1
|
Caletková O, Pinčeková L, Nováčiková J, Gyepes R, Olejníková P, Pôbiš P, Kanďárová H, Berkeš D. A novel 1-benzoazepine-derived Michael acceptor and its hetero-adducts active against MRSA. Org Biomol Chem 2024; 22:9394-9402. [PMID: 39480656 DOI: 10.1039/d4ob01501k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Multidrug-resistant bacterial infections continue to be a rising global health concern. Herein, we describe the development of a novel class of 3-substituted benzoazepinedione derivatives with promising antibacterial activity. The pivotal compound, benzoazepinedione carboxylate 9, represents a highly electrophilic Michael acceptor, enabling divergent access to a wide range of thia-, aza-, oxa-, and phospha-Michael adducts. Notably, most prepared compounds exhibited potent antibacterial activity against both drug-susceptible and drug-resistant strains of Staphylococcus aureus (MIC90 of up to 2 μg mL-1). The cytotoxicity assessment in the VERO6 cell line revealed that thia-adduct 10d (IC50 of 36.5 μg mL-1) exhibits lower toxicity compared to its parent electrophile 9 (IC50 of 14.3 μg mL-1), which is in agreement with the hypothesis of covalently modified prodrugs. Additionally, stability studies of the prepared compounds in CD3OD and a DMSO-PBS mixture confirmed that thia-Michael adducts 10 are stable under neutral conditions while dynamic under mildly basic conditions. Moreover, 3D reconstructed tissue models (human lung epithelial EpiAirway™ and a human small intestine model) did not exhibit a viability decrease below 80% of the untreated control at all concentrations tested, indicating tolerance to higher concentrations of potential drugs and prodrugs.
Collapse
Affiliation(s)
- Oľga Caletková
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia.
| | - Lucia Pinčeková
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia.
- Department of Chemistry, Faculty of Education, Trnava University, Priemyselná 4, 918 43 Trnava, Slovakia
| | - Jana Nováčiková
- Central Laboratories, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Róbert Gyepes
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague, Czech Republic
| | - Petra Olejníková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Peter Pôbiš
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Helena Kanďárová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dušan Berkeš
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia.
| |
Collapse
|
2
|
Lu S, Ren L, Mao D, Kakeya H. Mechanistic study of the retro-aza-Michael reaction in saccharothriolide L: identification of 2-amino-4-methylphenol as an effective protecting tool for the Michael acceptor. J Antibiot (Tokyo) 2024; 77:544-547. [PMID: 38789532 DOI: 10.1038/s41429-024-00741-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Saccharothriolide L (1), a derivative of saccharothriolides (STLs) produced by the rare actinomycete Saccharotrix sp. A1506, was synthesized through the precursor-directed in situ synthesis (PDSS) method. The structure of 1 was determined by 1D and 2D NMR and HR-ESI-MS data analyses. A comparison of the rate of the retro-aza-Michael reaction between saccharothriolide L (1) and saccharothriolide B (2) indicated that the 2-amino-4-methylphenol group in 1 might be an effective masking tool for highly reactive, bioactive α, β-unsaturated carbonyl compounds.
Collapse
Affiliation(s)
- Shan Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Lingling Ren
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Di Mao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
3
|
Mao D, Yu P, Shinzato N, Zhang L, Zheng W, Lu S, Kakeya H. Precezomycin, a novel antibiotic biosynthetic precursor of cezomycin, from actinomycete Kitasatospora putterlickiae 10-13. J Antibiot (Tokyo) 2024; 77:189-192. [PMID: 38200162 DOI: 10.1038/s41429-023-00695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Abstract
A novel antibiotic biosynthetic precursor of cezomycin, named precezomycin (1), was isolated from culture broth of actinomycete Kitasatospora putterlickiae 10-13. The planar structure was determined by 1D/2D NMR and HR(ESI)MS data analyses, and the absolute configurations were established by TDDFT calculation of ECD spectra. Precezomycin (1) exhibited moderate antibacterial activity against gram-positive bacteria including Staphylococcus aureus and Bacillus subtilis. The discovery of 1 extends the natural product family of cezomycin and provides a new insight into understanding the biosynthetic process of these polyether ionophore metabolites.
