacetophenones, isocyanates and 1,2-diamines. Org Biomol Chem 2024; 22:2043-2048. [PMID: 38358007 DOI: 10.1039/d3ob01967e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
A Brønsted acid/iodine co-mediated approach to construct dihydropyrazino[2,3-b]indoles in 2-MeTHF as a green solvent at room temperature was established. A wide range of diversely substituted dihydropyrazino[2,3-b]indoles (42 examples, 61-85% yields) were synthesized under mild conditions, even on a gram scale. This protocol features organocatalysts, an eco-friendly solvent, mild conditions, readily accessible substrates, broad substrate scope and simple work-up.
Collapse
Affiliation(s)
- Jingxi Fang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue Taizhou, 318000, People's Republic of China.
| | - Jiayao Fang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue Taizhou, 318000, People's Republic of China.
| | - Yingbo Rao
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue Taizhou, 318000, People's Republic of China.
| | - Huanyi Qiu
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue Taizhou, 318000, People's Republic of China.
| | - Zhentao Pan
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue Taizhou, 318000, People's Republic of China.
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, 1139 Shifu Avenue Taizhou, 318000, People's Republic of China.
| |
Collapse
|
5
|
Zhang H, Li M, Wang K, Chen Y, Liao B, Wang Q, Yi W. An Accesss to 4,5,6-Trisubstituted Pyrimidines from 2 H-Azirines and α-Isocyanoacetates or α-Isocyanoacetamides Enabled by 1,3-Dipolar [3 + 2] Cycloaddition/Ring-Expanding/Oxidative Aromatization Process. J Org Chem 2024; 89:1692-1702. [PMID: 38207341 DOI: 10.1021/acs.joc.3c02378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The products containing pyrimidine scaffolds exhibit various important physiological and biological activities. To date, the strategies to generate 4,5,6-trisubstituted pyrimidines were not reported. Here, a copper-catalyzed reaction of 2H-azirines with α-isocyanoacetates or α-isocyanoacetamides has been developed, rapidly preparing 4,5,6-trisubstituted pyrimidines. The mechanistic results reveal that this strategy underwent a formal 1, 3-dipolar [3 + 2] cycloaddition/ring-expanding/oxidative aromatization procedure to construct the desired pyrimidines.
Collapse
Affiliation(s)
- Haoxiang Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Mengfan Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Kunpeng Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Yan Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Benren Liao
- Shanghai No.4 Reagent Chemical Co., Ltd. Shanghai 201512, P. R. China
| | - Qingwei Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| | - Weiyin Yi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China
| |
Collapse
|
6
|
Roy A, Biswas S, Duari S, Maity S, Mishra AK, Souza ARD, Elsharif AM, Morgon NH, Biswas S. Regioselective Transition Metal-Free Catalytic Ring Opening of 2 H-Azirines by Phenols and Naphthols; One-Pot Access to Benzo- and Naphthofurans. J Org Chem 2023; 88:15580-15588. [PMID: 37933871 DOI: 10.1021/acs.joc.3c01266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Benzofuran and naphthofuran derivatives are synthesized from readily available phenols and naphthols. Regioselective ring openings of 2H-azirine followed by in situ aromatization using a catalytic amount of Brønsted acid have established the novelty of the methodology. The involvement of a series of 2H-azirines with a variety of phenols, 1-naphthols, and 2-naphthols showed the generality of the protocol. In-depth density functional theory calculations revealed the reaction mechanism with the energies of the intermediates and transition states of a model reaction. An alternate pathway of the mechanism has also been proposed with computer modeling.
Collapse
Affiliation(s)
- Arnab Roy
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| | - Subrata Biswas
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| | - Surajit Duari
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| | - Srabani Maity
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| | - Abhishek Kumar Mishra
- Department of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, Uttar Pradesh, India
| | - Aguinaldo R de Souza
- Department of Chemistry, School of Science, São Paulo State University, Bauru 17033-360, São Paulo, Brazil
| | - Asma M Elsharif
- Department of Chemistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Nelson H Morgon
- Department of Physical Chemistry, Institute of Chemistry, Campinas State University, Campinas 13083-970, São Paulo, Brazil
| | - Srijit Biswas
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700 009, West Bengal, India
| |
Collapse
|
7
|
Rupa K, Anbarasan P. Rhodium Catalyzed [4 + 1]-Annulation of o-Acylanilines with 3-Diazoindoline-2-imines. Org Lett 2023; 25:6357-6362. [PMID: 37602993 DOI: 10.1021/acs.orglett.3c02288] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
An efficient rhodium catalyzed [4 + 1]-annulation of o-acylanilines with 3-diazoindoline-2-imines has been successfully accomplished for the synthesis of spiroindolines in good to excellent yield. The reaction occurs through formation of N-ylide followed by cyclization and showed good tolerance to various functional groups. Gram-scale synthesis, diastereoselective construction of tetrasubstituted indoline, synthesis of spirooxindole, and isolation of potential intermediates have also been demonstrated.
