1
|
Ogawa A, Yamamoto Y. Efficacy of radical reactions of isocyanides with heteroatom radicals in organic synthesis. Beilstein J Org Chem 2024; 20:2114-2128. [PMID: 39224232 PMCID: PMC11368054 DOI: 10.3762/bjoc.20.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Isocyanide is a promising synthetic reagent not only as a one-carbon homologation reagent but also as a nitrogen source for nitrogen-containing molecules. Because of their isoelectronic structure with carbon monoxide, isocyanides also react with nucleophiles, electrophiles, carbon radicals, and transition metal reagents, and are widely used in organic synthesis. On the other hand, the use of isocyanides in reactions with heteroatom radicals is limited. However, the reaction of isocyanides with heteroatom radicals is a promising synthetic tool for the construction of nitrogen-containing organic molecules modified with a variety of heteroatoms. In this Perspective, we review the addition and cyclization reactions of heteroatom radicals with isocyanides and discuss the synthetic prospects of the reaction of isocyanides with heteroatom radicals.
Collapse
Affiliation(s)
- Akiya Ogawa
- Organization for Research Promotion, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yuki Yamamoto
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| |
Collapse
|
2
|
Shen J, Li H, Li Y, Zhu Z, Luo K, Wu L. Visible-Light-Promoted Radical Cascade Sulfone Alkylation/Cyclization of 2-Isocyanoaryl Thioethers Enabled by Electron Donor-Acceptor Complex Formation. J Org Chem 2024; 89:10223-10233. [PMID: 38939958 DOI: 10.1021/acs.joc.4c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A photo-induced cascade sulfone alkylation/cyclization of 2-isocyanoaryl thioethers is explored. This visible-light-triggered reaction not only occurs under extremely mild reaction conditions but also does not require the presence of a photosensitizer. The photocatalytic process is triggered by the photochemical activity of in situ-generated electron donor-acceptor complexes, arising from the association of 2-isocyanoaryl thioethers and α-iodosulfones. The radical pathway was confirmed by UV-vis spectroscopy, radical trapping, Job's plot, and on/off irradiation experiments.
Collapse
Affiliation(s)
- Jiamei Shen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihao Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Xia D, Shi Y, Jiang L, Li Y, Kong J. Recent advances in the radical cascade reaction for constructing nitrogen heterocycles using azides as radical acceptors. Org Biomol Chem 2024; 22:5511-5523. [PMID: 38904322 DOI: 10.1039/d4ob00732h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Due to the high conversion properties, azide compounds are widely utilized in organic synthesis. For instance, azide compounds readily release nitrogen to form a new N-C bond when they function as radical acceptors for the active intermediates in the reaction. Over the past decade, strategies employing azides as radical acceptors to construct nitrogen heterocycles have been extensively developed. This approach has emerged as a crucial method for synthesizing nitrogen heterocycles. Therefore, this paper provides a review of the research advancements in tandem cyclization reactions using azides as radical acceptors, summarizing the process of reaction design, exploration, reasoning of the mechanism, and prospects for further research of these reactions.
Collapse
Affiliation(s)
- Dong Xia
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, P. R. China.
| | - Yun Shi
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, P. R. China.
| | - Liying Jiang
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, P. R. China.
| | - Yang Li
- School of Bioengineering, Huainan Normal University, Huainan, 232038, P. R. China.
| | - Jianfei Kong
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, P. R. China.
| |
Collapse
|
4
|
Liu Y, Jia M, Wang G, Yang W, Xu X. Silver-catalyzed P-centered anion nucleophilic addition to isocyanide: access to 2-phosphinoyl indoles/indol-3-ols. Chem Commun (Camb) 2024; 60:7196-7199. [PMID: 38904457 DOI: 10.1039/d4cc01984a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A silver-catalyzed chemoselective cascade nucleophilic addition of a P-centered anion to isocyanides and cyclization reaction was developed for the efficient and practical synthesis of a wide range of 2-phosphinoyl indole and indol-3-ol derivatives. Unlike the well-documented synthesis of phosphorus-functionalized heterocycles via a P-centered radical, an anionic reactivity profile of phosphine oxides is most likely involved in this domino transformation.
Collapse
Affiliation(s)
- Yong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| | - Mengying Jia
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| | - Guodong Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| | - Wenhui Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
5
|
Ni M, Gui S, Fu Y, Peng Y, Ding Q. Synthesis of 2,4-Dicyanoalkylated Benzoxazines through the Radical-Mediated Cascade Cyclization of Isocyanides with AIBN under Metal- and Additive-Free Conditions. J Org Chem 2024; 89:3970-3976. [PMID: 38422048 DOI: 10.1021/acs.joc.3c02809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A general and novel method for the radical cascade cyclization of aryl isocyanides with AIBN has been described. This strategy provides straightforward access to various 2,4-dicyanoalkylated benzoxazines in moderate to good yields under metal- and additive-free conditions. The reaction can apply to a gram scale and tolerate diverse functional groups. 2,4-Dicyanoalkylated benzoxazine derivatives feature a large Stokes shift and intramolecular charge transfer properties.
