1
|
Aqib RM, Umer A, Li J, Liu J, Ding B. Light Responsive DNA Nanomaterials and Their Biomedical Applications. Chem Asian J 2024; 19:e202400226. [PMID: 38514391 DOI: 10.1002/asia.202400226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
DNA nanomaterials have been widely employed for various biomedical applications. With rapid development of chemical modification of nucleic acid, serials of stimuli-responsive elements are included in the multifunctional DNA nanomaterials. In this review, we summarize the recent advances in light responsive DNA nanomaterials based on photocleavage/photodecage, photoisomerization, and photocrosslinking for efficient bioimaging (including imaging of small molecule, microRNA, and protein) and drug delivery (including delivery of small molecule, nucleic acid, and gene editing system). We also discuss the remaining challenges and future perspectives of the light responsive DNA nanomaterials in biomedical applications.
Collapse
Affiliation(s)
- Raja Muhammad Aqib
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Arsalan Umer
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jialin Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Kashida H, Azuma H, Sotome H, Miyasaka H, Asanuma H. Site-Selective Photo-Crosslinking of Stilbene Pairs in a DNA Duplex Mediated by Ruthenium Photocatalyst. Angew Chem Int Ed Engl 2024; 63:e202319516. [PMID: 38282170 DOI: 10.1002/anie.202319516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
We herein report a method for site-selective photo-crosslinking of a DNA duplex. A stilbene pair was introduced into a DNA duplex and a ruthenium complex was conjugated with a triplex-forming oligonucleotide. We demonstrated that [2+2] photocycloaddition of the stilbene pair occurred upon irradiation with visible light when the ruthenium complex was in close proximity due to triplex formation. No reaction occurred when the ruthenium complex was not in proximity to the stilbene pair. The wavelength of visible light used was of lower energy than the wavelength of UV light necessary for direct excitation of stilbene. Quantum chemical calculation indicated that ruthenium complex catalyzed the photocycloaddition via triplet-triplet energy transfer. Site selectivity of this photo-crosslinking system was evaluated using a DNA duplex bearing two stilbene pairs as a substrate; we showed that the site of crosslinking was precisely regulated by the sequence of the oligonucleotide linked to the ruthenium complex. Since this method does not require orthogonal photoresponsive molecules, it will be useful in construction of complex photoresponsive DNA circuits, nanodevices and biological tools.
Collapse
Affiliation(s)
- Hiromu Kashida
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hidenori Azuma
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and, Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and, Center for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Hiroyuki Asanuma
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
3
|
Neitz H, Höbartner C. A tolane-modified 5-ethynyluridine as a universal and fluorogenic photochemical DNA crosslinker. Chem Commun (Camb) 2023; 59:12003-12006. [PMID: 37727895 DOI: 10.1039/d3cc03796g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
We report the fluorescent nucleoside ToldU and its application as a photoresponsive crosslinker in three different DNA architectures with enhanced fluorescence emission of the crosslinked products. The fluorogenic ToldU crosslinking reaction enables the assembly of DNA polymers in a hybridization chain reaction for the concentration-dependent detection of a specific DNA sequence.
Collapse
Affiliation(s)
- Hermann Neitz
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Claudia Höbartner
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Center for Nanosystems Chemistry (CNC), University of Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
4
|
Neitz H, Bessi I, Kuper J, Kisker C, Höbartner C. Programmable DNA Interstrand Crosslinking by Alkene-Alkyne [2 + 2] Photocycloaddition. J Am Chem Soc 2023; 145:9428-9433. [PMID: 37071840 DOI: 10.1021/jacs.3c01611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Covalent crosslinking of DNA strands provides a useful tool for medical, biochemical, and DNA nanotechnology applications. Here we present a light-induced interstrand DNA crosslinking reaction using the modified nucleoside 5-phenylethynyl-2'-deoxyuridine (PhedU). The crosslinking ability of PhedU was programmed by base pairing and by metal ion interaction at the Watson-Crick base pairing site. Rotation to intrahelical positions was favored by hydrophobic stacking and enabled an unexpected photochemical alkene-alkyne [2 + 2] cycloaddition within the DNA duplex, resulting in efficient formation of a PhedU dimer after short irradiation times of a few seconds. A PhedU-dimer-containing DNA was shown to efficiently bind a helicase complex, but the covalent crosslink completely prevented DNA unwinding, suggesting possible applications in biochemistry or structural biology.