Collapse
Affiliation(s)
- Kavuri Rupa
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
8
|
Wang M, Ma J, Wang H, Hu F, Sun B, Tan T, Li M, Huang G. Brønsted acid-promoted ring-opening and annulation of thioamides and 2 H-azirines to synthesize 2,4,5-trisubstituted thiazoles. Org Biomol Chem 2023. [PMID: 37376913 DOI: 10.1039/d3ob00245d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
In this study, a metal-free synthesis of 2,4,5-trisubstituted thiazoles using 2H-azirines and thioamides is disclosed. Under the catalysis of HClO4, the protocol was realized through a novel chemical bond breaking of 2H-azirine, which is usually achieved using a metal catalyst. It provides an efficient and green route for the synthesis of substituted thiazoles with a broad substrate scope. Preliminary mechanistic studies show that such a reaction may involve a ring-opening reaction, annulation, and a hydrogen atom rearrangement process.
Collapse
Affiliation(s)
- Meng Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Jingyi Ma
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Hesong Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Fangpeng Hu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Bo Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Taiyan Tan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Minglang Li
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China.
| | - Guosheng Huang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Department of Chemistry, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
9
|
Chen YJ, Zheng J, Ma JA, Zhang FG. Radical-initiated diazo-retaining nucleophilic addition reaction of trifluorodiazoethane and diazoacetate with 2H‑azirines. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
10
|
Sakharov PA, Rostovskii NV, Khlebnikov AF, Novikov MS. Copper(II)-Catalyzed (3+2) Cycloaddition of 2 H-Azirines to Six-Membered Cyclic Enols as a Route to Pyrrolo[3,2- c]quinolone, Chromeno[3,4- b]pyrrole, and Naphtho[1,8- ef]indole Scaffolds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27175681. [PMID: 36080448 PMCID: PMC9457675 DOI: 10.3390/molecules27175681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
A method for the [2+3] pyrroline annulation to the six-membered non-aromatic enols using 3-aryl-2H-azirines as annulation agents is developed in the current study. The reaction proceeds as a formal (3+2) cycloaddition via the N1-C2 azirine bond cleavage and is catalyzed by both Cu(II) and Cu(I) compounds. The new annulation method can be applied to prepare pyrrolo[3,2-c]quinoline, chromeno[3,4-b]pyrrole, and naphtho[1,8-ef]indole derivatives in good to excellent yields from enols of the quinolin-2-one, 2H-chromen-2-one, and 1H-phenalen-1-one series.
Collapse
|
11
|
Akter M, Rupa K, Anbarasan P. 1,2,3-Triazole and Its Analogues: New Surrogates for Diazo Compounds. Chem Rev 2022; 122:13108-13205. [DOI: 10.1021/acs.chemrev.1c00991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Monalisa Akter
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Kavuri Rupa
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Pazhamalai Anbarasan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| |
Collapse
|
12
|
Filippov IP, Agafonova AV, Titov GD, Smetanin IA, Rostovskii NV, Khlebnikov AF, Novikov MS. Synthesis of Imidazo[1,2- a]pyridines via Near UV Light-Induced Cyclization of Azirinylpyridinium Salts. J Org Chem 2022; 87:6514-6519. [PMID: 35476415 DOI: 10.1021/acs.joc.2c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient one-pot synthesis of imidazo[1,2-a]pyridines from 2-bromoazirines and pyridines has been developed. The construction of the bicyclic framework of imidazo[1,2-a]pyridines occurs in two steps through the formation of (2H-azirin-2-yl)pyridinium bromides followed by dehydrobrominative UV light-induced cyclization. The method can also be applied for the synthesis of imidazo[2,1-a]isoquinolines. Unstable in solution, (2H-azirin-2-yl)pyridinium/isoquinolinium bromides were quantitatively converted to stable tetrafluoroborates, which can be cyclized to imidazo[1,2-a]pyridines under UV irradiation in the presence of bromide ions.