Collapse
Affiliation(s)
- Mengjia Ni
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Shuanggen Gui
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Yang Fu
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Yiyuan Peng
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Qiuping Ding
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
6
|
Wu X, Liu L, Xiang C, Yu JT, Pan C. Photocatalytic cyclization of 3-(2-isocyanophenyl)quinazolin-4(3 H)-ones for the construction of quinoxalino[2,1- b]quinazolinones. Chem Commun (Camb) 2024; 60:2556-2559. [PMID: 38345179 DOI: 10.1039/d4cc00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
A new kind of building unit, 3-(2-isocyanophenyl)quinazolin-4(3H)-ones, was designed and synthesized for the construction of novel quinoxalino[2,1-b]quinazolinones. The radical cyclization of 3-(2-isocyanophenyl)quinazolin-4(3H)-ones with ethers afforded ether-substituted tetracyclic quinoxalino[2,1-b]quinazolinones under photocatalytic and metal-free conditions. In the process, the isocyano accepts a carbon radical to give an imidoyl radical, which adds to the electron-deficient CN bond in quinazolin-4(3H)-one.
Collapse
Affiliation(s)
- Xian Wu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Lingli Liu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Chengli Xiang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China
| |
Collapse
|
7
|
Neo AG, Ramiro JL, García-Valverde M, Díaz J, Marcos CF. Stefano Marcaccini: a pioneer in isocyanide chemistry. Mol Divers 2024; 28:335-418. [PMID: 37043161 PMCID: PMC10876884 DOI: 10.1007/s11030-023-10641-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
Stefano Marcaccini was one of the pioneers in the use of isocyanide-based multicomponent reactions in organic synthesis. Throughout his career at the University of Florence he explored many different faces of isocyanide chemistry, especially those geared towards the synthesis of biologically relevant heterocycles. His work inspired many researchers who contributed to other important developments in the field of multicomponent reactions and created a school of synthetic chemists that continues today. In this manuscript we intend to review the articles on isocyanide multicomponent reactions published by Dr. Marcaccini and analyse their influence on the following works by other researchers. With this, we hope to highlight the immense contribution of Stefano Marcaccini to the development of isocyanide chemistry and modern organic synthesis as well as the influence of his research on future generations. We believe that this review will not only be a well-deserved tribute to the figure of Stefano Marcaccini, but will also serve as a useful inspiration for chemists working in this field.
Collapse
Affiliation(s)
- Ana G Neo
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - José Luis Ramiro
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - María García-Valverde
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Jesús Díaz
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain
| | - Carlos F Marcos
- Laboratory of Bioorganic Chemistry & Membrane Biophysics (L.O.B.O.), Universidad de Extremadura, 10003, Cáceres, Spain.
| |
Collapse
|
8
|
Hu LY, Zhang SY, Zhu L, Li Y, Luo K, Wu L. "Boomerang" Strategy in Carbohydrate Chemistry: Diastereoselective Synthesis of C-Glycosylated Benzothiazoles from ortho-Isocyanophenyl Thioglycosides. Org Lett 2024; 26:215-220. [PMID: 38117978 DOI: 10.1021/acs.orglett.3c03817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
This paper reveals a novel "boomerang" strategy in the expedient and diastereoselective synthesis of C-nucleoside analogues. Bench-stable ortho-isocyanophenyl thioglycosides can be converted to glycosyl radicals through rapid and efficient C-S bond homolysis when they are irradiated by visible light. The glycosyl radicals are subsequently trapped by the corresponding leaving group or other radical acceptors to provide diverse C-nucleoside analogues under mild conditions.
Collapse
Affiliation(s)
- Li-Yan Hu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Shen-Yuan Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Li Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
9
|
Jiao Y, Shi X, Ju L, Yu S. Photoredox-Catalyzed Synthesis of C-Benzoselenazolyl/Benzothiazolyl Glycosides from 2-Isocyanoaryl Selenoethers/Thioethers and Glycosyl Bromides. Org Lett 2024; 26:390-395. [PMID: 38165656 DOI: 10.1021/acs.orglett.3c04059] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Molecules containing heteroatoms, such as Se and S, play an indispensable role in the discovery and design of pharmaceuticals, whereas Se has been less studied. Here, we described a photoredox strategy to synthesize C-benzoselenazolyl (Bs) glycosides from 2-isocyanoaryl selenoethers and glycosyl bromides. This reaction was carried out under mild conditions with high efficiency. C-Benzothiazolyl (Bt) glycosides could also be synthesized from 2-isocyanoaryl thioethers using this strategy. This method can access novel seleno/thiosugars, which will benefit Se/S-containing drug discovery.
