1
|
Chen Z, Wang C, Allabakshi SM, Pignatello JJ. Hydrogen Peroxide-Assisted Alkaline Defluorination of the Fumigant and Potent Greenhouse Gas, Sulfuryl Fluoride: Hydrogen Peroxide as a Nucleophilic Reagent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19523-19532. [PMID: 39412816 DOI: 10.1021/acs.est.4c06595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Sulfuryl fluoride (SO2F2, SF) is an effective and increasingly popular fumigant for treating buildings and commodities in international trade but has come under scrutiny as a potent greenhouse gas. Passage of vent gases through an alkaline spray has been proposed for scrubbing SF, but base hydrolysis is insufficiently fast and generates equal yields of fluoride and fluorosulfate, the latter of unknown environmental hazard. We report here that alkaline hydrogen peroxide (H2O2) markedly accelerates SF removal and gives nearly quantitative yield of fluoride, with fluorosulfate produced in less than 3.5% yield. The other major products are sulfate, peroxymonosulfate, and oxygen. The oxidation state of S was unchanged. Hydroxyl and superoxide radical scavengers had no effect on the rate. The reaction proceeds by sequential nucleophilic displacement of fluoride by hydroperoxide ion (HO2-) to form a transient diperoxysulfate species that rapidly undergoes intramolecular redox rearrangement to give sulfate and singlet oxygen. Peroxymonosulfate, produced through side reactions, can fully defluorinate SF as well, although more slowly. Two new peaks were detected in the 19F-NMR spectrum corresponding to intermediates. Fluoride can be removed conventionally, and the other products are innocuous or short-lived. Thus, H2O2-assisted alkaline defluorination promises to be an effective method for scrubbing spent SF fumes and preventing SF from reaching the atmosphere. This study highlights the benefits of H2O2 and peroxymonosulfate as nucleophiles in remediation chemistry.
Collapse
Affiliation(s)
- Zhihao Chen
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | - Chengjin Wang
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| | | | - Joseph J Pignatello
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, United States
| |
Collapse
|
2
|
Synthesis by fragmentation-oxidation and reactivity of 6-tert-butyl-5-oxo-1,2,4-triazine-3-carboxylates. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Liao X, Cao J, Hu Y, Zhang C, Hu L. Mechanism of unactivated peroxymonosulfate-induced degradation of methyl parathion: Kinetics and transformation pathway. CHEMOSPHERE 2021; 284:131332. [PMID: 34198067 DOI: 10.1016/j.chemosphere.2021.131332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/12/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Although various activated peroxymonosulfate (PMS) processes have been applied widely for the destruction of recalcitrant organics due to its high generation potential of various electrophiles reactive oxygen species (e.g., sulfate and hydroxyl radicals and singlet oxygen), non-radical-based PMS reactions with pollutants are poorly understood. Especially, relatively little information exists on the reactivity of PMS towards organic ester compounds such an organophosphorus pesticides (OPPs). Herein, we systematically studied the unactivated PMS-induced transformation of methyl parathion, a stubborn and toxic OPP. Specifically, direct reaction rather than electrophile radical-based oxidation was responsible for the rapid degradation of methyl parathion. The contribution of the produced singlet oxygen (1O2) from the self-decomposition of PMS to methyl parathion degradation can be neglected. The degradation rate constant (kobs) was strongly dependent on PMS loading and solution pH. The implication of the PMS reaction with methyl parathion for environment treatment was further evaluated by investigating the effects of common water matrices such as sediment humic acids, Cl-, and natural water. The identified metabolic products revealed that exposure to PMS resulted in hydrolysis and oxidation to methyl parathion. Further study demonstrated that PMS was also capable of effectively oxidizing other typical OPPs without explicit activation. This study provides novel insights into the reaction of methyl parathion with PMS, which indicate feasibility for the decontamination of OPP-contaminated environments.