Collapse
Affiliation(s)
- Ilya P Filippov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Anastasiya V Agafonova
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Gleb D Titov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Ilia A Smetanin
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Nikolai V Rostovskii
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexander F Khlebnikov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Mikhail S Novikov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
13
|
Huang Z, He Y, Wang L, Li J, Xu BH, Zhou YG, Yu Z. Copper-Catalyzed [4 + 1] Annulation of Enaminothiones with Indoline-Based Diazo Compounds. J Org Chem 2022; 87:4424-4437. [PMID: 35262359 DOI: 10.1021/acs.joc.2c00137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A concise synthetic route to spiroindoline-fused S-heterocycles was developed through copper-catalyzed [4 + 1] annulation using enaminothiones as donor-acceptor synthons. Both 3-diazoindolin-2-imines and 3-diazooxindoles were amenable to work as effective C1 building blocks. The reaction proceeds via a copper-catalyzed cascade process involving the in situ generation of copper(I) carbene and C-S/C-C bond formation. This synthetic protocol features the use of readily available substrates, diverse substituent tolerance, and good to excellent yields.
Collapse
Affiliation(s)
- Zilong Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuan He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liandi Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Jiying Li
- East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Bao-Hua Xu
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China
| |
Collapse
|
14
|
Mechanism of P-H insertion of α-imino copper carbenes: 1,1-Insertion or 1,3-insertion? Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Soam P, Kamboj P, Tyagi V. Rhodium‐Catalyzed Cascade Reactions using Diazo Compounds as a Carbene Precursor to Construct Diverse Heterocycles. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Pooja Soam
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 Punjab India
| | - Priya Kamboj
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 Punjab India
| | - Vikas Tyagi
- School of Chemistry and Biochemistry Thapar Institute of Engineering and Technology Patiala 147004 Punjab India
| |
Collapse
|
16
|
Electrocyclizations of Conjugated Azapolyenes Produced in Reactions of Azaheterocycles with Metal Carbenes. ORGANICS 2021. [DOI: 10.3390/org2030017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Conjugated azapolyenes (azabuta-1,3-dienes, aza-/diaza-/oxaza-/oxadiazahexa-1,3,5-trienes) are highly reactive in electrocyclization reactions, which makes them convenient precursors for the synthesis of a wide range of four-, five-, and six-membered nitrogen heterocycles that are of relevance for medicinal chemistry. Ring opening reactions of 2H-azirines and azoles containing an N–N or N–O bond, initiated by a transition metal carbene, have become increasingly important in recent years, since they easily allow the generation of azapolyenes with different numbers of double bonds and heteroatoms in various positions. This review summarizes the literature, published mainly in the last decade, on the synthetic and mechanistic aspects of electrocyclizations of azapolyenes generated by the carbene method.
Collapse
|
17
|
Li J, Zhao Q, Gou C, Li Q, Leng H, Huang Q, Liu Y. Construction of Indole‐Fused Heterocycles Starting from 2‐Thioxoindolines, Iminoindolines, and Their Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jun‐Long Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Chuan Gou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Qing‐Zhu Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Hai‐Jun Leng
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| | - Qian‐Wei Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
| | - Yue Liu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu University Chengdu 610106 People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu 611137 People's Republic of China
| |
Collapse
|
18
|
Wang Z, Li H, Wang Z, Suleman M, Wang Y, Lu P. Photocatalytic Approach for Construction of 5,6-Dihydroimidazo[2,1- a]isoquinolines and Their Luminescent Properties. J Org Chem 2021; 86:8101-8111. [PMID: 34060831 DOI: 10.1021/acs.joc.1c00590] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A visible-light-driven photoredox reaction of tetrahydroisoquinoline with 2H-azirines is described. 4,7-Bis(4-methoxyphenyl)benzo[c][1,2,5]thiadiazole, a benzothiadiazole (BTD) derived fluorophore, is used as an organic photoredox catalyst, and the reaction offers an efficient access to 5,6-dihydroimidazo[2,1-a]isoquinolines with a broad range of functional groups. The resulting 5,6-dihydroimidazo[2,1-a]isoquinolines present strong photoluminecence in solutions and powders and could be applied in the fabrication of blue OLED devices.