Collapse
Affiliation(s)
- Yi Jiao
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoran Shi
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lei Ju
- Sunichem Company, Limited, Dandong 118003, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Wang H, Huang L, Li J, Hao W. Copper(II)-catalyzed cascade Csp 2-P/C-C bond formation to construct benzo[ d]thiazol-2-ylphosphonates. Org Biomol Chem 2023; 21:7696-7701. [PMID: 37698339 DOI: 10.1039/d3ob01256e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
A novel, copper(II)-catalyzed cascade Csp2-P/C-C bond formation in o-haloaryl isothiocyanates with organophosphorus esters has been developed under mild conditions. A series of benzo[d]thiazol-2-ylphosphonates were synthesized in moderate to good yields. Different from the traditional method of obtaining these scaffolds with radical reactions, the method proposed allows accessing them via ionic reactions and has the advantages of easy access to raw materials and simple operation. Finally, we carried out a gram-scale experiment to further demonstrate the scalability of this strategy in the efficient synthesis of benzo[d]thiazol-2-ylphosphonates.
Collapse
Affiliation(s)
- Han Wang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.
| | - Le Huang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.
| | - Jun Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.
| | - Wenyan Hao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China.
| |
Collapse
|
11
|
Chen JY, Wu HY, Song HY, Li HX, Jiang J, Yang TB, He WM. Visible-Light-Induced Annulation of Iodonium Ylides and 2-Isocyanobiaryls to Access 6-Arylated Phenanthridines. J Org Chem 2023. [PMID: 37262353 DOI: 10.1021/acs.joc.3c00380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4-CzIPN)-photocatalyzed cascade arylation/cyclization reaction of 2-isocyanobiaryls and iodonium ylides was established for the synthesis of 6-arylated phenanthridines. This is the first example of employing iodonium ylides as aryl radical sources in a visible-light-induced radical cascade cyclization reaction.
Collapse
Affiliation(s)
- Jin-Yang Chen
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hong-Yu Wu
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hai-Yang Song
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hong-Xia Li
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jun Jiang
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Tian-Bao Yang
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Min He
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
12
|
Yadav N, Bhatta SR, Moorthy JN. Visible Light-Induced Decomposition of Acyl Peroxides Using Isocyanides: Synthesis of Heteroarenes by Radical Cascade Cyclization. J Org Chem 2023; 88:5431-5439. [PMID: 37093050 DOI: 10.1021/acs.joc.2c03059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Visible light-mediated facile synthesis of heteroarenes, namely, isoquinolines, benzothiazoles, and quinazolines, is demonstrated by employing isocyanides and inexpensive acyl peroxides. It is shown for the first time that singlet-excited isocyanides decompose acyl peroxides into aryl/alkyl radicals. The latter attack isocyanides, yielding imidoyl radicals that subsequently cyclize to afford heteroarene products. The protocol involving radical cascade reactions obviates the requirement of any external photocatalyst, oxidant, additive, and base.
Collapse
Affiliation(s)
- Navin Yadav
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Sushil Ranjan Bhatta
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Jarugu Narasimha Moorthy
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
13
|
Drennhaus T, Leifert D, Lammert J, Drennhaus JP, Bergander K, Daniliuc CG, Studer A. Enantioselective Copper-Catalyzed Fukuyama Indole Synthesis from 2-Vinylphenyl Isocyanides. J Am Chem Soc 2023; 145:8665-8676. [PMID: 37029692 DOI: 10.1021/jacs.3c01667] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
Enantioenriched chiral indoles are of high interest for the pharmaceutical and agrochemical industries. Herein, we present an asymmetric Fukuyama indole synthesis through a mild and efficient radical cascade reaction to access 2-fluoroalkylated 3-(α-cyanobenzylated) indoles by stereochemical control with a chiral copper-bisoxazoline complex using 2-vinylphenyl arylisocyanides as radical acceptors and fluoroalkyl iodides as C-radical precursors. Radical addition to the isonitrile moiety, 5-exo-trig cyclization, and Cu-catalyzed stereoselective cyanation provide the targeted indoles with excellent enantioselectivity and good yields. Due to the similar electronic and steric properties of the two aryl substituents to be differentiated, the enantioselective construction of the cyano diaryl methane stereocenter is highly challenging. Mechanistic studies reveal a negative nonlinear effect which allows proposing a model to explain the stereochemical outcome. Scalability and potential utility of the enantioenriched 3-(α-cyanobenzylated) indoles as hubs for chiral tryptamines, indole-3-acetic acid derivatives, and triarylmethanes are demonstrated, and a formal synthesis of a natural product analogue is disclosed.
Collapse
Affiliation(s)
- Till Drennhaus
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Jessika Lammert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | | | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| |
Collapse
|
14
|
Zhu PW, Ma HM, Li Y, Miao LZ, Zhu J. Electro-Triggered Cascade Cyclization to Access Phosphinyl-Substituted N-Containing Heterocycles. J Org Chem 2023; 88:2069-2078. [PMID: 36701209 DOI: 10.1021/acs.joc.2c02377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An electro-triggered cascade cyclization strategy was disclosed with concomitant phosphinylation and N-heterocycle construction. It provides a novel and environmentally friendly approach to access phosphinyl-substituted N-heterocycles with no external metal catalyst, oxidant, or heating. Mechanistic studies have revealed that anodic oxidation of H-phosphorus compounds occurs first to generate the key P-centered radical directly and cathodic reduction leads to the concurrent release of molecular hydrogen or methane. This protocol features simple operation, broad substrate scope, clean and mild conditions, and atom and step economy to form heterocycle-containing organophosphorus scaffolds.
