1
|
Kumar S, Arora A, Chaudhary R, Kumar R, Len C, Mukherjee M, Singh BK, Parmar VS. Recent Advances in the Synthesis of Acyclic Nucleosides and Their Therapeutic Applications. Top Curr Chem (Cham) 2024; 382:34. [PMID: 39441318 DOI: 10.1007/s41061-024-00476-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Abstract
DNA is commonly known as the "molecule of life" because it holds the genetic instructions for all living organisms on Earth. The utilization of modified nucleosides holds the potential to transform the management of a wide range of human illnesses. Modified nucleosides and their role directly led to the 2023 Nobel prize. Acyclic nucleosides, due to their distinctive physiochemical and biological characteristics, rank among the most adaptable modified nucleosides in the field of medicinal chemistry. Acyclic nucleosides are more resistant to chemical and biological deterioration, and their adaptable acyclic structure makes it possible for them to interact with various enzymes. A phosphonate group, which is linked via an aliphatic functionality to a purine or a pyrimidine base, distinguishes acyclic nucleoside phosphonates (ANPs) from other nucleotide analogs. Acyclic nucleosides and their derivatives have demonstrated various biological activities such as anti-viral, anti-bacterial, anti-cancer, anti-microbial, etc. Ganciclovir, Famciclovir, and Penciclovir are the acyclic nucleoside-based drugs approved by FDA for the treatment of various diseases. Thus, acyclic nucleosides are extremely useful for generating a variety of unique bioactive chemicals. Their biological activities as well as selectivity is significantly influenced by the stereochemistry of the acyclic nucleosides because chiral acyclic nucleosides have drawn a lot of interest due to their intriguing biological functions and potential as medicines. For example, tenofovir's (R) enantiomer is roughly 50 times more potent against HIV than its (S) counterpart. We can confidently state, "The most promising developments are yet to come in the realm of acyclic nucleosides!" Herein, we have covered the most current developments in the field of chemical synthesis and therapeutic applications of acyclic nucleosides based upon our continued interest and activity in this field since mid-1990's.
Collapse
Affiliation(s)
- Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110 007, India
- Department of Chemistry and Environmental Science, Medgar Evers College, 1638 Bedford Avenue, Brooklyn, NY, 11225, USA
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110 007, India
| | - Riya Chaudhary
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110 007, India
| | - Rajesh Kumar
- P.G. Department of Chemistry, R.D.S College, B.R.A. Bihar University, Muzaffarpur, 842002, India
| | - Christophe Len
- Chimie ParisTech, PSL Research University, CNRS, UMR8060, Institute of Chemistry for Life and Health Sciences, 11 rue Pierre et Marie Curie, 75005, Paris, France.
| | - Monalisa Mukherjee
- Amity Institute of Click Chemistry and Research Studies, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | - Virinder S Parmar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110 007, India.
- Department of Chemistry and Environmental Science, Medgar Evers College, 1638 Bedford Avenue, Brooklyn, NY, 11225, USA.
- Amity Institute of Click Chemistry and Research Studies, Amity University, Sector 125, Noida, Uttar Pradesh, 201313, India.
- Nanoscience Program, CUNY Graduate Center and Departments of Chemistry, Medgar Evers College and City College, 160 Convent Avenue, New York, NY, 10031, USA.
| |
Collapse
|
2
|
Han M, Liu C, Li X, Jiang J, Liu Z, Hu L. Regio- and Enantioselective Construction of Tetrazole Hemiaminal Esters and Related Prodrugs via Biocatalytic Dynamic Kinetic Resolution. J Org Chem 2024; 89:1465-1472. [PMID: 38251869 DOI: 10.1021/acs.joc.3c02076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Enzyme-catalyzed dynamic kinetic resolution was applied to the one-pot regio- and enantioselective synthesis of 2,5-disubstituted tetrazole hemiaminal esters, among which 72% of the products were obtained in excellent enantiopurities (99% ees). Tunable stereoselectivity was achieved by using different types of enzymes during the synthesis of a key intermediate for a clinic drug candidate. Successful preparation of tetrazole ester prodrugs and high catalyst recyclability further demonstrated the potential practical application of this protocol.