Collapse
Affiliation(s)
- Zaibin Wang
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Hanjie Li
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Zhichao Wang
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Muhammad Suleman
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
19
|
Zhao MN, Ning GW, Yang DS, Fan MJ, Zhang S, Gao P, Zhao LF. Iron-Catalyzed Cycloaddition of Amides and 2,3-Diaryl-2 H-azirines To Access Oxazoles via C-N Bond Cleavage. J Org Chem 2021; 86:2957-2964. [PMID: 33443426 DOI: 10.1021/acs.joc.0c02843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel and efficient iron-catalyzed cycloaddition reaction using readily available 2,3-diaryl-2H-azirines and primary amides is reported. A wide range of trisubstituted oxazoles could be achieved in good yields with good functional group compatibility. In this transformation, two C-N bonds were cleaed and new C-N and C-O bonds were formed.
Collapse
Affiliation(s)
- Mi-Na Zhao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Gui-Wan Ning
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - De-Suo Yang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Ming-Jin Fan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Sheng Zhang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Peng Gao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Li-Fang Zhao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| |
Collapse
|
20
|
Suleman M, Lu P, Wang Y. Recent advances in the synthesis of indole embedded heterocycles with 3-diazoindolin-2-imines. Org Chem Front 2021. [DOI: 10.1039/d0qo01515f] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The preparations, reactivity and synthetic applications of 3-diazoindolin-2-imines, a valuable class of α-diazo amidines, are reviewed.
Collapse
Affiliation(s)
- Muhammad Suleman
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Ping Lu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Yanguang Wang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
21
|
Wu W, Chen Z. Synthesis of 2,3-diiminoindolines and 2,3-diaminoindoles via copper-catalyzed donor-acceptor metallo carbenoid formation and hydrogenation reactions. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Nickel-catalyzed formal [3 + 2]-cycloaddition of 2H-azirines with 1,3-dicarbonyl compounds for the synthesis of pyrroles. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Feng FF, Li JK, Liu XY, Zhang FG, Cheung CW, Ma JA. General Synthesis of Tri-Carbo-Substituted N2-Aryl-1,2,3-triazoles via Cu-Catalyzed Annulation of Azirines with Aryldiazonium Salts. J Org Chem 2020; 85:10872-10883. [PMID: 32691600 DOI: 10.1021/acs.joc.0c01433] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The general synthesis of fully substituted N2-aryl-1,2,3-triazoles is hitherto challenging compared with that of the N1-aryl counterparts. Herein, we describe a Cu-catalyzed annulation reaction of azirines and aryldiazonium salts. This regiospecific method allows access to a broad spectrum of tri-carbo N2-aryl-1,2,3-triazoles substituted with diverse aryl and alkyl moieties. Its utility is highlighted by the synthesis of several triazole precursors applicable in drug discovery, as well as novel chiral binaphthyl ligands bearing triazole moieties.
Collapse
Affiliation(s)
- Fang-Fang Feng
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China
| | - Jun-Kuan Li
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China
| | - Xuan-Yu Liu
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China
| | - Chi Wai Cheung
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), and Tianjin Collaborative Innovation Centre of Chemical Science & Engineering, Tianjin University, Tianjin 300072, P. R. of China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China
| |
Collapse
|
24
|
Filippov IP, Novikov MS, Khlebnikov AF, Rostovskii NV. Pseudopericyclic Dearomative 1,6-Cyclization of 1-(2-Pyridyl)-2-azabuta-1,3-dienes: Synthesis and Ring-Chain Valence Equilibria of 4H
-Pyrido[1,2-a
]pyrazines. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000210] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ilya P. Filippov
- Institute of Chemistry; St. Petersburg State University; 7/9 Universitetskaya nab. 199034 St. Petersburg Russia
| | - Mikhail S. Novikov
- Institute of Chemistry; St. Petersburg State University; 7/9 Universitetskaya nab. 199034 St. Petersburg Russia
| | - Alexander F. Khlebnikov
- Institute of Chemistry; St. Petersburg State University; 7/9 Universitetskaya nab. 199034 St. Petersburg Russia
| | - Nikolai V. Rostovskii
- Institute of Chemistry; St. Petersburg State University; 7/9 Universitetskaya nab. 199034 St. Petersburg Russia
| |
Collapse
|
25
|
Sakharov PA, Rostovskii NV, Khlebnikov AF, Novikov MS. Regiodivergent Synthesis of Butenolide-Based α- and β-Amino Acid Derivatives via Base-Controlled Azirine Ring Expansion. Org Lett 2020; 22:3023-3027. [PMID: 32227960 DOI: 10.1021/acs.orglett.0c00793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A method for the preparation of 5-aminobutenolides from 2-bromo-2H-azirine-2-carboxylic esters/amides with arylacetic acids has been developed. The reaction regioselectivity can be switched by a change of the basic catalyst, making it possible to prepare both butenolide-based α- and β-amino acid derivatives. The change in the regioselectivity is interpreted in terms of the stability and reactivity of the enolates formed during the SN2' substitution of the bromine in the azirine by the carboxylate ion.