Collapse
Affiliation(s)
- Peng-Wei Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Hong-Mei Ma
- Laboratory and Research Base Management, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Yang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Ling-Zhen Miao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
15
|
Liu X, Yuan S, Liu Y, Ni M, Xu J, Gui S, Peng YY, Ding Q. Mn(III)-Mediated Radical Addition/Cyclization of Isocyanides with Aryl Boronic Acids/Diarylphosphine Oxides: Access to 11-Functionalized Dibenzodiazepines. J Org Chem 2023; 88:198-210. [PMID: 36548987 DOI: 10.1021/acs.joc.2c02059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A Mn(III)-mediated radical addition/cyclization reaction of isocyanides with aryl boronic acids/diarylphosphine oxides has been developed. A series of 11-arylated/-phosphorylated dibenzodiazepines were efficiently constructed in moderate to excellent yields under mild reaction conditions via imidoyl radical process. The present protocol offers novel access to functionalized seven-membered N-heterocycles.
Collapse
Affiliation(s)
- Xuan Liu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Sitian Yuan
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Yi Liu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Mengjia Ni
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Jianbo Xu
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Shuanggen Gui
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Yi-Yuan Peng
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Qiuping Ding
- National Engineering Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
16
|
Yu J, Cheng Y, Chen B, Tung C, Wu L. Cobaloxime Photocatalysis for the Synthesis of Phosphorylated Heteroaromatics. Angew Chem Int Ed Engl 2022; 61:e202209293. [DOI: 10.1002/anie.202209293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ji‐Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yuan‐Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry The Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
17
|
Gao C, Blum SA. Silyl Radical Cascade Cyclization of 2-Isocyanothioanisole toward 2-Silylbenzothiazoles through Radical Initiator-Inhibitor Symbiosis. J Org Chem 2022; 87:13124-13137. [PMID: 36098507 DOI: 10.1021/acs.joc.2c01605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A demethylative silyl radical cascade cyclization of 2-isocyanothioanisoles toward 2-silylated benzothiazole building blocks has been developed. The development of a "radical initiator-inhibitor symbiosis" system solves the challenge of otherwise dominant methyl radical-triggered side reactions brought about by kinetically unfavored generation of reactive silyl radical species. The products accessed in this protocol are amendable to various downstream functionalization reactions, including the quick construction of a topoisomerase II inhibitor via a Hiyama cross-coupling reaction and of an antiviral agent via a fluoride-/hydroxide-free nucleophilic substitution to acyl chloride.
Collapse
Affiliation(s)
- Chao Gao
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
18
|
Yu JX, Cheng YY, Chen B, Tung CH, Wu LZ. Cobaloxime Photocatalysis for Phosphorylated Heteroaromatics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ji-Xin Yu
- Technical Institute of Physics and Chemistry Technical Institute of Physics and Chemistry, CAS CHINA
| | - Yuan-Yuan Cheng
- Technical Institute of Physics and Chemistry Technical Institute of Physics and Chemistry, CAS CHINA
| | - Bin Chen
- Technical Institute of Physics and Chemistry Technical Institute of Physics and Chemistry, CAS CHINA
| | - Chen-Ho Tung
- Technical Institute of Physics and Chemistry Technical Institute of Physics and Chemistry, CAS CHINA
| | - Li-Zhu Wu
- Technical Institute of Physics and Chemistry Chinese Academy of Science Zhongguancun east road 29#, haidian district, Beijing 100190, China 100190 Beijing CHINA
| |
Collapse
|
19
|
Xue D, Ge Q, Zhi X, Song S, Shao L. Metal-free radical cascade cyclization of 2-isocyanoaryl thioethers with alcohols: Synthesis of 2-hydroxyalkyl benzothiazoles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Dhara HN, Rakshit A, Alam T, Patel BK. Metal-catalyzed reactions of organic nitriles and boronic acids to access diverse functionality. Org Biomol Chem 2022; 20:4243-4277. [PMID: 35552581 DOI: 10.1039/d2ob00288d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The nitrile or cyano (-CN) group is one of the most appreciated and effective functional groups in organic synthesis, having a polar unsaturated C-N triple bond. Despite sufficient stability and being intrinsically inert, the nitrile group can be easily transformed into many other functional groups, such as amines, carboxylic acids, ketones, etc. which makes it a vital group in organic synthesis. On the other hand, despite several boronic acids having a low level of genotoxicity, they have found wide applicability in the field of organic synthesis, especially in transition metal-catalyzed cross-coupling reactions. Recently, transition-metal-catalyzed cascade additions or addition/cyclization processes of boronic acids to the nitrile group open up exciting and useful strategies to prepare a variety of functional molecules through the formation of C-C, C-N and CO bonds. Boronic acids can be added to the cyano functionality through catalytic carbometallation or through a radical cascade process to provide newer pathways for the rapid construction of various important acyclic ketones or amides, carbamidines, carbocycles and N,O-heterocycles. The present review focuses on various transition-metal-catalyzed additions of boronic acids via carbometallation or radical cascade processes using the cyano group as an acceptor.