Collapse
Affiliation(s)
- Maochun Han
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Changming Liu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xinyu Li
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jingyu Jiang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ziliang Liu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Lei Hu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
3
|
Fang Y, Wang M, Hao W, Meng Y, Yu W, Chang J. Transition‐Metal‐Free N‐Functionalization of Benzimidazoles and Related Azaheterocycles with α‐Acyloxy Sulfides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Luo Q, Tian Z, Tang J, Wang J, Tian Y, Peng C, Zhan G, Han B. Design and Application of Chiral Bifunctional 4-Pyrrolidinopyridines: Powerful Catalysts for Asymmetric Cycloaddition of Allylic N-Ylide. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qingqing Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610041, People’s Republic of China
| | - Zhou Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610041, People’s Republic of China
| | - Jie Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610041, People’s Republic of China
| | - Jie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610041, People’s Republic of China
| | - Yin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610041, People’s Republic of China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610041, People’s Republic of China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610041, People’s Republic of China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610041, People’s Republic of China
| |
Collapse
|
5
|
Xing SN, Hua YZ, Yang XC, Du SS, Jia SK, Mei GJ, Wang MC. Catalytic Asymmetric Umpolung Tandem Reactions of Hemiacetals via Dinuclear Zinc Cooperative Catalysis. Org Lett 2022; 24:3909-3914. [PMID: 35467355 DOI: 10.1021/acs.orglett.2c00913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The umpolung activity of hemiacetals serving as α-carbon nucleophiles has been reported via dinuclear zinc cooperative catalysis. This umpolung strategy has been applied to catalytic asymmetric tandem reactions of 1-tosylindoline-2,3-diols with β,γ-unsaturated-α-keto compounds, providing a broad series of structurally diverse tetrahydrofuran spirooxindoles and dihydrofurans, respectively. In addition, products could be transformed to quinazoline and quinoline derivatives.
Collapse
Affiliation(s)
- Sheng-Nan Xing
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan 450000, P. R. China
| | - Yuan-Zhao Hua
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan 450000, P. R. China
| | - Xiao-Chao Yang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan 450000, P. R. China
| | - Si-Si Du
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan 450000, P. R. China
| | - Shi-Kun Jia
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan 450000, P. R. China
| | - Guang-Jian Mei
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan 450000, P. R. China
| | - Min-Can Wang
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, No. 100, Science Road, Zhengzhou City, Henan 450000, P. R. China
| |
Collapse
|
6
|
|
7
|
Xie MS, Shan M, Li N, Chen YG, Wang XB, Cheng X, Tian Y, Wu XX, Deng Y, Qu GR, Guo HM. Chiral 4-Aryl-pyridine-N-oxide Nucleophilic Catalysts: Design, Synthesis, and Application in Acylative Dynamic Kinetic Resolution. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ming-Sheng Xie
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Meng Shan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Ning Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yang-Guang Chen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xiao-Bing Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xuan Cheng
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao-Xia Wu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gui-Rong Qu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Hai-Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
8
|
Antenucci A, Dughera S, Renzi P. Green Chemistry Meets Asymmetric Organocatalysis: A Critical Overview on Catalysts Synthesis. CHEMSUSCHEM 2021; 14:2785-2853. [PMID: 33984187 PMCID: PMC8362219 DOI: 10.1002/cssc.202100573] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Indexed: 05/30/2023]
Abstract
Can green chemistry be the right reading key to let organocatalyst design take a step forward towards sustainable catalysis? What if the intriguing chemistry promoted by more engineered organocatalysts was carried on by using renewable and naturally occurring molecular scaffolds, or at least synthetic catalysts more respectful towards the principles of green chemistry? Within the frame of these questions, this Review will tackle the most commonly occurring organic chiral catalysts from the perspective of their synthesis rather than their employment in chemical methodologies or processes. A classification of the catalyst scaffolds based on their E factor will be provided, and the global E factor (EG factor) will be proposed as a new green chemistry metric to consider, also, the synthetic route to the catalyst within a given organocatalytic process.