Collapse
Affiliation(s)
- Hermann Neitz
- Institute of Organic Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Irene Bessi
- Institute of Organic Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jochen Kuper
- Rudolf-Virchow-Zentrum - Center for Integrative and Translational Bioimaging, Universität Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Caroline Kisker
- Rudolf-Virchow-Zentrum - Center for Integrative and Translational Bioimaging, Universität Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Claudia Höbartner
- Institute of Organic Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
5
|
Sharapov AD, Fatykhov RF, Khalymbadzha IA, Valieva MI, Nikonov IL, Taniya OS, Kopchuk DS, Zyryanov GV, Potapova AP, Novikov AS, Sharutin VV, Chupakhin ON. Fluorescent Pyranoindole Congeners: Synthesis and Photophysical Properties of Pyrano[3,2- f], [2,3- g], [2,3- f], and [2,3- e]Indoles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248867. [PMID: 36557999 PMCID: PMC9783255 DOI: 10.3390/molecules27248867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
This paper reports the synthesis of four types of annulated pyranoindole congeners: pyrano[3,2-f]indole, pyrano[2,3-g]indole, pyrano[2,3-f]indole, and pyrano[2,3-e]indole and photophysical studies in this series. The synthesis of pyrano[3,2-f], [2,3-g], and [2,3-e]indoles involve a tandem of Bischler-Möhlau reaction of 3-aminophenol with benzoin to form 6-hydroxy- or 4-hydroxyindole followed by Pechmann condensation of these hydroxyindoles with β-ketoesters. Pyrano[2,3-f]indoles were synthesized through the Nenitzescu reaction of p-benzoquinone and ethyl aminocrotonates and subsequent Pechmann condensation of the obtained 5-hydroxyindole derivatives. Among the pyranoindoles studied, the most promising were pyrano[3,2-f] and [2,3-g]indoles. These compounds were characterized by moderate to high quantum yields (30-89%) and a large (9000-15,000 cm-1) Stokes shift. More detailed photophysical studies were carried out for a series of the most promising derivatives of pyrano[3,2-f] and [2,3-g]indoles to demonstrate their positive solvatochromism, and the data collected was analyzed using Lippert-Mataga equation. Quantum chemical calculations were performed to deepen the knowledge of the absorption and emission properties of pyrano[3,2-f] and [2,3-g]indoles as well as to explain their unusual geometries and electronic structures.
Collapse
Affiliation(s)
- Ainur D. Sharapov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia
| | - Ramil F. Fatykhov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia
| | - Igor A. Khalymbadzha
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia
| | - Maria I. Valieva
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Kovalevskoy Street 22, 620219 Ekaterinburg, Russia
| | - Igor L. Nikonov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Kovalevskoy Street 22, 620219 Ekaterinburg, Russia
| | - Olga S. Taniya
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia
| | - Dmitry S. Kopchuk
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Kovalevskoy Street 22, 620219 Ekaterinburg, Russia
| | - Grigory V. Zyryanov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Kovalevskoy Street 22, 620219 Ekaterinburg, Russia
- Correspondence: ; Tel.: +7-343-375-45-01
| | - Anastasya P. Potapova
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia
| | - Alexander S. Novikov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya Emb., 7/9, 199034 Saint Petersburg, Russia
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street, 6, 117198 Moscow, Russia
| | - Vladimir V. Sharutin
- Department of Chemistry, Institute of Natural Sciences, South Ural State University (National Research University), Lenin Avenue 76, 454080 Chelyabinsk, Russia
| | - Oleg N. Chupakhin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira Street 19, 620002 Ekaterinburg, Russia
| |
Collapse
|
6
|
Chen L, Liu Y, Guo W, Liu Z. Light responsive nucleic acid for biomedical application. EXPLORATION (BEIJING, CHINA) 2022; 2:20210099. [PMID: 37325506 PMCID: PMC10190984 DOI: 10.1002/exp.20210099] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/03/2022] [Indexed: 06/16/2023]
Abstract
Nucleic acids are widely used in biomedical applications because of their programmability and biocompatibility. The light responsive nucleic acids have attracted wide attention due to their remote control and high spatiotemporal resolution. In this review, we summarized the latest developments in biomedicine of light responsive molecules. The molecules which confer light responsive properties to nucleic acids were summarized. The binding sites of molecules to nucleic acids, the induced structural changes, and functional regulation of nucleic acids were reviewed. Then, the biomedical applications of light responsive nucleic acids were listed, such as drug delivery, biosensing, optogenetics, gene editing, etc. Finally, the challenges were discussed and possible future directions of light-responsive nucleic acids were proposed.