Collapse
Affiliation(s)
- Di Mao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Pengwei Yu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Naoya Shinzato
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Lei Zhang
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Weiping Zheng
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Shan Lu
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
4
|
Dubovik V, Dalinova A, Berestetskiy A. Natural ten-membered lactones: sources, structural diversity, biological activity, and intriguing future. Nat Prod Rep 2024; 41:85-112. [PMID: 37885339 DOI: 10.1039/d3np00013c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Covering: 2012 to 2022Ten-membered lactones (TMLs) are an interesting and diverse group of natural polyketides that are abundant in fungi and, to a lesser extent, in bacteria, marine organisms, and insects. TMLs are known for their ability to exhibit a wide spectrum of biological activity, including phytotoxic, cytotoxic, antifungal, antibacterial, and others. However, the random discovery of these compounds by scientific groups with various interests worldwide has resulted in patchy information about their distribution among different organisms and their biological activity. Therefore, despite more than 60 years of research history, there is still no common understanding of the natural sources of TMLs, their structural type classification, and most characteristic biological activities. The controversial nomenclature, incorrect or erroneous structure elucidation, poor identification of producing organisms, and scattered information on the biological activity of compounds - all these factors have led to the problems with dereplication and the directed search for TMLs. This review consists of two parts: the first part (Section 2) covers 104 natural TMLs, published between 2012 and 2022 (after the publishing of the previous review), and the second part (Section 3) summarizes information about 214 TMLs described during 1964-2022 and as a result highlights the main problems and trends in the study of these intriguing natural products.
Collapse
Affiliation(s)
- Vsevolod Dubovik
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia.
| | - Anna Dalinova
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia.
| | - Alexander Berestetskiy
- Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Pushkin, 196608 Saint-Petersburg, Russia.
| |
Collapse
|
5
|
Wei B, Luo X, Zhou ZY, Hu GA, Li L, Lin HW, Wang H. Discovering the secondary metabolic potential of Saccharothrix. Biotechnol Adv 2024; 70:108295. [PMID: 38052345 DOI: 10.1016/j.biotechadv.2023.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/08/2023] [Accepted: 11/25/2023] [Indexed: 12/07/2023]
Abstract
Rare actinomycetes are highly valued as potential sources of novel bioactive secondary metabolites. Among these rare actinomycetes, the genus Saccharothrix is particularly noteworthy due to its ability to produce a diverse range of bioactive secondary metabolites. With the continuous sequencing of bacterial genomes and the rapid development of bioinformatics technologies, our knowledge of the secondary metabolic potential of Saccharothrix can become more comprehensive, but this space has not been reviewed or explored. This review presents a detailed overview of the chemical structures and bioactivities of 138 Saccharothrix-derived secondary metabolites, which are classified into five distinct groups based on their biosynthetic pathways. Furthermore, we delve into experimentally characterized biosynthetic pathways of nine bioactive metabolites. By utilizing a combination of cheminformatic and bioinformatic approaches, we attempted to establish connections between the metabolite families and the biosynthetic gene cluster families encoded by Saccharothrix strains. Our analysis provides a comprehensive perspective on the secondary metabolites that can be linked to corresponding BGCs and highlights the underexplored biosynthetic potential of Saccharothrix. This review also provides guidance for the targeted discovery and biosynthesis of novel natural products from Saccharothrix.
Collapse
Affiliation(s)
- Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xian Luo
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhen-Yi Zhou
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Gang-Ao Hu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lei Li
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Hou-Wen Lin
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
6
|
Hoshino S, Ijichi S, Asamizu S, Onaka H. Insights into Arsenic Secondary Metabolism in Actinomycetes from the Structure and Biosynthesis of Bisenarsan. J Am Chem Soc 2023; 145:17863-17871. [PMID: 37534495 DOI: 10.1021/jacs.3c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The unique bioactivities of arsenic-containing secondary metabolites have been revealed recently, but studies on arsenic secondary metabolism in microorganisms have been extremely limited. Here, we focused on the organoarsenic metabolite with an unknown chemical structure, named bisenarsan, produced by well-studied model actinomycetes and elucidated its structure by combining feeding of the putative biosynthetic precursor (2-hydroxyethyl)arsonic acid to Streptomyces lividans 1326 and detailed NMR analyses. Bisenarsan is the first characterized actinomycete-derived arsenic secondary metabolite and may function as a prototoxin form of an antibacterial agent or be a detoxification product of inorganic arsenic species. We also verified the previously proposed genes responsible for bisenarsan biosynthesis, especially the (2-hydroxyethyl)arsonic acid moiety. Notably, we suggest that a C-As bond in bisenarsan is formed by the intramolecular rearrangement of a pentavalent arsenic species (arsenoenolpyruvate) by the cofactor-independent phosphoglycerate mutase homologue BsnN, that is entirely distinct from the conventional biological C-As bond formation through As-alkylation of trivalent arsenic species by S-adenosylmethionine-dependent enzymes. Our findings will speed up the development of arsenic natural product biosynthesis.