Collapse
Affiliation(s)
- Achille Antenucci
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
- NIS Interdeprtmental CentreINSTM Reference CentreUniversity of TurinVia Gioacchino Quarello 15/A10135TurinItaly
| | - Stefano Dughera
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
| | - Polyssena Renzi
- Department of ChemistryUniversity of TurinVia Pietro Giuria, 710125TurinItaly
| |
Collapse
|
9
|
Kinens A, Balkaitis S, Ahmad OK, Piotrowski DW, Suna E. Acylative Dynamic Kinetic Resolution of Secondary Alcohols: Tandem Catalysis by HyperBTM and Bäckvall's Ruthenium Complex. J Org Chem 2021; 86:7189-7202. [PMID: 33974415 DOI: 10.1021/acs.joc.1c00545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Non-enzymatic dynamic kinetic resolution (DKR) of secondary alcohols by enantioselective acylation using an isothiourea-derived HyperBTM catalyst and racemization of slowly reacting alcohol by Bäckvall's ruthenium complex is reported. The DKR approach features high enantioselectivities (up to 99:1), employs easy-to-handle crystalline 4-nitrophenyl isobutyrate as the acylating reagent, and proceeds at room temperature and under an ambient atmosphere. The stereoinduction model featuring cation-π system interactions between the acylated HyperBTM catalyst and π electrons of an alcohol aryl subunit has been elaborated by DFT calculations.
Collapse
Affiliation(s)
- Artis Kinens
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia.,Department of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Simonas Balkaitis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia.,Department of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Omar K Ahmad
- Worldwide Medicinal Chemistry, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - David W Piotrowski
- Worldwide Medicinal Chemistry, Pfizer, Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - Edgars Suna
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia.,Department of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| |
Collapse
|
10
|
Gao YY, Zhang CL, Dai L, Han YF, Ye S. Dynamic Kinetic Resolution of α-Trifluoromethyl Hemiaminals without α-Hydrogen via NHC-Catalyzed O-Acylation. Org Lett 2021; 23:1361-1366. [PMID: 33533629 DOI: 10.1021/acs.orglett.1c00024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Following the well-recognized dynamic kinetic resolution (DKR) of hemiaminals with α-hydrogen under lipase and chiral DMAP catalysis, the unprecedented DKR of hemiaminals without α-hydrogen was developed via N-heterocyclic carbene catalyzed O-acylation of 3-hydroxy-3-trifluoromethylbenzosultams. The racemic hemiaminals without α-hydrogen were effectively racemized and differentiated by chiral NHCs under basic conditions. The resulting esters were obtained in high yields with good to high enantioselectivities.
Collapse
Affiliation(s)
- Yuan-Yuan Gao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Dai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - You-Feng Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Chiral Bicyclic Imidazole‐Catalyzed Acylative Dynamic Kinetic Resolution for the Synthesis of Chiral Phthalidyl Esters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Zhou M, Gridneva T, Zhang Z, He E, Liu Y, Zhang W. Chiral Bicyclic Imidazole‐Catalyzed Acylative Dynamic Kinetic Resolution for the Synthesis of Chiral Phthalidyl Esters. Angew Chem Int Ed Engl 2020; 60:1641-1645. [DOI: 10.1002/anie.202012445] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Muxing Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Tatiana Gridneva
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zhenfeng Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Ende He
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yangang Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
13
|
Efficient Synthesis of α-Branched Purine-Based Acyclic Nucleosides: Scopes and Limitations of the Method. Molecules 2020; 25:molecules25184307. [PMID: 32961820 PMCID: PMC7571146 DOI: 10.3390/molecules25184307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 01/18/2023] Open
Abstract
An efficient route to acylated acyclic nucleosides containing a branched hemiaminal ether moiety is reported via three-component alkylation of N-heterocycle (purine nucleobase) with acetal (cyclic or acyclic, variously branched) and anhydride (preferentially acetic anhydride). The procedure employs cheap and easily available acetals, acetic anhydride, and trimethylsilyl trifluoromethanesulfonate (TMSOTf). The multi-component reaction is carried out in acetonitrile at room temperature for 15 min and provides moderate to high yields (up to 88%) of diverse acyclonucleosides branched at the aliphatic side chain. The procedure exhibits a broad substrate scope of N-heterocycles and acetals, and, in the case of purine derivatives, also excellent regioselectivity, giving almost exclusively N-9 isomers.