Collapse
Affiliation(s)
- Liwei Chen
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Yanfei Liu
- Department of Pharmaceutical EngineeringCollege of Chemistry and Chemical EngineeringCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Weisheng Guo
- Department of Minimally Invasive Interventional RadiologyGuangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory DiseaseSchool of Pharmaceutical Sciences & The Second Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdong ProvinceP. R. China
| | - Zhenbao Liu
- Department of PharmaceuticsXiangya School of Pharmaceutical SciencesCentral South UniversityChangshaHunan ProvinceP. R. China
- Molecular Imaging Research Center of Central South UniversityChangshaHunan ProvinceP. R. China
| |
Collapse
|
7
|
Onizuka K, Yamano Y, Abdelhady AM, Nagatsugi F. Hybridization-specific chemical reactions to create interstrand crosslinking and threaded structures of nucleic acids. Org Biomol Chem 2022; 20:4699-4708. [PMID: 35622064 DOI: 10.1039/d2ob00551d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interstrand crosslinking and threaded structures of nucleic acids have high potential in oligonucleotide therapeutics, chemical biology, and nanotechnology. For example, properly designed crosslinking structures provide high activity and nuclease resistance for anti-miRNAs. The noncovalent labeling and modification by the threaded structures are useful as new chemical biology tools. Photoreversible crosslinking creates smart materials, such as reversible photoresponsive gels and DNA origami objects. This review introduces the creation of interstrand crosslinking and threaded structures, such as catenanes and rotaxanes, based on hybridization-specific chemical reactions and their functions and perspectives.
Collapse
Affiliation(s)
- Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yuuhei Yamano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan.
| | - Ahmed Mostafa Abdelhady
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.,Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan. .,Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
8
|
Tavakoli A, Min JH. Photochemical modifications for DNA/RNA oligonucleotides. RSC Adv 2022; 12:6484-6507. [PMID: 35424630 PMCID: PMC8982246 DOI: 10.1039/d1ra05951c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022] Open
Abstract
Light-triggered chemical reactions can provide excellent tools to investigate the fundamental mechanisms important in biology. Light is easily applicable and orthogonal to most cellular events, and its dose and locality can be controlled in tissues and cells. Light-induced conversion of photochemical groups installed on small molecules, proteins, and oligonucleotides can alter their functional states and thus the ensuing biological events. Recently, photochemical control of DNA/RNA structure and function has garnered attention thanks to the rapidly expanding photochemistry used in diverse biological applications. Photoconvertible groups can be incorporated in the backbone, ribose, and nucleobase of an oligonucleotide to undergo various irreversible and reversible light-induced reactions such as cleavage, crosslinking, isomerization, and intramolecular cyclization reactions. In this review, we gather a list of photoconvertible groups used in oligonucleotides and summarize their reaction characteristics, impacts on DNA/RNA thermal stability and structure, as well as their biological applications.
Collapse
Affiliation(s)
- Amirrasoul Tavakoli
- Department of Chemistry & Biochemistry, Baylor University Waco TX 76706 USA +1-254-710-2095
| | - Jung-Hyun Min
- Department of Chemistry & Biochemistry, Baylor University Waco TX 76706 USA +1-254-710-2095
| |
Collapse
|
9
|
Lechner VM, Nappi M, Deneny PJ, Folliet S, Chu JCK, Gaunt MJ. Visible-Light-Mediated Modification and Manipulation of Biomacromolecules. Chem Rev 2021; 122:1752-1829. [PMID: 34546740 DOI: 10.1021/acs.chemrev.1c00357] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemically modified biomacromolecules-i.e., proteins, nucleic acids, glycans, and lipids-have become crucial tools in chemical biology. They are extensively used not only to elucidate cellular processes but also in industrial applications, particularly in the context of biopharmaceuticals. In order to enable maximum scope for optimization, it is pivotal to have a diverse array of biomacromolecule modification methods at one's disposal. Chemistry has driven many significant advances in this area, and especially recently, numerous novel visible-light-induced photochemical approaches have emerged. In these reactions, light serves as an external source of energy, enabling access to highly reactive intermediates under exceedingly mild conditions and with exquisite spatiotemporal control. While UV-induced transformations on biomacromolecules date back decades, visible light has the unmistakable advantage of being considerably more biocompatible, and a spectrum of visible-light-driven methods is now available, chiefly for proteins and nucleic acids. This review will discuss modifications of native functional groups (FGs), including functionalization, labeling, and cross-linking techniques as well as the utility of oxidative degradation mediated by photochemically generated reactive oxygen species. Furthermore, transformations at non-native, bioorthogonal FGs on biomacromolecules will be addressed, including photoclick chemistry and DNA-encoded library synthesis as well as methods that allow manipulation of the activity of a biomacromolecule.