Collapse
Affiliation(s)
- Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| |
Collapse
|
21
|
Shang X, Liu ZQ. Advances in free-radical alkylation and arylation with organoboronic acids. Org Biomol Chem 2022; 20:4074-4080. [PMID: 35535704 DOI: 10.1039/d2ob00532h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organoboronic acids act as carbon-centered radical precursors that are widely utilized to construct diverse C-C bonds. This review summarizes the advances in this field. The content is divided into four parts according to the different categories of coupling partners with organoboronic acids. The reaction conditions as well as the mechanisms are demonstrated in each part.
Collapse
Affiliation(s)
- Xiaojie Shang
- College of Resources and Environment, Gansu Agricultural University, Lanzhou, Gansu 730070, P. R. China.
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
22
|
Shainyan BA, Zhilitskaya LV, Yarosh NO. Synthetic Approaches to Biologically Active C-2-Substituted Benzothiazoles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082598. [PMID: 35458794 PMCID: PMC9027766 DOI: 10.3390/molecules27082598] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/01/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022]
Abstract
Numerous benzothiazole derivatives are used in organic synthesis, in various industrial and consumer products, and in drugs, with a wide spectrum of biological activity. As the properties of the benzothiazole moiety are strongly affected by the nature and position of substitutions, in this review, covering the literature from 2016, we focus on C-2-substituted benzothiazoles, including the methods of their synthesis, structural modification, reaction mechanisms, and possible pharmacological activity. The synthetic approaches to these heterocycles include both traditional multistep reactions and one-pot atom economy processes using green chemistry principles and easily available reagents. Special attention is paid to the methods of the thiazole ring closure and chemical modification by the introduction of pharmacophore groups.
Collapse
|
23
|
Xie XY, Xu YF, Li Y, Wang XD, Zhu J, Wu L. Radical modulated regioselective difunctionalization of vinyl enynes: tunable access to naphthalen-1(2 H)-ones and allenic alcohols. Chem Commun (Camb) 2022; 58:3031-3034. [PMID: 35156673 DOI: 10.1039/d1cc06994b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel and efficient radical-modulated difunctionalization of vinyl enynes has been disclosed using TEMPO as a radical regulator. Facile access to structurally diverse 3-bromo-naphthalen-1(2H)-ones and 4-bromo-allenic alcohols was realized via 1,2-addition/1,2-migration or 1,4-addition, respectively. This protocol represents the first example of radical-modulated metal-free difunctionalization of 1,3-enynes with high regioselectivity.
Collapse
Affiliation(s)
- Xiao-Yu Xie
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yun-Fang Xu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Xiao-Dong Wang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China. .,College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, P. R. China
| |
Collapse
|
24
|
Dong J, Hu J, Liu X, Sun S, Bao L, Jia M, Xu X. Ionic Reactivity of 2-Isocyanoaryl Thioethers: Access to 2-Halo and 2-Aminobenzothia/Selenazoles. J Org Chem 2022; 87:2845-2852. [PMID: 35133836 DOI: 10.1021/acs.joc.1c02747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An ionic cascade insertion/cyclization reaction of thia-/selena-functionalized arylisocyanides has been successfully developed for the efficient and practical synthesis of 2-halobenzothiazole/benzoselenazole derivatives. This synthetic protocol, incorporating a halogen atom when forming the five-membered ring of benzothia/selenazoles, is different from the existing ones, where halogenation of the preformed benzothia/selenazole precursors happens. Additionally, a facile access to 2-aminobenzothiazoles is also achieved by the one-pot cascade reaction of 2-isocyanoaryl thioethers, iodine, and amines.
Collapse
Affiliation(s)
- Jinhuan Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Junlin Hu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Xiaoli Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Shaoguang Sun
- Medical College of Panzhihua University, Panzhihua, Sichuan 617000, China
| | - Lan Bao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Mengying Jia
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
25
|
Tang Y, Huang H, Li M, Wang F, Hu X, Zhang X. Copper-Catalyzed Oxidative Cascade Cyclization of Activated Alkenes with Azobis Compounds: Access to Cyano-Substituted Benzimidazo[2,1-a]isoquinolin-6(5H)-ones. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428021120174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Shen LY, Sun Y, Wang YQ, Li B, Yang WC, Dai P. K2S2O8-promoted radical trifluoromethylthiolation/spirocyclization for the synthesis of SCF3‑featured spiro[5,5]trienones. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
27
|
Li JN, Li ZJ, Shen LY, Li P, Zhang Y, Yang WC. Selective polychloromethylation and halogenation of alkynes with polyhaloalkanes. Org Biomol Chem 2022; 20:6659-6666. [DOI: 10.1039/d2ob01053d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We disclosed a selective polychloromethylation and halogenation reaction of alkynes via a radical addition/spirocyclization cascade sequence, in which applying polyhaloalkanes as the precursor of polyhalomethyl and halogen radical. Across this...
