1
|
Mas-Roselló J, Tenor H, Szabo T, Naef R, Sieber S, Gademann K. Bifunctional Sildenafil Diazeniumdiolates Acting as Phosphodiesterase 5 Inhibitors and Nitric Oxide Donors- Towards Wound Healing. Chembiochem 2024; 25:e202300801. [PMID: 38430555 DOI: 10.1002/cbic.202300801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/04/2024]
Abstract
Inefficient wound healing poses a global health challenge with a lack of efficient treatments. Wound healing issues often correlate with low endogenous nitric oxide (NO) levels. While exogenous delivery with NO-releasing compounds represents a promising therapeutic strategy, controlling the release of the highly reactive NO remains challenging. Phosphodiesterase 5 (PDE5) inhibitors, like sildenafil, have also been shown to promote wound healing. This study explores hybrid compounds, combining NO-releasing diazeniumdiolates with a sildenafil-derived PDE5 inhibitor. One compound demonstrated a favorable NO-release profile, triggered by an esterase (prodrug), and displayed in vitro nanomolar inhibition potency against PDE5 and thrombin-induced platelet aggregation. Both factors are known to promote blood flow and oxygenation. Thus, our findings unveil promising prospects for effective wound healing treatments.
Collapse
Affiliation(s)
- Josep Mas-Roselló
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Hermann Tenor
- Topadur Pharma AG, Grabenstrasse 11A, 8952, Schlieren, Switzerland
| | - Timea Szabo
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Reto Naef
- Topadur Pharma AG, Grabenstrasse 11A, 8952, Schlieren, Switzerland
| | - Simon Sieber
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, 8057, Zurich, Switzerland
| |
Collapse
|
2
|
James CC, de Bruin B, Reek JNH. Transition Metal Catalysis in Living Cells: Progress, Challenges, and Novel Supramolecular Solutions. Angew Chem Int Ed Engl 2023; 62:e202306645. [PMID: 37339103 DOI: 10.1002/anie.202306645] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
The importance of transition metal catalysis is exemplified by its wide range of applications, for example in the synthesis of chemicals, natural products, and pharmaceuticals. However, one relatively new application is for carrying out new-to-nature reactions inside living cells. The complex environment of a living cell is not welcoming to transition metal catalysts, as a diverse range of biological components have the potential to inhibit or deactivate the catalyst. Here we review the current progress in the field of transition metal catalysis, and evaluation of catalysis efficiency in living cells and under biological (relevant) conditions. Catalyst poisoning is a ubiquitous problem in this field, and we propose that future research into the development of physical and kinetic protection strategies may provide a route to improve the reactivity of catalysts in cells.
Collapse
Affiliation(s)
- Catriona C James
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Joost N H Reek
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Madec H, Figueiredo F, Cariou K, Roland S, Sollogoub M, Gasser G. Metal complexes for catalytic and photocatalytic reactions in living cells and organisms. Chem Sci 2023; 14:409-442. [PMID: 36741514 PMCID: PMC9848159 DOI: 10.1039/d2sc05672k] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022] Open
Abstract
The development of organometallic catalysis has greatly expanded the synthetic chemist toolbox compared to only exploiting "classical" organic chemistry. Although more widely used in organic solvents, metal-based catalysts have also emerged as efficient tools for developing organic transformations in water, thus paving the way for further development of bio-compatible reactions. However, performing metal-catalysed reactions within living cells or organisms induces additional constraints to the design of reactions and catalysts. In particular, metal complexes must exhibit good efficiency in complex aqueous media at low concentrations, good cell specificity, good cellular uptake and low toxicity. In this review, we focus on the presentation of discrete metal complexes that catalyse or photocatalyse reactions within living cells or living organisms. We describe the different reaction designs that have proved to be successful under these conditions, which involve very few metals (Ir, Pd, Ru, Pt, Cu, Au, and Fe) and range from in cellulo deprotection/decaging/activation of fluorophores, drugs, proteins and DNA to in cellulo synthesis of active molecules, and protein and organelle labelling. We also present developments in bio-compatible photo-activatable catalysts, which represent a very recent emerging area of research and some prospects in the field.