Collapse
Affiliation(s)
- Vivian M Lechner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Manuel Nappi
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Patrick J Deneny
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Sarah Folliet
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - John C K Chu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
10
|
Mihara JI, Fujimoto K. Photocrosslinking of DNA using 4-methylpyranocarbazole nucleoside with thymine base selectivity. Org Biomol Chem 2021; 19:9860-9866. [PMID: 34532722 DOI: 10.1039/d1ob01621k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This report describes a novel photocrosslinker, 4-methylpyranocarbazole nucleoside (MEPK), that can be induced to crosslink using visible light. Previously, we reported a visible light-responsive artificial nucleic acid, pyranocarbazole nucleoside (PCX). MEPK can selectively photocrosslink to thymine bases in a complementary nucleic acid strand. It was synthesized by introducing a methyl group at the 4-position of PCX, and it can differentiate between thymine and cytosine. The previously reported visible light-responsive artificial nucleic acid PCX has a low synthetic yield. MEPK was synthesized by Pechmann condensation which suppressed by-product formation, making the synthesis more efficient, and resulting in a higher yield than that of PCX. MEPK is expected to have practical applications as a photocrosslinker that can be manipulated with visible light and that selectively targets thymine bases.
Collapse
Affiliation(s)
- Jun-Ichi Mihara
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan.
| | - Kenzo Fujimoto
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan.
| |
Collapse
|
11
|
Abdelhady AM, Hirano Y, Onizuka K, Okamura H, Komatsu Y, Nagatsugi F. Synthesis of crosslinked 2'-OMe RNA duplexes and their application for effective inhibition of miRNA function. Bioorg Med Chem Lett 2021; 48:128257. [PMID: 34246752 DOI: 10.1016/j.bmcl.2021.128257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
The interstrand crosslinking of nucleic acids is one of the strategies to create the stable complex between an oligonucleotide and RNA by covalent bond formation. We previously reported that fully 2'-O-methylated (2'-OMe) RNAs having the 2-amino-6-vinylpurine (AVP) exhibited an efficient crosslinking to uracil in the target RNA. In this study, we established a chemical method to efficiently synthesize the crosslinked 2'-OMe RNA duplexes using AVP and prepared the anti-miRNA oligonucleotides (AMOs) containing the antisense targeting miR-21 and crosslinked duplex at the terminal sequences. These AMOs showed a markedly higher anti miRNA activity than that of the commercially-available miR-21 inhibitor which has locked nucleic acid (LNA) residues.
Collapse
Affiliation(s)
- Ahmed Mostafa Abdelhady
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan; Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884 Cairo, Egypt
| | - Yu Hirano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan; Division for the Establishment of Frontier Sciences of Organization for Advanced Studies, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hidenori Okamura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Yasuo Komatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
12
|
Elskens J, Madder A. Crosslinker-modified nucleic acid probes for improved target identification and biomarker detection. RSC Chem Biol 2021; 2:410-422. [PMID: 34458792 PMCID: PMC8341421 DOI: 10.1039/d0cb00236d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/11/2021] [Indexed: 01/02/2023] Open
Abstract
Understanding the intricate interaction pattern of nucleic acids with other molecules is essential to gain further insight in biological processes and disease mechanisms. To this end, a multitude of hybridization-based assays have been designed that rely on the non-covalent recognition between complementary nucleic acid sequences. However, the ephemeral nature of these interactions complicates straightforward analysis as low efficiency and specificity are rule rather than exception. By covalently locking nucleic acid interactions by means of a crosslinking agent, the overall efficiency, specificity and selectivity of hybridization-based assays could be increased. In this mini-review we highlight methodologies that exploit the use of crosslinker-modified nucleic acid probes for interstrand nucleic acid crosslinking with the objective to study, detect and identify important targets as well as nucleic acid sequences that can be considered relevant biomarkers. We emphasize on the usefulness and advantages of crosslinking agents and elaborate on the chemistry behind the crosslinking reactions they induce.