Collapse
|
14
|
Liang T, Xie M, Qu G, Guo H. Scandium‐Triflate‐Catalyzed Regioselective Ring Opening of Purines with Aminocyclopropanes. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tao Liang
- Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation Key Laboratory of Green Chemical Media and Reactions, Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
| | - Ming‐Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation Key Laboratory of Green Chemical Media and Reactions, Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
| | - Gui‐Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation Key Laboratory of Green Chemical Media and Reactions, Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
| | - Hai‐Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drugs Innovation Key Laboratory of Green Chemical Media and Reactions, Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals School of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
15
|
Pathak V, Pathak AK, Reynolds RC. Synthesis of Aza-acyclic Nucleoside Libraries of Purine, Pyrimidine, and 1,2,4-Triazole. ACS COMBINATORIAL SCIENCE 2019; 21:183-191. [PMID: 30653914 DOI: 10.1021/acscombsci.8b00136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Under the aegis of the Pilot Scale Library Program of the NIH Roadmap Initiative, a new library of propan-1-amine containing aza acyclic nucleosides was designed and prepared, and we now report a diverse set of 157 purine, pyrimidine, and 1,2,4-triazole- N-acetamide analogues. These new nucleoside analogues were prepared in a parallel high throughput solution-phase format. A set of diverse amines was reacted with several nucleobase N-propaldehydes utilizing reductive amination with sodium triacetoxyborohydride coupling to produce a small and diverse aza acyclic nucleoside library. All reactions were performed using 24-well reaction blocks and an automatic reagent-dispensing platform under an inert atmosphere. Final targets were purified on an automated system using solid sample loading prepacked cartridges and prepacked silica gel columns. All compounds were characterized by NMR and HRMS and were analyzed for purity by HPLC prior to submission to the Molecular Libraries Small Molecule Repository (MLSMR). Initial screening through the Molecular Libraries Probe Production Centers Network (MLPCN) demonstrated diverse and interesting biological activities.
Collapse
Affiliation(s)
- Vibha Pathak
- Chemistry Department, Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, Alabama 35205, United States
| | - Ashish K. Pathak
- Chemistry Department, Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, Alabama 35205, United States
| | - Robert C. Reynolds
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, NP 2540 J, 1720 Second Avenue South, Birmingham, Alabama 35294-3300, United States
| |
Collapse
|
16
|
Xie MS, Cheng X, Chen YG, Wu XX, Qu GR, Guo HM. Efficient synthesis of tetrazole hemiaminal silyl ethers via three-component hemiaminal silylation. Org Biomol Chem 2019; 16:6890-6894. [PMID: 30232486 DOI: 10.1039/c8ob02089b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient route to construct 2,5-disubstituted tetrazole hemiaminal silyl ethers via one-pot three-component hemiaminal silylation of 5-substituted tetrazoles, aldehydes, and silyl triflates was developed. Diverse 2,5-disubstituted tetrazole hemiaminal silyl ethers were obtained with 37 : 63->99 : 1 regioisomeric ratios. The regioselectivities of this reaction were significantly affected by steric hindrance and the conjugation effects of substitutions on the 5-position of tetrazoles.
Collapse
Affiliation(s)
- Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| | | | | | | | | | | |
Collapse
|
17
|
Xie MS, Zhang YF, Shan M, Wu XX, Qu GR, Guo HM. Chiral DMAP-N-oxides as Acyl Transfer Catalysts: Design, Synthesis, and Application in Asymmetric Steglich Rearrangement. Angew Chem Int Ed Engl 2019; 58:2839-2843. [PMID: 30653794 DOI: 10.1002/anie.201812864] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/25/2018] [Indexed: 12/21/2022]
Abstract
A DMAP-N-oxide, featuring an α-amino acid as the chiral source, was developed, synthesized and applied in asymmetric Steglich rearrangement. A series of O-acylated azlactones afforded C-acylated azlactones possessing a quaternary stereocenter in high yields (up to 97 % yield) and excellent enantioselectivities (up to 97 % ee). Compared to the widespread use of pyridine nitrogen, which serves as the nucleophilic site in the asymmetric acyl transfer reaction, we discovered that chiral DMAP-N-oxides, in which the oxygen now acts as the nucleophilic site, are efficient acyl transfer catalysts. Our finding might open a new door for the development of chiral DMAP-N-oxides for asymmetric acyl transfer reactions.