Collapse
|
28
|
Xia D, Shen LY, Zhang Y, Yang WC. Radical spirocyclization of biaryl ynones for the construction of NO 2-containing spiro[5.5]trienones. NEW J CHEM 2022. [DOI: 10.1039/d2nj03670c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An efficient 6-exo-trig radical cascade reaction of biaryl ynones with NaNO2 was developed to afford nitro-functionalized spiro[5.5]trienones with yields of up to 88%.
Collapse
Affiliation(s)
- Dong Xia
- College of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, P. R. China
| | - Liu-Yu Shen
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Wen-Chao Yang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou, 225009, P. R. China
| |
Collapse
|
29
|
|
30
|
Yi R, Li J, Wang D, Wei W. Radical Cascade Cyclization Involving C(sp 3)—H Functionalization of Unactivated Cycloalkanes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Electrochemical Oxidative C H Phosphonylation of thiazole derivatives in ambient conditions. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Wang W, Zhang M, Yang W, Yang X. Research Progress in Radical Cascade Reaction Using Nitrogen Heterocycle in Indoles as Radical Acceptors. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Liu J, Li L, Bu X, Yuan Y, Wang X, Sun R, Zhou MD, Wang H. Mn( iii)-Catalyzed cascade cyclization reaction of o-acyl aromatic isocyanides with boronic acids. Org Chem Front 2022. [DOI: 10.1039/d2qo00271j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A Mn(iii)-catalyzed cascade cyclization of o-acyl aromatic isocyanides with boronic acids was examined to give a series of 3-hydroxyindolenines in single-step. This cascade process involved a transmetalation/nucleophilic addition/intramolecular cyclization sequence.
Collapse
Affiliation(s)
- Jingya Liu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Lei Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment, College of Chemistry & Chemical Engineering, Shenyang Normal University, Shenyang, Liaoning, 110034, China
| | - Yu Yuan
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Xin Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Ran Sun
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Ming-Dong Zhou
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - He Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| |
Collapse
|
34
|
Yuan S, Ye X, Cai J, Song Z, Tan Y, Peng Y, Ding Q. DMF-Assisted Radical Cyclization of o-Isocyanodiaryl Ethers via 1,5-Aryl Migration: Construction of 2-Arylbenzoxazoles. J Org Chem 2021; 87:1485-1492. [PMID: 34967643 DOI: 10.1021/acs.joc.1c02806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel DMF-assisted radical cyclization of o-isocyanodiaryl ethers via 1,5-aryl migration has been developed for the synthesis of a series of 2-arylbenzoxazoles by the FeCl3/TBHP/Et3N catalytic system in DMF. However, N,N-dimethylbenzo[d]thiazole-2-carboxamide and N,N-dimethylbenzo[d]selenazole-2-carboxamide were obtained from the corresponding substrate 2-isocyanophenyl p-methoxyphenyl thioether and 2-isocyanodiphenyl selenoether under the same conditions. A possible mechanism may involve aryl 1,5-migration and DMF-assisted radical cyclization of o-isocyanodiaryl ethers.
Collapse
Affiliation(s)
- Sitian Yuan
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Xiaoling Ye
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jingyu Cai
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Zhibin Song
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yuxing Tan
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yiyuan Peng
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Qiuping Ding
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
35
|
Wang X, Ye W, Kong T, Wang C, Ni C, Hu J. Divergent S- and C-Difluoromethylation of 2-Substituted Benzothiazoles. Org Lett 2021; 23:8554-8558. [PMID: 34669403 DOI: 10.1021/acs.orglett.1c03267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two unprecedented and complementary synthetic strategies for S- and C-difluoromethylation of 2-substituted benzothiazoles have been developed by taking advantage of the remarkably different reactivity of CF2H- and 2-PySO2CF2- nucleophiles. A variety of structurally diverse difluoromethyl 2-isocyanophenyl sulfides and 2-difluoromethylated benzothiazoles were synthesized with these two new synthetic protocols.
Collapse
Affiliation(s)
- Xiu Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Wenchao Ye
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Taige Kong
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chenlu Wang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
36
|
Yang WC, Zhang MM, Sun Y, Chen CY, Wang L. Electrochemical Trifluoromethylthiolation and Spirocyclization of Alkynes with AgSCF 3: Access to SCF 3-Containing Spiro[5,5]trienones. Org Lett 2021; 23:6691-6696. [PMID: 34474567 DOI: 10.1021/acs.orglett.1c02260] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel and efficient strategy for trifluoromethylthiolation and dearomatization of activated alkynes with stable and readily available AgSCF3 has been developed. Reported herein is the unprecedented electrochemical generation of the SCF3 radical in the absence of persulfate for the synthesis of SCF3-containing spiro[5,5]trienones in good yields via a 6-exo-trig radical cyclization.