Collapse
Affiliation(s)
- Shotaro Hoshino
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Shinta Ijichi
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Shumpei Asamizu
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| | - Hiroyasu Onaka
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima, Tokyo 171-8588, Japan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, Yayoi 1-1-1, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|
7
|
FK506-binding protein, FKBP12, promotes serine utilization and negatively regulates threonine deaminase in fission yeast. iScience 2022; 25:105659. [PMID: 36505930 PMCID: PMC9730122 DOI: 10.1016/j.isci.2022.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/24/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022] Open
Abstract
FK506-binding protein with a molecular weight of 12 kDa (FKBP12) is a receptor of the immunosuppressive drugs, FK506 and rapamycin. The physiological functions of FKBP12 remain ambiguous because of its nonessentiality and multifunctionality. Here, we show that FKBP12 promotes the utilization of serine as a nitrogen source and regulates the isoleucine biosynthetic pathway in fission yeast. In screening for small molecules that inhibit serine assimilation, we found that the growth of fission yeast cells in medium supplemented with serine as the sole nitrogen source, but not in glutamate-supplemented medium, was suppressed by FKBP12 inhibitors. Knockout of FKBP12 phenocopied the action of these compounds in serine-supplemented medium. Metabolome analyses and genetic screens identified the threonine deaminase, Tda1, to be regulated downstream of FKBP12. Genetic and biochemical analyses unveiled the negative regulation of Tda1 by FKBP12. Our findings reveal new roles of FKBP12 in amino acid biosynthesis and nitrogen metabolism homeostasis.
Collapse
|
8
|
Kuranaga T, Tamura M, Ikeda H, Terada S, Nakagawa Y, Kakeya H. Identification and Total Synthesis of an Unstable Anticancer Macrolide Presaccharothriolide Z Produced by Saccharothrix sp. A1506. Org Lett 2021; 23:7106-7111. [PMID: 34436915 DOI: 10.1021/acs.orglett.1c02506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Saccharothriolides A-F are 10-membered microbial macrolides proposed to be generated from their precursors presaccharothriolides X-Z. Previously, we isolated presaccharothriolide X, and its unique natural prodrug-like properties have intrigued us. However, the other congeners were not detected. Herein, we detected presaccharothriolide Z using our highly sensitive labeling reagent. Moreover, chemical synthesis of presaccharothriolide Z, the first total synthesis of saccharothriolide-class macrolides, was achieved, and the structure and biological activity of presaccharothriolide Z were determined.
Collapse
Affiliation(s)
- Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Miho Tamura
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ikeda
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sakahiro Terada
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yusuke Nakagawa
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Amatov T, Tsuji N, Maji R, Schreyer L, Zhou H, Leutzsch M, List B. Confinement-Controlled, Either syn- or anti-Selective Catalytic Asymmetric Mukaiyama Aldolizations of Propionaldehyde Enolsilanes. J Am Chem Soc 2021; 143:14475-14481. [PMID: 34436899 PMCID: PMC8447262 DOI: 10.1021/jacs.1c07447] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Protected aldols
(i.e., true aldols derived from aldehydes) with
either syn- or anti- stereochemistry
are versatile intermediates in many oligopropionate syntheses. Traditional
stereoselective approaches to such aldols typically require several
nonstrategic operations. Here we report two highly enantioselective
and diastereoselective catalytic Mukaiyama aldol reactions of the
TBS- or TES- enolsilanes of propionaldehyde with aromatic aldehydes.
Our reactions directly deliver valuable silyl protected propionaldehyde
aldols in a catalyst controlled manner, either as syn- or anti- isomer. We have identified a privileged
IDPi catalyst motif that is tailored for controlling these aldolizations
with exceptional selectivities. We demonstrate how a single atom modification
in the inner core of the IDPi catalyst, replacing a CF3-group with a CF2H-group, leads to a dramatic switch in
enantiofacial differentiation of the aldehyde. The origin of this
remarkable effect was attributed to tightening of the catalytic cavity
via unconventional C–H hydrogen bonding of the CF2H group.