Collapse
Affiliation(s)
- Hugo Madec
- Sorbonne Université, CNRS, Institut Parisien de Chimie MoléculaireParisFrancehttp://www.ipcm.fr/-Glycochimie-Organique
| | - Francisca Figueiredo
- Chimie ParisTech, PSL Université, CNRS, Institute of Chemistry for Life and Health SciencesParis 75005Francehttp://www.gassergroup.com
| | - Kevin Cariou
- Chimie ParisTech, PSL Université, CNRS, Institute of Chemistry for Life and Health SciencesParis 75005Francehttp://www.gassergroup.com
| | - Sylvain Roland
- Sorbonne Université, CNRS, Institut Parisien de Chimie MoléculaireParisFrancehttp://www.ipcm.fr/-Glycochimie-Organique
| | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie MoléculaireParisFrancehttp://www.ipcm.fr/-Glycochimie-Organique
| | - Gilles Gasser
- Chimie ParisTech, PSL Université, CNRS, Institute of Chemistry for Life and Health SciencesParis 75005Francehttp://www.gassergroup.com
| |
Collapse
|
4
|
Ji X, Zhong Z. External stimuli-responsive gasotransmitter prodrugs: Chemistry and spatiotemporal release. J Control Release 2022; 351:81-101. [PMID: 36116579 DOI: 10.1016/j.jconrel.2022.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022]
Abstract
Gasotransmitters like nitric oxide, carbon monoxide, and hydrogen sulfide with unique pleiotropic pharmacological effects in mammals are an emerging therapeutic modality for different human diseases including cancer, infection, ischemia-reperfusion injuries, and inflammation; however, their clinical translation is hampered by the lack of a reliable delivery form, which delivers such gasotransmitters to the action site with precisely controlled dosage. The external stimuli-responsive prodrug strategy has shown tremendous potential in developing gasotransmitter prodrugs, which affords precise temporospatial control and better dose control compared with endogenous stimuli-sensitive prodrugs. The promising external stimuli employed for gasotransmitter activation range from photo, ultrasound, and bioorthogonal click chemistry to exogenous enzymes. Herein, we highlight the recent development of external stimuli-mediated decaging chemistry for the temporospatial delivery of gasotransmitters including nitric oxide, carbon monoxide, hydrogen sulfide and sulfur dioxide, and discuss the pros and cons of different designs.
Collapse
Affiliation(s)
- Xingyue Ji
- College of Pharmaceutical Sciences, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| | - Zhiyuan Zhong
- College of Pharmaceutical Sciences, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
5
|
Liu Y, Lai KL, Vong K. Transition Metal Scaffolds Used To Bring New‐to‐Nature Reactions into Biological Systems. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yifei Liu
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Ka Lun Lai
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Kenward Vong
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
6
|
Sharma R, Mondal A, Samanta A, Biswas N, Das B, Srimani D. Well‐Defined Ni−SNS Complex Catalysed Borrowing Hydrogenative α‐Alkylation of Ketones and Dehydrogenative Synthesis of Quinolines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rahul Sharma
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Avijit Mondal
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Arup Samanta
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Nandita Biswas
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Babulal Das
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Dipankar Srimani
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| |
Collapse
|
7
|
Zhao L, Qu Y, Zhang F, Ma D, Gao H, Gan L, Zhang H, Zhang S, Fang J. Baylis–Hillman Adducts as a Versatile Module for Constructing Fluorogenic Release System. J Med Chem 2022; 65:6056-6069. [DOI: 10.1021/acs.jmedchem.1c01940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lanning Zhao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yuan Qu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fang Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Di Ma
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hao Gao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lu Gan
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
8
|
Adam C, Bray TL, Pérez-López AM, Tan EH, Rubio-Ruiz B, Baillache DJ, Houston DR, Salji MJ, Leung HY, Unciti-Broceta A. A 5-FU Precursor Designed to Evade Anabolic and Catabolic Drug Pathways and Activated by Pd Chemistry In Vitro and In Vivo. J Med Chem 2022; 65:552-561. [PMID: 34979089 DOI: 10.1021/acs.jmedchem.1c01733] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
5-Fluorouracil (5-FU) is an antineoplastic antimetabolite that is widely administered to cancer patients by bolus injection, especially to those suffering from colorectal and pancreatic cancer. Because of its suboptimal route of administration and dose-limiting toxicities, diverse 5-FU prodrugs have been developed to confer oral bioavailability and increase the safety profile of 5-FU chemotherapy regimens. Our contribution to this goal is presented herein with the development of a novel palladium-activated prodrug designed to evade the metabolic machinery responsible for 5-FU anabolic activation and catabolic processing. The new prodrug is completely innocuous to cells and highly resistant to metabolization by primary hepatocytes and liver S9 fractions (the main metabolic route for 5-FU degradation), whereas it is rapidly converted into 5-FU in the presence of a palladium (Pd) source. In vivo pharmokinetic analysis shows the prodrug is rapidly and completely absorbed after oral administration and exhibits a longer half-life than 5-FU. In vivo efficacy studies in a xenograft colon cancer model served to prove, for the first time, that orally administered prodrugs can be locally converted to active drugs by intratumorally inserted Pd implants.