Collapse
Affiliation(s)
- Wen-Chao Yang
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China.,Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Ming-Ming Zhang
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yu Sun
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Cai-Yun Chen
- Guangling College and School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
37
|
Zhang M, Shen L, Dong S, Li B, Meng F, Si W, Yang W. DTBP‐Mediated Cascade Spirocyclization and Dearomatization of Biaryl Ynones: Facile Access to Spiro[5.5]trienones through C(sp
3
)−H Bond Functionalization. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ming‐Ming Zhang
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Liu‐Yu Shen
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Sa Dong
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Bing Li
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Fei Meng
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Wei‐Jie Si
- College of Chemistry and Chemical Engineering Anyang Normal University Anyang 455000 P. R. China
| | - Wen‐Chao Yang
- Guangling College and Institute of Pesticide of School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety Yangzhou University Yangzhou 225009 P. R. China
| |
Collapse
|
38
|
Huang J, Chen Z, Wu J. Recent Progress in Methyl-Radical-Mediated Methylation or Demethylation Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jiapian Huang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, and Jiangxi Key Laboratory of Green Chemistry, College of Chemistry & Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P. R. China
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Zhiyuan Chen
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, and Jiangxi Key Laboratory of Green Chemistry, College of Chemistry & Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang, Jiangxi 330022, P. R. China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
39
|
Xie X, Li Y, Xia Y, Luo K, Wu L. Visible Light‐Induced Metal‐Free and Oxidant‐Free Radical Cyclization of (2‐Isocyanoaryl)(methyl)sulfanes with Ethers. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Xiao‐Yu Xie
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Yang Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Yun‐Tao Xia
- School of Chemistry & Chemical Engineering Henan University of Technology Zhengzhou 450001 P. R. China
| | - Kai Luo
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry College of Sciences Nanjing Agricultural University Nanjing 210095 P. R. China
- College of Chemical Engineering Xinjiang Agricultural University Urumqi 830052 P. R. China
| |
Collapse
|
40
|
Liu L, Li L, Wang X, Sun R, Zhou MD, Wang H. Mn(III)-Mediated Radical Cyclization of o-Alkenyl Aromatic Isocyanides with Boronic Acids: Access to N-Unprotected 2-Aryl-3-cyanoindoles. Org Lett 2021; 23:5826-5830. [PMID: 34323503 DOI: 10.1021/acs.orglett.1c01979] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The synthesis of N-unprotected 2-aryl-3-cyanoindoles was realized via the Mn(III)-mediated radical cascade cyclization of o-alkenyl aromatic isocyanides with boronic acids. A possible mechanism involving a sequential intermolecular radical addition, intramolecular cyclization, and cleavage of the C-C bond under mild reaction conditions is proposed. Mechanism studies show that H2O or O2 might provide the oxygen source for the elimination of benzaldehyde.
Collapse
Affiliation(s)
- Lu Liu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Lei Li
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Xin Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Ran Sun
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - Ming-Dong Zhou
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| | - He Wang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, P. R. China
| |
Collapse
|
41
|
Liu Z, Wang Y, Huo J, Li XJ, Li S, Song X. Selectfluor-Promoted Intramolecular N-S Bond Formation of α-Carbamoyl Ketene Dithioacetals in the Presence of Water: Synthesis of Multifunctionalized Isothiazolones. J Org Chem 2021; 86:5506-5517. [PMID: 33797258 DOI: 10.1021/acs.joc.0c03036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A practical and efficient protocol toward fully substituted isothiazolones through Selectfluor-mediated intramolecular oxidative annulation of α-carbamoyl ketene dithioacetals has been developed in the presence of H2O and metal-free conditions. Notably, the experimental results reveal that H2O was crucial to the formation of new N-S bonds and the elimination of alkyl group from the sulfur atom. This protocol provides readily prepared substrates and possesses good functional group tolerance, mild reaction conditions, and operational simplicity, which provides potential access to applications in the pharmaceutical chemistry.
Collapse
Affiliation(s)
- Zheng Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Youkun Wang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Jianfeng Huo
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xiao-Jun Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Shengnan Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xiaoning Song
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
42
|
Liu Y, Li JL, Liu XG, Wu JQ, Huang ZS, Li Q, Wang H. Radical Borylative Cyclization of Isocyanoarenes with N-Heterocyclic Carbene Borane: Synthesis of Borylated Aza-arenes. Org Lett 2021; 23:1891-1897. [PMID: 33591193 DOI: 10.1021/acs.orglett.1c00309] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Borylated aza-arenes are of great importance in the area of organic synthesis. A radical borylative cyclization of isocyanoarenes with N-heterocyclic carbene borane (NHC-BH3) under metal-free conditions was developed. The reaction allows the efficient assembly of several types of borylated aza-arenes (phenanthridines, benzothiazoles, etc.), which are difficult to access using alternative methods. Mild reaction conditions, a good functional-group tolerance, and generally good efficiencies were observed. The utility of these products is demonstrated, and the mechanism is discussed.