Collapse
Affiliation(s)
- Joke Elskens
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 Building S4 9000 Ghent Belgium +32-9-264-49-98 +32-9-264-44-72
| | - Annemieke Madder
- Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 Building S4 9000 Ghent Belgium +32-9-264-49-98 +32-9-264-44-72
| |
Collapse
|
13
|
Koo B, Yoo H, Choi HJ, Kim M, Kim C, Kim KT. Visible Light Photochemical Reactions for Nucleic Acid-Based Technologies. Molecules 2021; 26:556. [PMID: 33494512 PMCID: PMC7865461 DOI: 10.3390/molecules26030556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
The expanding scope of chemical reactions applied to nucleic acids has diversified the design of nucleic acid-based technologies that are essential to medicinal chemistry and chemical biology. Among chemical reactions, visible light photochemical reaction is considered a promising tool that can be used for the manipulations of nucleic acids owing to its advantages, such as mild reaction conditions and ease of the reaction process. Of late, inspired by the development of visible light-absorbing molecules and photocatalysts, visible light-driven photochemical reactions have been used to conduct various molecular manipulations, such as the cleavage or ligation of nucleic acids and other molecules as well as the synthesis of functional molecules. In this review, we describe the recent developments (from 2010) in visible light photochemical reactions involving nucleic acids and their applications in the design of nucleic acid-based technologies including DNA photocleaving, DNA photoligation, nucleic acid sensors, the release of functional molecules, and DNA-encoded libraries.
Collapse
Affiliation(s)
| | | | | | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea; (B.K.); (H.Y.); (H.J.C.)
| | - Cheoljae Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea; (B.K.); (H.Y.); (H.J.C.)
| | - Ki Tae Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea; (B.K.); (H.Y.); (H.J.C.)
| |
Collapse
|
14
|
Cervi A, Vo Y, Chai CLL, Banwell MG, Lan P, Willis AC. Gold(I)-Catalyzed Intramolecular Hydroarylation of Phenol-Derived Propiolates and Certain Related Ethers as a Route to Selectively Functionalized Coumarins and 2 H-Chromenes. J Org Chem 2021; 86:178-198. [PMID: 33253562 DOI: 10.1021/acs.joc.0c02011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Methods are reported for the efficient assembly of a series of phenol-derived propiolates, including the parent system 56, and their Au(I)-catalyzed cyclization (intramolecular hydroarylation) to give the corresponding coumarins (e.g., 1). Simple syntheses of natural products such as ayapin (144) and scoparone (145) have been realized by such means, and the first of these subject to single-crystal X-ray analysis. A related process is described for the conversion of propargyl ethers such as 156 into the isomeric 2H-chromene precocene I (159), a naturally occurring inhibitor of juvenile hormone biosynthesis.
Collapse
Affiliation(s)
- Aymeric Cervi
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, #07-01 Neuros, 138665, Singapore
| | - Yen Vo
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Christina L L Chai
- Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, #07-01 Neuros, 138665, Singapore.,Department of Pharmacy, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Martin G Banwell
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ping Lan
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou, Guangdong 510632, China
| | - Anthony C Willis
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
15
|
Yamano Y, Murayama K, Asanuma H. Dual Crosslinking Photo‐Switches for Orthogonal Photo‐Control of Hybridization Between Serinol Nucleic Acid and RNA. Chemistry 2020; 27:4599-4604. [DOI: 10.1002/chem.202003528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Indexed: 01/20/2023]
Affiliation(s)
- Yuuhei Yamano
- Graduate School of Engineering Nagoya University Furo-cho Chikusa-ku Nagoya 464–8603 Japan
| | - Keiji Murayama
- Graduate School of Engineering Nagoya University Furo-cho Chikusa-ku Nagoya 464–8603 Japan
| | - Hiroyuki Asanuma
- Graduate School of Engineering Nagoya University Furo-cho Chikusa-ku Nagoya 464–8603 Japan
| |
Collapse
|
16
|
Fujimoto K, Watanabe N. Fluorescence In Situ Hybridization of 16S rRNA in
Escherichia coli
Using Multiple Photo‐Cross‐Linkable Probes. ChemistrySelect 2020. [DOI: 10.1002/slct.202003343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kenzo Fujimoto
- School of Advanced Science and Technology Japan Advanced Institute of Science and Technology Asahidai 1–1, Nomi Ishikawa 923-1292 Japan
| | - Nanami Watanabe
- School of Advanced Science and Technology Japan Advanced Institute of Science and Technology Asahidai 1–1, Nomi Ishikawa 923-1292 Japan
| |
Collapse
|
17
|
Fujimoto K, Ishida K, Xue L, Nakamura S. Effect of linker length on photo-cross-linking position mediated by click chemistry via [2 + 2] photocycloaddition†. Photochem Photobiol Sci 2020; 19:776-782. [PMID: 33856676 DOI: 10.1039/d0pp00098a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/12/2020] [Indexed: 12/28/2022]
Abstract
Ultrafast reversible DNA/RNA photo-cross-linking is a powerful tool for regulating the target strand in living cells. In particular, 3-cyanovinylcarbazole (CNVK) and 3-cyanovinylcarbazole modified by D-threoninol (CNVD) can photo-cross-link to pyrimidine bases within a few seconds of photoirradiation. However, these photo-cross-linkers can only cross-link to the counter base if it is adjacent to the 5'-side (-1 position). In this study, we synthesized novel photo-cross-linkers with varying linker lengths capable of photo-cross-linking with pyrimidine bases at locations other than the -1 position via click chemistry. The photo-cross-linking site was dependent on linker length.