Collapse
Affiliation(s)
- Xiaoping Liao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Jinru Cao
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ying Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Caixiang Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Lisong Hu
- School of Xingfa Mining Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
4
|
Dong HC, Ho TH, Nguyen TM, Kawazoe Y, Le HM. Dissociation of hydrogen peroxide in water and methanol through a biased molecular dynamics investigation. J Comput Chem 2021; 42:1344-1353. [PMID: 33977539 DOI: 10.1002/jcc.26539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/23/2021] [Accepted: 04/04/2021] [Indexed: 11/06/2022]
Abstract
The two dissociation channels of HOOH, namely, HOOH and HOOH, in water and methanol are investigated using umbrella-sampling ab initio molecular dynamics. Our potential of mean force calculations reveals the HOOH dissociation to be more favorable in methanol with a free energy barrier of 7.56 kcal/mol, while the HOOH dissociation possesses a free energy barrier of 11.46 kcal/mol. In water, the HOOH dissociation channel is more favorable (8.25 kcal/mol), while the HOOH dissociation process requires a higher free energy (11.28 kcal/mol). Such reaction favorability can be explained by inspecting the formation of secondary radical species during the course of multiple hydrogen donating-accepting processes in each reaction channel. The radical species, that is, H3 O• (observed in water) and CH3 OH2 • (observed in methanol), are the first subordinate species upon the HOOH dissociation. For the HOOH dissociation channel in methanol, the secondary species such as water and formaldehyde can be observed, while the re-generation of HOOH in water can be spotted.
Collapse
Affiliation(s)
- Hieu C Dong
- Future Materials and Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
| | - Thi H Ho
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Thu M Nguyen
- Future Materials and Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
| | - Yoshiyuki Kawazoe
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Japan.,Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Hung M Le
- Future Materials and Devices Laboratory, Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 700000, Vietnam.,Faculty of Natural Sciences, Duy Tan University, Da Nang, 550000, Vietnam
| |
Collapse
|
5
|
Rammah M, Mahdhaoui F, Gabsi W, Boubaker T. Quantification of the Electrophilic Reactivities of Benzotriazoles and Structure‐Reactivity Relationships. ChemistrySelect 2021. [DOI: 10.1002/slct.202100568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mehdi Rammah
- Laboratoire C.H.P.N.R Faculté des Sciences de Monastir Université de Monastir Avenue de l'Environnement 5019 Monastir Tunisia
| | - Faouzi Mahdhaoui
- Laboratoire C.H.P.N.R Faculté des Sciences de Monastir Université de Monastir Avenue de l'Environnement 5019 Monastir Tunisia
| | - Wahiba Gabsi
- Laboratoire C.H.P.N.R Faculté des Sciences de Monastir Université de Monastir Avenue de l'Environnement 5019 Monastir Tunisia
| | - Taoufik Boubaker
- Laboratoire C.H.P.N.R Faculté des Sciences de Monastir Université de Monastir Avenue de l'Environnement 5019 Monastir Tunisia
| |
Collapse
|
6
|
Oba BT, Zheng X, Aborisade MA, Liu J, Yohannes A, Kavwenje S, Sun P, Yang Y, Zhao L. Remediation of trichloroethylene contaminated soil by unactivated peroxymonosulfate: Implication on selected soil characteristics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112063. [PMID: 33588171 DOI: 10.1016/j.jenvman.2021.112063] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
The advanced oxidation process (AOP) based on activated Peroxymonosulfate (PMS) has been attracting many people in the field of soil and water remediation in many ways while ignoring the shortcomings. The high cost of activators, and energy input, as well as the expense to separate the catalyst and transition metal reducing agent from the treated soil, were some disadvantages of using activated PMS. Based on the above rationales of problems related to the use of activated PMS, this study aimed to study the performance of using unactivated peroxymonosulfate for the advanced oxidation process to remediate soil contaminated by trichloroethylene (TCE), and to evaluate the synergistic effect on selected soil properties after treatment. The results showed that within 45 min, a single injection of 5 mM PMS at its initial pH value can degrade 86.90% of the total TCE in the soil. However, when PMS was continuously injected, the removal rate was increased to 95.25%. The direct reaction of TCE and PMS was the main cause of degradation. PMS can degrade TCE in a wide pH range (pH 3-11), but the maximum degradation was at pH = 2.9 (the initial pH of PMS). After the treatment, the soil organic matter (SOM) was degraded significantly. In contrast, FTIR, SEM, and hydrometer tests conducted on the soil showed that the treatment had no significant effect on the functional groups and particle size distribution of the treated soil. The study on the effect of the treatment on the concentration of bioavailable heavy metals in the treated soil showed that only manganese and copper metals were significantly increased after the treatment. According to the results obtained in this study, it is more beneficial and feasible to use unactivated peroxymonosulfate in the advanced oxidation process when remediating soil contaminated by chlorinated organic matter.