Collapse
Affiliation(s)
- Pavel A Sakharov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Nikolai V Rostovskii
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexander F Khlebnikov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Mikhail S Novikov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
26
|
Li Z, Xie J, Lu P, Wang Y. Synthesis of 8-Alkoxy-5 H-isochromeno[3,4- c]isoquinolines and 1-Alkoxy-4-arylisoquinolin-3-ols through Rh(III)-Catalyzed C-H Functionalization of Benzimidates with 4-Diazoisochroman-3-imines and 4-Diazoisoquinolin-3-ones. J Org Chem 2020; 85:5525-5535. [PMID: 32200640 DOI: 10.1021/acs.joc.0c00283] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rh(III)-catalyzed C-H activation/annulation of benzimidates with 4-diazoisochroman-3-imines furnished 8-alkoxy-5H-isochromeno[3,4-c]isoquinolines in moderate to excellent yields with a broad range of substrate scope. The reaction was carried out under mild reaction conditions and could be scaled up with practical usage. Similar reaction between benzimidates and 4-diazoisoquinolin-3-ones provided 1-alkoxy-4-arylisoquinolin-3-ols in excellent yields. Moreover, the synthesized products could be conveniently transformed to the corresponding heterocycles with a 1,8-naphthyridinone or isochromenopyridinone core, which are privileged structures in medicinal chemistry.
Collapse
Affiliation(s)
- Zhenmin Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jianwei Xie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
27
|
Yu C, Sanjosé-Orduna J, Patureau FW, Pérez-Temprano MH. Emerging unconventional organic solvents for C-H bond and related functionalization reactions. Chem Soc Rev 2020; 49:1643-1652. [PMID: 32115586 DOI: 10.1039/c8cs00883c] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Solvent engineering is an increasingly essential topic in the chemical sciences. In this context, some recently appeared unconventional solvents have shown their large potential in the field of C-H bond functionalization reactions. This review aims not only at recognizing and classifying a short selection of these emerging solvents, in particular halogenated ones, but also at providing a medium term perspective of the possibilities they will offer for synthetic method development.
Collapse
Affiliation(s)
- Congjun Yu
- Institute for Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| | | | | | | |
Collapse
|
28
|
Chen Y, Yang W, Wu J, Sun W, Loh TP, Jiang Y. 2H-Azirines as Potential Bifunctional Chemical Linkers of Cysteine Residues in Bioconjugate Technology. Org Lett 2020; 22:2038-2043. [DOI: 10.1021/acs.orglett.0c00415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yang Chen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Wenjie Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jiamin Wu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Wangbin Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637616, Singapore
| | - Yaojia Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
29
|
Zhang J, Yang M, Liu JB, He FS, Wu J. A copper-catalyzed insertion of sulfur dioxide via radical coupling. Chem Commun (Camb) 2020; 56:3225-3228. [DOI: 10.1039/d0cc00375a] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A copper-catalyzed reaction of O-acyl oximes, DABCO·(SO2)2, and 2H-azirines is developed under mild conditions, leading to diverse tetrasubstituted β-sulfonyl N-unprotected enamines with excellent stereoselectivity and regioselectivity.