Collapse
Affiliation(s)
- Catherine Adam
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| | - Thomas L Bray
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| | - Ana M Pérez-López
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| | - Ee Hong Tan
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, U.K.,Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, U.K
| | - Belén Rubio-Ruiz
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| | - Daniel J Baillache
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| | - Douglas R Houston
- Institute of Quantitative Biology, Biochemistry and Biotechnology, University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Mark J Salji
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, U.K.,Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, U.K
| | - Hing Y Leung
- Institute of Cancer Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, U.K.,Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, U.K
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, U.K
| |
Collapse
|
9
|
Wang W, Zhang X, Huang R, Hirschbiegel CM, Wang H, Ding Y, Rotello VM. In situ activation of therapeutics through bioorthogonal catalysis. Adv Drug Deliv Rev 2021; 176:113893. [PMID: 34333074 PMCID: PMC8440397 DOI: 10.1016/j.addr.2021.113893] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/01/2021] [Accepted: 07/20/2021] [Indexed: 12/29/2022]
Abstract
Bioorthogonal chemistry refers to any chemical reactions that can occur inside of living systems without interfering with native biochemical processes, which has become a promising strategy for modulating biological processes. The development of synthetic metal-based catalysts to perform bioorthogonal reactions has significantly expanded the toolkit of bioorthogonal chemistry for medicinal chemistry and synthetic biology. A wide range of homogeneous and heterogeneous transition metal catalysts (TMCs) have been reported, mediating different transformations such as cycloaddition reactions, as well as bond forming and cleaving reactions. However, the direct application of 'naked' TMCs in complex biological media poses numerous challenges, including poor water solubility, toxicity and catalyst deactivation. Incorporating TMCs into nanomaterials to create bioorthogonal nanocatalysts can solubilize and stabilize catalyst molecules, with the decoration of the nanocatalysts used to provide spatiotemporal control of catalysis. This review presents an overview of the advances in the creation of bioorthogonal nanocatalysts, highlighting different choice of nano-scaffolds, and the therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Wenjie Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | | | - Huaisong Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| |
Collapse
|
10
|
Wu J, Sun T, Yang C, Lv T, Bi Y, Xu Y, Ling Y, Zhao J, Cong R, Zhang Y, Wang J, Wen H, Jiang H, Li F, Huang Z. Tetrazine-mediated bioorthogonal removal of 3-isocyanopropyl groups enables the controlled release of nitric oxide in vivo. Biomater Sci 2021; 9:1816-1825. [PMID: 33458722 DOI: 10.1039/d0bm01841d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Bond cleavage bioorthogonal chemistry has been widely employed to restore or activate proteins or prodrugs. Nitric oxide (NO), as a free radical molecule, has joined the clinical arena of cancer therapy, since high levels of NO could produce a cancer cell growth inhibitory effect. However, the spatiotemporal controlled release of NO remains a great challenge, and bioorthogonal chemistry may open a new window. Herein, we described a class of O2-3-isocyanopropyl diazeniumdiolates 3a-f as new bioorthogonal NO precursors, which can be effectively uncaged via tetrazine-mediated bond cleavage reactions to liberate NO and acrolein in living cancer cells, exhibiting potent antiproliferative activity. Furthermore, 3a and tetrazine BTZ were respectively encapsulated into two liposomes. It was found that simultaneous administrations of the two liposomes could specifically release large amounts of NO in the implanted cancer cells in zebrafish, thus generating potent tumor suppression activity in vivo. Our findings indicate that the TZ-labile NO precursors could serve to expand the NO-based smart therapeutics and the scope of bioorthogonal chemistry utility in vivo in the near future.