Collapse
Affiliation(s)
- Belay Tafa Oba
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuehao Zheng
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | | | - Jiashu Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Ashenafi Yohannes
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Sheila Kavwenje
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
7
|
An JH, Kim KD, Lee JH. Highly Chemoselective Deoxygenation of N-Heterocyclic N-Oxides Using Hantzsch Esters as Mild Reducing Agents. J Org Chem 2021; 86:2876-2894. [DOI: 10.1021/acs.joc.0c02805] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ju Hyeon An
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju Campus, Gyeongju 38066, Republic of Korea
| | - Kyu Dong Kim
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju Campus, Gyeongju 38066, Republic of Korea
| | - Jun Hee Lee
- Department of Advanced Materials Chemistry, Dongguk University, Gyeongju Campus, Gyeongju 38066, Republic of Korea
| |
Collapse
|
8
|
Shao D, Liu G, Chen H, Xu C, Du J. Combination of Surfactant Action with Peroxide Activation for Room‐Temperature Cleaning of Textiles. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dongyan Shao
- College of Textiles Science and Engineering Jiangnan University Wuxi Jiangsu China
| | - Gansheng Liu
- College of Textiles Science and Engineering Jiangnan University Wuxi Jiangsu China
| | - Hao Chen
- College of Textiles Science and Engineering Jiangnan University Wuxi Jiangsu China
| | - Changhai Xu
- College of Textiles Science and Engineering Jiangnan University Wuxi Jiangsu China
- College of Textiles and Clothing Qingdao University Qingdao Shandong China
| | - Jinmei Du
- College of Textiles Science and Engineering Jiangnan University Wuxi Jiangsu China
- College of Textiles and Clothing Qingdao University Qingdao Shandong China
| |
Collapse
|
9
|
Souissi S, Gabsi W, Echaieb A, Roger J, Hierso JC, Fleurat-Lessard P, Boubaker T. Influence of solvent mixture on nucleophilicity parameters: the case of pyrrolidine in methanol-acetonitrile. RSC Adv 2020; 10:28635-28643. [PMID: 35520076 PMCID: PMC9055836 DOI: 10.1039/d0ra06324j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 11/23/2022] Open
Abstract
The course of organic chemical reactions is efficiently modelled through the concepts of “electrophiles” and “nucleophiles” (meaning electron-seeking and nucleus-seeking reactive species). On the one hand, an advanced approach of the correlation of the nucleophilicity parameters N and electrophilicity E has been delivered from the linear free energy relationship log k (20 °C) = s(N + E). On the other hand, the general influence of the solvent mixtures, which are very often employed in preparative synthetic chemistry, has been poorly explored theoretically and experimentally, to date. Herein, we combined experimental and theoretical studies of the solvent influence on pyrrolidine nucleophilicity. We determined the nucleophilicity parameters N and s of pyrrolidine at 20 °C in CH3OH/CH3CN mixtures containing 0, 20, 40, 60, 80 and 100% CH3CN by kinetic investigations of their nucleophilic substitution reactions to a series of 2-methoxy-3-X-5-nitrothiophenes 1a–e (X = NO2, CN, COCH3, CO2CH3, CONH2). Depending on the resulting solvation medium, the N parameters range from 15.72 to 18.32 on the empirical nucleophilicity scale of Mayr. The nucleophilicity parameters N first evolve linearly with the content of acetonitrile up to 60% CH3CN by volume, but is non linear for higher amounts. We designed a general computation protocol to investigate the solvent effect at the atomistic scale. The nucleophilicity in solvent mixtures was evaluated by combining classical molecular dynamic (MD) simulations of solvated pyrrolidine and a few density functional theory (DFT) calculations of Parr nucleophilicity. The pyrrolidine theoretical nucleophilicity 1/ω obtained in various CH3OH/CH3CN mixtures are in excellent agreement with Mayr's nucleophilicity (N) parameters measured. Analyses of the molecular dynamic trajectories reveal that the decrease of the nucleophilicity in methanol rich mixtures arises predominantly from the solvation of the pyrrolidine by methanol molecules through strong hydrogen bonds. Last, we proposed a simple model to predict and accurately reproduce the experimentally obtained nucleophilicity values. Combined experiments and modelling rationalize the large influence of solvent composition on pyrrolidine nucleophilicity.![]()