Collapse
Affiliation(s)
- Kenzo Fujimoto
- School of advanced Science and Technology, Japan Advanced Institute Science and Technology, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan.
| | - Kenta Ishida
- School of advanced Science and Technology, Japan Advanced Institute Science and Technology, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Li Xue
- School of advanced Science and Technology, Japan Advanced Institute Science and Technology, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Shigetaka Nakamura
- School of advanced Science and Technology, Japan Advanced Institute Science and Technology, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|
18
|
Fujimoto K, Hashimoto M, Watanabe N, Nakamura S. RNA fluorescence in situ hybridization hybridisation using photo-cross-linkable beacon probes containing pyranocarbazole in living E. coli. Bioorg Med Chem Lett 2019; 29:2173-2177. [DOI: 10.1016/j.bmcl.2019.06.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 12/25/2022]
|
19
|
Tam DY, Zhuang X, Wong SW, Lo PK. Photoresponsive Self-Assembled DNA Nanomaterials: Design, Working Principles, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805481. [PMID: 30861628 DOI: 10.1002/smll.201805481] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/30/2019] [Indexed: 05/23/2023]
Abstract
Photoresponsive DNA nanomaterials represent a new class of remarkable functional materials. By adjusting the irradiation wavelength, light intensity, and exposure time, various photocontrolled DNA-based systems can be reversibly or irreversibly regulated in respect of their size, shape, conformation, movement, and dissociation/association. This Review introduces the most updated progress in the development of photoresponsive DNA-based system and emphasizes their advantages over other stimuli-responsive systems. Their design and mechanisms to trigger the photoresponses are shown and discussed. The potential application of these photon-responsive DNA nanomaterials in biology, biomedicine, materials science, nanophotonic and nanoelectronic are also covered and described. The challenges faced and further directions of the development of photocontrolled DNA-based systems are also highlighted.
Collapse
Affiliation(s)
- Dick Yan Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Xinyu Zhuang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Sze Wing Wong
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China
- Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
20
|
Onizuka K, Ishida K, Mano E, Nagatsugi F. Alkyne-Alkyne Photo-cross-linking on the Flipping-out Field. Org Lett 2019; 21:2833-2837. [PMID: 30951316 DOI: 10.1021/acs.orglett.9b00817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The base flip-inducing nucleic acids are expected to create a specific field for various chemical reactions. We now report a novel type of base-flip-inducing oligodeoxynucleotide and photo-cross-linking reaction. Two 3-arylethynyl-5-methyl-2-pyridone nucleosides, Ph and An, were synthesized, and their properties were investigated. The alkyne-alkyne photo-cross-linking rapidly proceeded by taking advantage of the base-flipping-out field where two alkynes overlap each other. This photo-cross-linking would be a new candidate to form cross-linked DNAs.