Collapse
Affiliation(s)
- Jun Zhang
- School of Pharmaceutical and Materials Engineering
- Taizhou University
- Taizhou 318000
- China
| | - Min Yang
- School of Pharmacy
- Gannan Medical University
- Ganzhou 341000
- China
| | - Jin-Biao Liu
- School of Metallurgical and Chemical Engineering
- Jiangxi University of Science and Technology
- Ganzhou 341000
- China
| | - Fu-Sheng He
- School of Pharmaceutical and Materials Engineering
- Taizhou University
- Taizhou 318000
- China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering
- Taizhou University
- Taizhou 318000
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|
30
|
Li Z, Chen J, Wu L, Ren A, Lu P, Wang Y. Preparation of 4-Diazoisoquinolin-3-ones via Dimroth Rearrangement and Their Extension to 4-Aryltetrahydroisoquinolin-3-ones. Org Lett 2019; 22:26-30. [DOI: 10.1021/acs.orglett.9b03708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhenmin Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Junrong Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Li Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Anni Ren
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People’s Republic of China
| |
Collapse
|
31
|
Suleman M, Li Z, Lu P, Wang Y. Copper-Catalyzed Dimerization of Sulfoxonium Ylides with 3-Diazoindolin-2-imines: A Practical and Efficient Approach to Spiro[cyclopropane-1,3′-indolin]-2′-imines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900675] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Muhammad Suleman
- Department of Chemistry; Zhejiang University; 310027 Hangzhou P. R. China
| | - Zhenmin Li
- Department of Chemistry; Zhejiang University; 310027 Hangzhou P. R. China
| | - Ping Lu
- Department of Chemistry; Zhejiang University; 310027 Hangzhou P. R. China
| | - Yanguang Wang
- Department of Chemistry; Zhejiang University; 310027 Hangzhou P. R. China
| |
Collapse
|
32
|
Sakharov PA, Rostovskii NV, Khlebnikov AF, Panikorovskii TL, Novikov MS. 2H-Azirines as C–C Annulation Reagents in Cu-Catalyzed Synthesis of Furo[3,2-c]quinolone Derivatives. Org Lett 2019; 21:3615-3619. [DOI: 10.1021/acs.orglett.9b01043] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pavel A. Sakharov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Nikolai V. Rostovskii
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Alexander F. Khlebnikov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| | - Taras L. Panikorovskii
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
- Kola Science Centre, Russian Academy of Sciences, 14 Fersman str., Apatity 184200, Russia
| | - Mikhail S. Novikov
- St. Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia
| |
Collapse
|
33
|
Khlebnikov AF, Novikov MS, Rostovskii NV. Advances in 2H-azirine chemistry: A seven-year update. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Qian J, Lin Z, Wang Z, Peng Z, Wu L, Lu P, Wang Y. Copper-Carbene-Triggered Electrophilic Cyclization of o-Hydroxyarylenaminones with 3-Diazoindolin-2-imines: Synthesis of 3-Indolyl-4H-chromen-4-ones and Pyrido[2,3-b:6,5-b′]diindoles. J Org Chem 2019; 84:6395-6404. [DOI: 10.1021/acs.joc.9b00755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Qian
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhenwei Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zaibin Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhixing Peng
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Li Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
35
|
Lang B, Zhou Y, Lu P, Wang Y. Copper-catalyzed synthesis of 3-allyl-2-aminoindoles from 3-diazoindolin-2-imines and allyltrimethylsilane. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Xu F, Si XJ, Song YY, Wang XD, Liu CS, Geng PF, Du M. Palladium-Catalyzed C–N Bond Cleavage of 2H-Azirines for the Synthesis of Functionalized α-Amido Ketones. J Org Chem 2019; 84:2200-2208. [DOI: 10.1021/acs.joc.8b03193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fen Xu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Xiao-Ju Si
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Yuan-Yuan Song
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Xing-Dong Wang
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Chun-Sen Liu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Peng-Fei Geng
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Miao Du
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|
37
|
Zhou Y, Ma F, Lu P, Wang Y. Preparation of spiro[imidazolidine-4,3′-indolin]-2′-imines via copper(i)-catalyzed formal [2 + 2 + 1] cycloaddition of 3-diazoindolin-2-imines and triazines. Org Biomol Chem 2019; 17:8849-8852. [DOI: 10.1039/c9ob01767d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report a facile and efficient synthesis of spiro[imidazolidine-4,3′-indolin]-2′-imines via a copper(i)-catalyzed cascade reaction of 3-diazoindolin-2-imines with 1,3,5-triazines.
Collapse
Affiliation(s)
- Yuxuan Zhou
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Fanghui Ma
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Ping Lu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Yanguang Wang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
38
|
Wang M, Hou J, Yu W, Chang J. Synthesis of 2 H-Azirines via Iodine-Mediated Oxidative Cyclization of Enamines. J Org Chem 2018; 83:14954-14961. [PMID: 30474371 DOI: 10.1021/acs.joc.8b02022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A facile and practical oxidative cyclization reaction of enamines to 2 H-azirines has been developed, employing molecular iodine. The features of the present synthetic approach include no use of transition metals, mild reaction conditions, and simplicity of operation. Under the optimal reaction conditions, a variety of 2 H-azirine derivatives were synthesized from simple and readily accessible enamine precursors in an efficient and scalable fashion.