Collapse
Affiliation(s)
- Salma Souissi
- Université de Monastir, Faculté des Sciences, Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11S39) Avenue de l'Environnement 5019 Monastir Tunisia .,Institut de Chimie Moléculaire de l'Université de Bourgogne (UMR-CNRS 6302), Université Bourgogne Franche-Comté (UBFC) 9 Avenue Alain Savary 21078 Dijon France
| | - Wahiba Gabsi
- Université de Monastir, Faculté des Sciences, Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11S39) Avenue de l'Environnement 5019 Monastir Tunisia
| | - Abderraouf Echaieb
- Université de Monastir, Faculté des Sciences, Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11S39) Avenue de l'Environnement 5019 Monastir Tunisia
| | - Julien Roger
- Institut de Chimie Moléculaire de l'Université de Bourgogne (UMR-CNRS 6302), Université Bourgogne Franche-Comté (UBFC) 9 Avenue Alain Savary 21078 Dijon France
| | - Jean-Cyrille Hierso
- Institut de Chimie Moléculaire de l'Université de Bourgogne (UMR-CNRS 6302), Université Bourgogne Franche-Comté (UBFC) 9 Avenue Alain Savary 21078 Dijon France
| | - Paul Fleurat-Lessard
- Institut de Chimie Moléculaire de l'Université de Bourgogne (UMR-CNRS 6302), Université Bourgogne Franche-Comté (UBFC) 9 Avenue Alain Savary 21078 Dijon France
| | - Taoufik Boubaker
- Université de Monastir, Faculté des Sciences, Laboratoire de Chimie Hétérocyclique, Produits Naturels et Réactivité (LR11S39) Avenue de l'Environnement 5019 Monastir Tunisia
| |
Collapse
|
10
|
Ayachi H, Raissi H, Mahdhaoui F, Boubaker T. Electrophilic reactivities of 7‐L‐4‐nitrobenzofurazans in σ‐complexation processes: Kinetic studies and structure–reactivity relationships. INT J CHEM KINET 2020. [DOI: 10.1002/kin.21390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hajer Ayachi
- Laboratoire C.H.P.N.R, Faculté des Sciences de MonastirUniversité de Monastir Avenue de l'Environnement Monastir 5019 Tunisia
| | - Hanen Raissi
- Laboratoire C.H.P.N.R, Faculté des Sciences de MonastirUniversité de Monastir Avenue de l'Environnement Monastir 5019 Tunisia
| | - Faouzi Mahdhaoui
- Laboratoire C.H.P.N.R, Faculté des Sciences de MonastirUniversité de Monastir Avenue de l'Environnement Monastir 5019 Tunisia
| | - Taoufik Boubaker
- Laboratoire C.H.P.N.R, Faculté des Sciences de MonastirUniversité de Monastir Avenue de l'Environnement Monastir 5019 Tunisia
| |
Collapse
|
11
|
Mayer RJ, Ofial AR. Nucleophilie von Glutathion als Bindeglied zur Reaktivität von Michael‐Akzeptoren. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Robert J. Mayer
- Department ChemieLudwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| | - Armin R. Ofial
- Department ChemieLudwig-Maximilians-Universität München Butenandtstraße 5–13 81377 München Deutschland
| |
Collapse
|
12
|
Mayer RJ, Ofial AR. Nucleophilicity of Glutathione: A Link to Michael Acceptor Reactivities. Angew Chem Int Ed Engl 2019; 58:17704-17708. [PMID: 31560405 PMCID: PMC6899611 DOI: 10.1002/anie.201909803] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 12/22/2022]
Abstract
Deprotonated glutathione is among the most potent biological nucleophiles and plays an important physiological role in cellular detoxification by forming covalent conjugates with Michael acceptors. The electrophilicity E of various Michael acceptors was characterized recently according to the Patz-Mayr relation lg k2 =sN (N+E). We now determined the nucleophilic reactivity (N, sN ) of glutathione (GSH) in aqueous solution at 20 °C to connect published GSH reactivities (kGSH ) with Mayr's electrophilicity scale (E). In this way, electrophilicities E of more than 70 Michael acceptors could be estimated, which can now be used to systematically predict novel reactions with the multitude of nucleophiles whose nucleophilicity parameters N/sN are known.