Collapse
Affiliation(s)
- Yao Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ji-Lin Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xu-Ge Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Qiang Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingjiang Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Honggen Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
43
|
Synthesis of sulfonylated benzimidazo[2,1-a]isoquinolin-6(5H)-ones via I2O5-induced radical relay addition/cyclization of activated alkenes with sulfonylhydrazides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.152845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Lee KL, Feld J, Hume P, Söhnel T, Leitao E. The Synthesis and Mechanistic Considerations of a Series of Ammonium Monosubstituted H-Phosphonate Salts. Chemistry 2021; 27:815-824. [PMID: 32830385 DOI: 10.1002/chem.202003090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/01/2020] [Indexed: 11/11/2022]
Abstract
A series of ammonium monosubstituted H-phosphonate salts were synthesized by combining H-phosphonate diesters with amines in the absence of solvent at 80 °C. Variation of the ester substituent and amine produced a range of ionic liquids with low melting points. The products and by-products were analyzed by spectroscopic and spectrometric techniques in order to get a better mechanistic picture of the dealkylation and formal dearylation observed. For dialkyl H-phosphonate diesters, (RO)2 P(O)H (R=alkyl), the reaction proceeds via direct dealkylation with the reactivity increasing in the order R=iPr<Et<Me corresponding to DFT calculated activation enthalpies of 22.6, 20.8, and 17.9 kcal mol-1 . For the diphenyl H-phosphonate diesters, (PhO)2 P(O)H, the dearylation was found to proceed via phenol-assisted formation of a 5-coordinate intermediate, (PhO)3 PH(OH), from which P(OPh)3 and water were eliminated. The presence of an equivalent of water then facilitated the formation of P(OH)2 OPh and the amine, R'NH2 , subsequently abstracted a proton from it to yield [(PhO)PH(O)O]- [R'NH3 ]+ .
Collapse
Affiliation(s)
- Keng Lung Lee
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland, 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Joey Feld
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland, 1142, New Zealand
| | - Paul Hume
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand.,School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, 6140, Wellington, New Zealand
| | - Tilo Söhnel
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland, 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Erin Leitao
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland, 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| |
Collapse
|
45
|
Wang L, Wang H, Meng W, Xu XH, Huang Y. Facile syntheses of 3-trifluoromethylthio substituted thioflavones and benzothiophenes via the radical cyclization. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.02.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Xu P, Zhu YM, Liu XY, Zhou XZ, Wang SY, Ji SJ. Mn(III)-mediated radical reaction of 2-isocyano-6-alkenyl(alkynyl)benzonitriles with arylboronic acids: Synthesis of pyrroloisoquinoline derivatives. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.03.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
47
|
Kumar GRY, Begum NS. Mn( iii)-mediated cascade cyclization of 1-(azidomethyl)-2-isocyanoarenes with organoboronic acids: construction of quinazoline derivatives. NEW J CHEM 2021. [DOI: 10.1039/d1nj01115d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel and efficient Mn(iii)-mediated oxidative radical cascade reaction of 1-(azidomethyl)-2-isocyanoarenes with organoboronic acids is reported.
Collapse
Affiliation(s)
| | - Noor Shahina Begum
- Department of Studies in Chemistry
- Bangalore University
- Bangalore 5600 56
- India
| |
Collapse
|
48
|
Cai T, Shen F, Ni Y, Xu H, Shen R, Gao Y. Cascade Radical Annulation of 2-Alkynylthio(seleno)anisoles with Acetone or Acetonitrile: Synthesis of 3-Acetomethyl- or Cyanomethyl-Substituted Benzothio(seleno)phenes. J Org Chem 2021; 86:1002-1011. [PMID: 33284023 DOI: 10.1021/acs.joc.0c02444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An efficient method for the direct preparation of 3-aceto(cyano)methyl-substituted benzothio(seleno)phenes has been achieved through C(sp3)-H bond activation of easily available acetone or acetonitrile and cascade radical cyclization reaction. In this cascade radical cyclization reaction, C(sp2)-C(sp3) and C(sp2)-S bonds, as well as benzenethio(seleno)phene skeletons, can be built along with the cleavage of the C(sp3)-S bond, demonstrating the high step-economics and efficiency of this approach.
Collapse
Affiliation(s)
- Tao Cai
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Fangqi Shen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yuqi Ni
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Huiting Xu
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Runpu Shen
- College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Yuzhen Gao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
49
|
Liu Y, Chen XL, Li XY, Zhu SS, Li SJ, Song Y, Qu LB, Yu B. 4CzIPN-tBu-Catalyzed Proton-Coupled Electron Transfer for Photosynthesis of Phosphorylated N-Heteroaromatics. J Am Chem Soc 2020; 143:964-972. [DOI: 10.1021/jacs.0c11138] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yan Liu
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
- College of Biological and Pharmaceutical Engineering, Xinyang Agriculture & Forestry University, Xinyang 464000, China
| | - Xiao-Lan Chen
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Xiao-Yun Li
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Shan-Shan Zhu
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Shi-Jun Li
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Yan Song
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Ling-Bo Qu
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Bing Yu
- College of Chemistry, Green Catalysis Centre, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| |
Collapse
|
50
|
Yang W, Zhang M, Feng J. Recent Advances in the Construction of Spiro Compounds
via
Radical Dearomatization. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000636] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wen‐Chao Yang
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
- Guangling College Yangzhou University Yangzhou 225009 P. R. China
| | - Ming‐Ming Zhang
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| | - Jian‐Guo Feng
- School of Horticulture and Plant Protection Yangzhou University Yangzhou 225009 P. R. China
| |
Collapse
|