Collapse
Affiliation(s)
- Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Ye-Fei Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Meng Shan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiao-Xia Wu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
18
|
Xie M, Zhang Y, Shan M, Wu X, Qu G, Guo H. Chiral DMAP‐
N
‐oxides as Acyl Transfer Catalysts: Design, Synthesis, and Application in Asymmetric Steglich Rearrangement. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ming‐Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
| | - Ye‐Fei Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
| | - Meng Shan
- Henan Key Laboratory of Organic Functional Molecules and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
| | - Xiao‐Xia Wu
- Henan Key Laboratory of Organic Functional Molecules and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
| | - Gui‐Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
| | - Hai‐Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug InnovationCollaborative Innovation Center of Henan Province for Green Manufacturing of Fine ChemicalsSchool of Chemistry and Chemical EngineeringHenan Normal University Xinxiang Henan 453007 China
| |
Collapse
|
19
|
Zhang H, Xie M, Qu G, Chang J. Dynamic Kinetic Resolution of α-Purine Substituted Alkanoic Acids: Access to Chiral Acyclic Purine Nucleosides. Org Lett 2019; 21:120-123. [PMID: 30557022 DOI: 10.1021/acs.orglett.8b03555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An efficient route to construct chiral acyclic purine nucleoside analogues via dynamic kinetic resolution of α-purine substituted alkanoic acids is reported. Using ( S)-BTM as the catalyst, diverse chiral acyclic purine nucleoside analogues were obtained in moderate to good yields (up to 93%) and high enantioselectivities (up to 98% ee). Chiral acyclic purine nucleosides could be obtained from the esterified products via reduction reaction, which could then be transferred into Tenofovir analogues.
Collapse
Affiliation(s)
- Huifang Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Mingsheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Guirong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| |
Collapse
|
20
|
Qin T, Li JP, Xie MS, Qu GR, Guo HM. Synthesis of Chiral Acyclic Nucleosides by Sharpless Asymmetric Dihydroxylation: Access to Cidofovir and Buciclovir. J Org Chem 2018; 83:15512-15523. [PMID: 30468383 DOI: 10.1021/acs.joc.8b02442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An efficient method to construct chiral acyclic nucleosides via Sharpless asymmetric dihydroxylation of N-allylpyrimidines or N-alkenylpurines is reported. A range of chiral acyclic nucleosides with two adjacent hydroxyl groups present on the side chains could be produced in good yields (up to 97% yield) and excellent enantioselectivities (90-99% ee). The synthetic utility of the reaction was demonstrated by the catalytic asymmetric synthesis of ( S)-Cidofovir and ( R)-Buciclovir.
Collapse
Affiliation(s)
- Tao Qin
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Jian-Ping Li
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering , Henan Normal University , Xinxiang , Henan 453007 , China
| |
Collapse
|
21
|
Zhang Z, Wang S, Hu C, Ma N, Zhang G, Liu Q. Copper(I)-catalyzed benzylic C(sp3)–H geminal difunctionalization: Successive oxidative intramolecular amidation and hydroxylation. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Liang L, Niu HY, Xie MS, Qu GR, Guo HM. Enantioselective and regiodivergent allylation of pyrimidines with terminal allenes: an approach to pyrimidine acyclic nucleosides. Org Chem Front 2018. [DOI: 10.1039/c8qo00827b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An atom-economic addition of pyrimidines to allenes has been developed for the diverse synthesis of branched or linear N-allylpyrimidine analogues.
Collapse
Affiliation(s)
- Lei Liang
- School of Environment
- Henan Normal University
- Xinxiang
- P. R. China
| | - Hong-Ying Niu
- School of Chemistry and Chemical Engineering
- Henan Institute of Science and Technology
- Xinxiang
- China
| | - Ming-Sheng Xie
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- China
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
- School of Chemistry and Chemical Engineering
- Henan Normal University
- Xinxiang
- China
| | - Hai-Ming Guo
- School of Environment
- Henan Normal University
- Xinxiang
- P. R. China
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation
| |
Collapse
|