Collapse
Affiliation(s)
- Jianbing Wu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, P.R. China and State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P.R. China.
| | - Tao Sun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, P.R. China and State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P.R. China.
| | - Chenxi Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P.R. China.
| | - Tian Lv
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P.R. China.
| | - Yuyang Bi
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P.R. China.
| | - Yuan Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P.R. China.
| | - Yong Ling
- School of Pharmacy, Nantong University, Nantong, 226001, P.R. China
| | - Jun Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, P.R. China and Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China
| | - Rigang Cong
- National-certified Enterprise Technology Center, Disha Pharmaceutical Group Co., Ltd., Weihai 264205, P.R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P.R. China.
| | - Jianhua Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, P.R. China and Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, P.R. China
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, P.R. China
| | - Hulin Jiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, P.R. China and State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P.R. China.
| | - Fei Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P.R. China.
| | - Zhangjian Huang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830054, P.R. China and State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, P.R. China.
| |
Collapse
|
11
|
Sun T, Lv T, Wu J, Zhu M, Fei Y, Zhu J, Zhang Y, Huang Z. General Strategy for Integrated Bioorthogonal Prodrugs: Pt(II)-Triggered Depropargylation Enables Controllable Drug Activation In Vivo. J Med Chem 2020; 63:13899-13912. [PMID: 33141588 DOI: 10.1021/acs.jmedchem.0c01435] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bioorthogonal decaging reactions for controllable drug activation within complex biological systems are highly desirable yet extremely challenging. Herein, we find a new class of Pt(II)-triggered bioorthogonal cleavage reactions in which Pt(II) but not Pt(IV) complexes effectively trigger the cleavage of O/N-propargyl in a variety of ranges of caged molecules under biocompatible conditions. Based on these findings, we propose a general strategy for integrated bioorthogonal prodrugs and accordingly design a prodrug 16, in which a Pt(IV) moiety is covalently connected with an O2-propargyl diazeniumdiolate moiety. It is found that 16 can be specifically reduced by cytoplasmic reductants in human ovarian cancer cells to liberate cisplatin, which subsequently stimulates the cleavage of O2-propargyl to release large amounts of NO in situ, thus generating synergistic and potent tumor suppression activity in vivo. Therefore, Pt(II)-triggered depropargylation and the integration concept might provide a general strategy for broad applicability of bioorthogonal cleavage chemistry in vivo.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tian Lv
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Mingchao Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yue Fei
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jie Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
12
|
van de L'Isle MON, Ortega-Liebana MC, Unciti-Broceta A. Transition metal catalysts for the bioorthogonal synthesis of bioactive agents. Curr Opin Chem Biol 2020; 61:32-42. [PMID: 33147552 DOI: 10.1016/j.cbpa.2020.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
The incorporation of abiotic transition metal catalysis into the chemical biology space has significantly expanded the tool kit of bioorthogonal chemistries accessible for cell culture and in vivo applications. A rich variety of homogeneous and heterogeneous catalysts has shown functional compatibility with physiological conditions and biostability in complex environs, enabling their exploitation as extracellular or intracellular factories of bioactive agents. Current trends in the field are focusing on investigating new metals and sophisticated catalytic devices and toward more applied activities, such as the integration of subcellular, cell- and site-targeting capabilities or the exploration of novel biomedical applications. We present herein an overview of the latest advances in the field, highlighting the increasing role of transition metals for the controlled release of therapeutics.
Collapse
Affiliation(s)
- Melissa O N van de L'Isle
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Mari Carmen Ortega-Liebana
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK.