Collapse
Affiliation(s)
- Robert J. Mayer
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstraße 5–1381377MünchenGermany
| | - Armin R. Ofial
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstraße 5–1381377MünchenGermany
| |
Collapse
|
13
|
Vil' VA, Barsegyan YA, Barsukov DV, Korlyukov AA, Alabugin IV, Terent'ev AO. Peroxycarbenium Ions as the "Gatekeepers" in Reaction Design: Assistance from Inverse Alpha-Effect in Three-Component β-Alkoxy-β-peroxylactones Synthesis. Chemistry 2019; 25:14460-14468. [PMID: 31487079 DOI: 10.1002/chem.201903752] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/03/2019] [Indexed: 01/12/2023]
Abstract
Stereoelectronic interactions control reactivity of peroxycarbenium cations, the key intermediates in (per)oxidation chemistry. Computational analysis suggests that alcohol involvement as a third component in the carbonyl/peroxide reactions remained invisible due to the absence of sufficiently deep kinetic traps needed to prevent the escape of mixed alcohol/peroxide products to the more stable bisperoxides. Synthesis of β-alkoxy-β-peroxylactones, a new type of organic peroxides, was accomplished by interrupting a thermodynamically driven peroxidation cascade. The higher energy β-alkoxy-β-peroxylactones do not transform into the more stable bisperoxides due to the stereoelectronically imposed instability of a cyclic peroxycarbenium intermediate as a consequence of amplified inverse alpha-effect. The practical consequence of this fundamental finding is the first three-component cyclization/condensation of β-ketoesters, H2 O2 , and alcohols that provides β-alkoxy-β-peroxylactones in 15-80 % yields.
Collapse
Affiliation(s)
- Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation.,All-Russian Research Institute for Phytopathology, B. Vyazyomy, Moscow Region, 143050, Russian Federation
| | - Yana A Barsegyan
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation.,All-Russian Research Institute for Phytopathology, B. Vyazyomy, Moscow Region, 143050, Russian Federation
| | - Denis V Barsukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation
| | - Alexander A Korlyukov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow, 119991, Russian Federation.,Pirogov Russian National Research Medical University, Moscow, 117997, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, 32309, USA
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow, 119991, Russian Federation.,All-Russian Research Institute for Phytopathology, B. Vyazyomy, Moscow Region, 143050, Russian Federation
| |
Collapse
|
14
|
Ruiz M, Yang Y, Lochbaum CA, Delafield DG, Pignatello JJ, Li L, Pedersen JA. Peroxymonosulfate Oxidizes Amino Acids in Water without Activation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10845-10854. [PMID: 31373486 DOI: 10.1021/acs.est.9b01322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A variety of peptidic and proteinaceous contaminants (e.g., proteins, toxins, pathogens) present in the environment may pose risk to human health and wildlife. Peroxymonosulfate is a strong oxidant (EH0 = 1.82 V for HSO5-, the predominant species at environmental pH values) that may hold promise for the deactivation of proteinaceous contaminants. Relatively little quantitative information exists on the rates of peroxymonosulfate reactions with free amino acids. Here, we studied the oxidation of 19 of the 20 standard proteinogenic amino acids (all except cysteine) by peroxymonosulfate without explicit activation. Reaction half-lives at pH 7 ranged from milliseconds to hours. Amino acids possessing sulfur-containing, heteroaromatic, or substituted aromatic side chains were the most susceptible to oxidation by peroxymonosulfate, with rates of transformation decreasing in the order methionine > tryptophan > tyrosine > histidine. The rate of tryptophan oxidation did not decrease in the presence of an aquatic natural organic matter. Singlet oxygen resulting from peroxymonosulfate self-decomposition, while detected by electron paramagnetic resonance spectroscopy, was unlikely to be the principal reactive species. Our results demonstrate that peroxymonosulfate is capable of oxidizing 19 amino acids without explicit activation and that solvent-exposed methionine and tryptophan residues are likely initial targets of oxidation in peptides and proteins.