Collapse
Affiliation(s)
- Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials , Tohoku University , 2-1-1 Katahira , Aoba-ku, Sendai , Miyagi 980-8577 , Japan.,Department of Chemistry, Graduate School of Science , Tohoku University , Aoba-ku, Sendai 980-8578 , Japan
| | - Kei Ishida
- Institute of Multidisciplinary Research for Advanced Materials , Tohoku University , 2-1-1 Katahira , Aoba-ku, Sendai , Miyagi 980-8577 , Japan.,Department of Chemistry, Graduate School of Science , Tohoku University , Aoba-ku, Sendai 980-8578 , Japan
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials , Tohoku University , 2-1-1 Katahira , Aoba-ku, Sendai , Miyagi 980-8577 , Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials , Tohoku University , 2-1-1 Katahira , Aoba-ku, Sendai , Miyagi 980-8577 , Japan.,Department of Chemistry, Graduate School of Science , Tohoku University , Aoba-ku, Sendai 980-8578 , Japan
| |
Collapse
|
21
|
Fujimoto K, Yamaguchi T, Inatsugi T, Takamura M, Ishimaru I, Koto A, Nakamura S. DNA photo-cross-linking using a pyranocarbazole-modified oligodeoxynucleotide with a d-threoninol linker. RSC Adv 2019; 9:30693-30697. [PMID: 35529377 PMCID: PMC9072208 DOI: 10.1039/c9ra06145b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/12/2019] [Indexed: 01/17/2023] Open
Abstract
An alternative more efficient photo-cross-linker having a d-threoninol skeleton instead of the 2′-deoxyribose backbone in pyranocarbazole was investigated to improve the photoreactivity of photo-cross-linkers.
Collapse
Affiliation(s)
- Kenzo Fujimoto
- Department of Advanced Institute Science and Technology
- Japan Advanced Institute of Science and Technology
- Japan
| | - Tsubasa Yamaguchi
- Department of Advanced Institute Science and Technology
- Japan Advanced Institute of Science and Technology
- Japan
| | - Takahiro Inatsugi
- Advanced Materials Research Laboratory
- Advanced Technology Research Department
- In statute of Surface Science and Technology
- NICCA CHEMICAL CO., LTD
- Fukui-City
| | - Masahiko Takamura
- Advanced Materials Research Laboratory
- Advanced Technology Research Department
- In statute of Surface Science and Technology
- NICCA CHEMICAL CO., LTD
- Fukui-City
| | - Isao Ishimaru
- Advanced Materials Research Laboratory
- Advanced Technology Research Department
- In statute of Surface Science and Technology
- NICCA CHEMICAL CO., LTD
- Fukui-City
| | - Ayako Koto
- Advanced Materials Research Laboratory
- Advanced Technology Research Department
- In statute of Surface Science and Technology
- NICCA CHEMICAL CO., LTD
- Fukui-City
| | - Shigetaka Nakamura
- Department of Advanced Institute Science and Technology
- Japan Advanced Institute of Science and Technology
- Japan
| |
Collapse
|
22
|
Sethi S, Honda N, Wan L, Nakamura S, Fujimoto K. Ultra-acceleration of Photochemical Cytosine Deamination by Using a 5'-Phosphate-Substituted Oligodeoxyribonucleotide Probe Containing a 3-Cyanovinylcarbazole Nucleotide at Its 5'-End. Chembiochem 2018; 19:2257-2261. [PMID: 30195263 DOI: 10.1002/cbic.201800384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 01/18/2023]
Abstract
Genes are the blueprints for the architectures of living organisms, providing the backbone of the information required for formation of proteins. Changes in genes lead to disorders, and these disorders could be rectified by reversing the mutations that caused them. Photochemical methods currently in use for site-directed mutagenesis employ the photoactive 3-cyanovinylcarbazole (CNV K) nucleotide incorporated in the oligodeoxyribonucleotide (ODN) backbone. The major drawback of this method, the requirement for high temperature, has been addressed, and deamination has previously been achieved at 37 °C but with low efficiency. Here, efficient deamination has been accomplished under physiological conditions by using a short complementary photoactive ODN with a 5'-phosphate group in the -1 position with respect to the target cytosine. It is hypothesized that the free phosphate group affects the microenvironment around the target cytosine by activating the incoming nucleophile through hydrogen bonding with the water molecule, thus facilitating nucleophilic attack on the cytosine C-4 carbon. The degree of deamination observed in this technique is high and the effect of the phosphate group is to accelerate the deamination reaction.
Collapse
Affiliation(s)
- Siddhant Sethi
- Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Nozomi Honda
- Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Licheng Wan
- Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Shigetaka Nakamura
- Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Kenzo Fujimoto
- Japan Advanced Institute of Science and Technology, Asahi-dai 1-1, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|