| |
Collapse
|
13
|
Zhong YL, Muzzio DJ, Weisel M, Zhang L, Humphrey GR, Maloney KM, Campos KR. Development of a Scalable and Safer Synthesis of Diazeniumdiolates. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yong-Li Zhong
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Daniel J. Muzzio
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mark Weisel
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Li Zhang
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Guy R. Humphrey
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Kevin M. Maloney
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Kevin R. Campos
- Process Research and Development, MRL, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
14
|
Du J, Guo J, Kang D, Li Z, Wang G, Wu J, Zhang Z, Fang H, Hou X, Huang Z, Li G, Lu X, Liu X, Ouyang L, Rao L, Zhan P, Zhang X, Zhang Y. New techniques and strategies in drug discovery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Yang Z, Li H, Li Z, Feng Y, Jin Y, Liu Y, Li M, Liu R, Fang Y. Improved antiproliferative activity of novel Pulsatilla saponin D/α-hederin derivatives containing nitric oxide donors. NEW J CHEM 2020. [DOI: 10.1039/d0nj02941f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugates of PSD and furoxan exhibited synergetic effects on enhancing antiproliferative activity and reducing hemolytic toxicity.
Collapse
Affiliation(s)
- Zunhua Yang
- College of Pharmacy
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330004
- China
| | - Huilan Li
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330006
- China
| | - Zhifeng Li
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330006
- China
| | - Yulin Feng
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330006
- China
| | - Yi Jin
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330006
- China
| | - Yanhua Liu
- College of Pharmacy
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330004
- China
| | - Mingdong Li
- College of Pharmacy
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330004
- China
| | - Ronghua Liu
- College of Pharmacy
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330004
- China
| | - Yuanying Fang
- National Engineering Research Center for Manufacturing Technology of TCM Solid Preparation
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330006
- China
| |
Collapse
|
16
|
Zhong YL, Weisel M, Humphrey GR, Muzzio DJ, Zhang L, Huffman MA, Zhong W, Maloney KM, Campos KR. Scalable Synthesis of Diazeniumdiolates: Application to the Preparation of MK-8150. Org Lett 2019; 21:4210-4214. [PMID: 31117712 DOI: 10.1021/acs.orglett.9b01401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthetic diazeniumdiolate (DAZD)-based nitric oxide is utilized to modulate the nitric oxide (NO) concentration in cellular environments and to control physiological processes, yet chemists are still struggling to find efficient and scalable methodologies that will enable them to access sufficient quantities of the high-energy diazeniumdiolate intermediates for biological studies. Now, a general, scalable, safer, and high-yielding new methodology adaptable to the large-scale synthesis of DAZDs has been developed.
Collapse
Affiliation(s)
- Yong-Li Zhong
- Department of Process Research and Development, MRL , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Mark Weisel
- Department of Process Research and Development, MRL , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Guy R Humphrey
- Department of Process Research and Development, MRL , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Daniel J Muzzio
- Department of Process Research and Development, MRL , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Li Zhang
- Department of Process Research and Development, MRL , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Mark A Huffman
- Department of Process Research and Development, MRL , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Wendy Zhong
- Department of Process Research and Development, MRL , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Kevin M Maloney
- Department of Process Research and Development, MRL , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Kevin R Campos
- Department of Process Research and Development, MRL , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| |
Collapse
|
17
|
Wu G, Zhao T, Kang D, Zhang J, Song Y, Namasivayam V, Kongsted J, Pannecouque C, De Clercq E, Poongavanam V, Liu X, Zhan P. Overview of Recent Strategic Advances in Medicinal Chemistry. J Med Chem 2019; 62:9375-9414. [PMID: 31050421 DOI: 10.1021/acs.jmedchem.9b00359] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introducing novel strategies, concepts, and technologies that speed up drug discovery and the drug development cycle is of great importance both in the highly competitive pharmaceutical industry as well as in academia. This Perspective aims to present a "big-picture" overview of recent strategic innovations in medicinal chemistry and drug discovery.
Collapse
Affiliation(s)
- Gaochan Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Tong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Jian Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Yuning Song
- Department of Clinical Pharmacy , Qilu Hospital of Shandong University , 250012 Ji'nan , China
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical Chemistry II , University of Bonn , 53121 Bonn , Germany
| | - Jacob Kongsted
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Christophe Pannecouque
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy , K.U. Leuven , Herestraat 49 Postbus 1043 (09.A097) , B-3000 Leuven , Belgium
| | - Vasanthanathan Poongavanam
- Department of Physics, Chemistry, and Pharmacy , University of Southern Denmark , DK-5230 Odense M , Denmark
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , 44 West Culture Road , 250012 Ji'nan , Shandong , P. R. China
| |
Collapse
|
18
|
Abstract
Bioorthogonal reactions that proceed readily under physiological conditions without interference from biomolecules have found widespread application in the life sciences. Complementary to the bioorthogonal reactions that ligate two molecules, reactions that release a molecule or cleave a linker are increasingly attracting interest. Such dissociative bioorthogonal reactions have a broad spectrum of uses, for example, in controlling bio-macromolecule activity, in drug delivery, and in diagnostic assays. This review article summarizes the developed bioorthogonal reactions linked to a release step, outlines representative areas of the applications of such reactions, and discusses aspects that require further improvement.