Collapse
Affiliation(s)
| | - Yi Yang
- Department of Environmental Sciences , The Connecticut Agricultural Experiment Station , New Haven , Connecticut 06511 , United States
| | | | | | - Joseph J Pignatello
- Department of Environmental Sciences , The Connecticut Agricultural Experiment Station , New Haven , Connecticut 06511 , United States
| | | | | |
Collapse
|
15
|
Hull KL, Cairns AJ, Haq M. Bromate Oxidation of Ammonium Salts: In Situ Acid Formation for Reservoir Stimulation. Inorg Chem 2019; 58:3007-3014. [PMID: 30777427 DOI: 10.1021/acs.inorgchem.8b02891] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A redox chemistry approach has been employed to synthesize an assortment of acids in the subterranean environment for the purpose of enhancing productivity from hydrocarbon-bearing rock formations. Experimental studies revealed that bromate selectively oxidizes a series of ammonium salts NH4X where X = F-, Cl-, Br-, SO42-, and CF3CO2- to produce 5-17 wt % HX. Importantly, the in situ method allows strategic placement of the acid in the zone of interest where the fluid is heated, and the reaction is triggered. Ammonium counteranions are shown to influence the kinetics of the bromate-ammonium reaction, and the conditions are tailored to promote oxidation of ammonium at reservoir temperatures. The reaction is observed to be acid-catalyzed, where the formation of bromous acid (HBrO2) is involved in the rate-limiting step. As a result, an induction period that scales with the p Ka of the acid being formed is followed by rapid formation of the reaction products.
Collapse
Affiliation(s)
- Katherine L Hull
- Aramco Services Company: Aramco Research Center - Houston, 16300 Park Row , Houston , Texas 77084 , United States
| | - Amy J Cairns
- Aramco Services Company: Aramco Research Center - Houston, 16300 Park Row , Houston , Texas 77084 , United States
| | - Marium Haq
- Aramco Services Company: Aramco Research Center - Houston, 16300 Park Row , Houston , Texas 77084 , United States
| |
Collapse
|
16
|
Mayer RJ, Ofial AR. Intramolecular Hydrogen-Bonding Modulates the Nucleophilic Reactivity of Ammonium-Peroxycarboxylates. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Robert J. Mayer
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstraße 5-13 81377 München Germany
| | - Armin R. Ofial
- Department Chemie; Ludwig-Maximilians-Universität München; Butenandtstraße 5-13 81377 München Germany
| |
Collapse
|
17
|
Vil’ VA, Gomes GDP, Ekimova MV, Lyssenko KA, Syroeshkin MA, Nikishin GI, Alabugin IV, Terent’ev AO. Five Roads That Converge at the Cyclic Peroxy-Criegee Intermediates: BF3-Catalyzed Synthesis of β-Hydroperoxy-β-peroxylactones. J Org Chem 2018; 83:13427-13445. [DOI: 10.1021/acs.joc.8b02218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vera A. Vil’
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, 119991 Moscow, Russian Federation
| | - Gabriel dos Passos Gomes
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee 32309, United States
| | - Maria V. Ekimova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, 119991 Moscow, Russian Federation
- D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russian Federation
| | - Konstantin A. Lyssenko
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119991 Russian Federation
| | - Mikhail A. Syroeshkin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, 119991 Moscow, Russian Federation
| | - Gennady I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, 119991 Moscow, Russian Federation
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee 32309, United States
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp, 119991 Moscow, Russian Federation
| |
Collapse
|