Collapse
Affiliation(s)
- Manman Wang
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , People's Republic of China
| | - Jiao Hou
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , People's Republic of China
| | - Wenquan Yu
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , People's Republic of China
| | - Junbiao Chang
- College of Chemistry and Molecular Engineering , Zhengzhou University , Zhengzhou , Henan 450001 , People's Republic of China
| |
Collapse
|
39
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Shi S, Xu K, Jiang C, Ding Z. ZnCl2-Catalyzed [3 + 2] Cycloaddition of Benzimidates and 2H-Azirines for the Synthesis of Imidazoles. J Org Chem 2018; 83:14791-14796. [DOI: 10.1021/acs.joc.8b02437] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shoujie Shi
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kang Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenhua Ding
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
41
|
Nosova EV, Lipunova GN, Charushin VN, Chupakhin ON. Fluorine-containing indoles: Synthesis and biological activity. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2018.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Rhodium-catalyzed reactions of 3-diazoindolin-2-imines with enamines and their extensions towards 5 H -pyrazino[2,3- b ]indoles. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Zhao MN, Ren ZH, Yang DS, Guan ZH. Iron-Catalyzed Radical Cycloaddition of 2H-Azirines and Enamides for the Synthesis of Pyrroles. Org Lett 2018; 20:1287-1290. [DOI: 10.1021/acs.orglett.7b04007] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Mi-Na Zhao
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710127, P. R. China
- Shaanxi
Key Laboratory of Phytochemistry, College of Chemistry and Chemical
Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Zhi-Hui Ren
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710127, P. R. China
| | - De-Suo Yang
- Shaanxi
Key Laboratory of Phytochemistry, College of Chemistry and Chemical
Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi’an 710127, P. R. China
| |
Collapse
|
44
|
Baek Y, Maeng C, Kim H, Lee PH. Regioselective Synthesis of Indolopyrazines through a Sequential Rhodium-Catalyzed Formal [3+3] Cycloaddition and Aromatization Reaction of Diazoindolinimines with Azirines. J Org Chem 2018; 83:2349-2360. [DOI: 10.1021/acs.joc.8b00115] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yonghyeon Baek
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chanyoung Maeng
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyunseok Kim
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
45
|
Zhao MN, Zhang W, Wang XC, Zhang Y, Yang DS, Guan ZH. Modular 2,3-diaryl-2H-azirine synthesis from ketoxime acetates via Cs2CO3-mediated cyclization. Org Biomol Chem 2018; 16:4333-4337. [DOI: 10.1039/c8ob00923f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A practical and effective Cs2CO3-mediated cyclization of ketoxime acetates for the synthesis of 2H-azirines has been developed.
Collapse
Affiliation(s)
- Mi-Na Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Department of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Wei Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Department of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Xu-Cai Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Department of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - Ying Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Department of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| | - De-Suo Yang
- Shaanxi Key Laboratory of Phytochemistry
- College of Chemistry and Chemical Engineering
- Baoji University of Arts and Sciences
- Baoji
- P. R. China
| | - Zheng-Hui Guan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Department of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
- P. R. China
| |
Collapse
|
46
|
Rostovskii NV, Smetanin IA, Agafonova AV, Sakharov PA, Ruvinskaya JO, Khlebnikov AF, Novikov MS. Facile access to 2-acyloxy-, aryloxy- and alkenyloxy-2H-azirinesviaan SN2′–SN2′ cascade in 2-halo-2H-azirines. Org Biomol Chem 2018; 16:3248-3257. [DOI: 10.1039/c8ob00553b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A convenient method of synthesis of 2-oxygen-substituted 2H-azirinesviathe unusual SN2′–SN2′ cascade halogen substitution in 2-halo-2H-azirines is developed.
Collapse
Affiliation(s)
| | - Ilia A. Smetanin
- St. Petersburg State University
- Institute of Chemistry
- St. Petersburg
- Russia
| | | | - Pavel A. Sakharov
- St. Petersburg State University
- Institute of Chemistry
- St. Petersburg
- Russia
| | | | | | - Mikhail S. Novikov
- St. Petersburg State University
- Institute of Chemistry
- St. Petersburg
- Russia
| |
Collapse
|
47
|
|