Collapse
Affiliation(s)
- Julian Tu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah, 84112, USA
| | - Minghao Xu
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah, 84112, USA
| | - Raphael M Franzini
- Department of Medicinal Chemistry, University of Utah, 30 S 2000 E, Salt Lake City, Utah, 84112, USA
| |
Collapse
|
19
|
Alonso-de Castro S, Terenzi A, Gurruchaga-Pereda J, Salassa L. Catalysis Concepts in Medicinal Inorganic Chemistry. Chemistry 2019; 25:6651-6660. [PMID: 30681213 DOI: 10.1002/chem.201806341] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 12/20/2022]
Abstract
Catalysis has strongly emerged in the field of medicinal inorganic chemistry as a suitable tool to deliver new drug candidates and to overcome drawbacks associated to metallodrugs. In this Concept article, we discuss representative examples of how catalysis has been applied in combination with metal complexes to deliver new therapy approaches. In particular, we explain key achievements in the design of catalytic metallodrugs that damage biomolecular targets and in the development of metal catalysis schemes for the activation of exogenous organic prodrugs. Moreover, we discuss our recent discoveries on the flavin-mediated bioorthogonal catalytic activation of metal-based prodrugs; a new catalysis strategy in which metal complexes are unconventionally employed as substrates rather than catalysts.
Collapse
Affiliation(s)
| | - Alessio Terenzi
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain
| | - Juan Gurruchaga-Pereda
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain.,CIC biomaGUNE, Paseo de Miramón 182, Donostia, 20014, Spain
| | - Luca Salassa
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia, 20018, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, 48011, Spain
| |
Collapse
|
20
|
Adam C, Pérez‐López AM, Hamilton L, Rubio‐Ruiz B, Bray TL, Sieger D, Brennan PM, Unciti‐Broceta A. Bioorthogonal Uncaging of the Active Metabolite of Irinotecan by Palladium-Functionalized Microdevices. Chemistry 2018; 24:16783-16790. [PMID: 30187973 PMCID: PMC6282958 DOI: 10.1002/chem.201803725] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 12/20/2022]
Abstract
SN-38, the active metabolite of irinotecan, is released upon liver hydrolysis to mediate potent antitumor activity. Systemic exposure to SN-38, however, also leads to serious side effects. To reduce systemic toxicity by controlling where and when SN-38 is generated, a new prodrug was specifically designed to be metabolically stable and undergo rapid palladium-mediated activation. Blocking the phenolic OH of SN-38 with a 2,6-bis(propargyloxy)benzyl group led to significant reduction of cytotoxic activity (up to 44-fold). Anticancer properties were swiftly restored in the presence of heterogeneous palladium (Pd) catalysts to kill colorectal cancer and glioma cells, proving the efficacy of this novel masking strategy for aromatic hydroxyls. Combination with a Pd-activated 5FU prodrug augmented the antiproliferative potency of the treatment, while displaying no activity in the absence of the Pd source, which illustrates the benefit of achieving controlled release of multiple approved therapeutics-sequentially or simultaneously-by the same bioorthogonal catalyst to increase anticancer activity.
Collapse
Affiliation(s)
- Catherine Adam
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| | - Ana M. Pérez‐López
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| | - Lloyd Hamilton
- Centre for Neurogeneration, The Chancellor's BuildingUniversity of EdinburghUK
| | - Belén Rubio‐Ruiz
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| | - Thomas L. Bray
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| | - Dirk Sieger
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
- Centre for Neurogeneration, The Chancellor's BuildingUniversity of EdinburghUK
| | - Paul M. Brennan
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghUK
| | - Asier Unciti‐Broceta
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular MedicineUniversity of EdinburghUK
| |
Collapse
|