Collapse
Affiliation(s)
- Tynchtyk Amatov
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Nobuya Tsuji
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Rajat Maji
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Lucas Schreyer
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Hui Zhou
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
10
|
Wei B, Du AQ, Zhou ZY, Lai C, Yu WC, Yu JB, Yu YL, Chen JW, Zhang HW, Xu XW, Wang H. An atlas of bacterial secondary metabolite biosynthesis gene clusters. Environ Microbiol 2021; 23:6981-6992. [PMID: 34490968 DOI: 10.1111/1462-2920.15761] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/04/2021] [Indexed: 11/28/2022]
Abstract
Bacterial secondary metabolites are rich sources of novel drug leads. The diversity of secondary metabolite biosynthetic gene clusters (BGCs) in genome-sequenced bacteria, which will provide crucial information for the efficient discovery of novel natural products, has not been systematically investigated. Here, the distribution and genetic diversity of BGCs in 10 121 prokaryotic genomes (across 68 phyla) were obtained from their PRISM4 outputs using a custom python script. A total of 18 043 BGCs are detected from 5743 genomes with non-ribosomal peptide synthetases (25.4%) and polyketides (15.9%) as the dominant classes of BGCs. Bacterial strains harbouring the largest number of BGCs are revealed and BGC count in strains of some genera vary greatly, suggesting the necessity of individually evaluating the secondary metabolism potential. Additional analysis against 102 strains of discovered bacterial genera with abundant amounts of BGCs confirms that Kutzneria, Kibdelosporangium, Moorea, Saccharothrix, Cystobacter, Archangium, Actinosynnema, Kitasatospora, and Nocardia, may also be important sources of natural products and worthy of priority investigation. Comparative analysis of BGCs within these genera indicates the great diversity and novelty of the BGCs. This study presents an atlas of bacterial secondary metabolite BGCs that provides a lot of key information for the targeted discovery of novel natural products.
Collapse
Affiliation(s)
- Bin Wei
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.,Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China
| | - Ao-Qi Du
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhen-Yi Zhou
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Cong Lai
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wen-Chao Yu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jin-Biao Yu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yan-Lei Yu
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jian-Wei Chen
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hua-Wei Zhang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China
| | - Xue-Wei Xu
- Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, 310012, China
| | - Hong Wang
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China.,Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou, 310014, China
| |
Collapse
|
11
|
Takenaka K, Kaneko K, Takahashi N, Nishimura S, Kakeya H. Retro-aza-Michael reaction of an o-aminophenol adduct in protic solvents inspired by natural products. Bioorg Med Chem 2021; 35:116059. [PMID: 33611014 DOI: 10.1016/j.bmc.2021.116059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
α,β-Unsaturated carbonyls are reactive group often found in bioactive small molecules. Their non-specific reaction with biomolecules can be the cause of the low efficacy and unexpected side-effects of the molecule. Accordingly, unprotected α,β-unsaturated carbonyls are not often found in drugs. Here, we report that o-aminophenol is a new masking group of α,β-unsaturated ketone, which is inspired by natural products saccharothriolides. o-Aminophenol adduct of α,β-unsaturated ketone, but not those of α,β-unsaturated amide or ester, undergoes a retro-Michael reaction to yield o-aminophenol and the Michael acceptor. This reaction was observed only in protic solvents, such as MeOH and aqueous MeOH. In contrast, o-anisidine was not eliminated from its Michael adduct. o-Aminophenol may be a promising masking tool of highly-reactive bioactive α,β-unsaturated carbonyl compounds.
Collapse
Affiliation(s)
- Kei Takenaka
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kensuke Kaneko
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Nobuaki Takahashi
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Shinichi Nishimura
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan; Department of Biotechnology, The University of Tokyo, Tokyo 113-8657, Japan; Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
12
|
Pan C, Kuranaga T, Kakeya H. Total synthesis of thioamycolamide A via a biomimetic route. Org Biomol Chem 2020; 18:8366-8370. [PMID: 33030495 DOI: 10.1039/d0ob01942a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Thioamycolamide A is a biosynthetically unique cytotoxic cyclic microbial lipopeptide that bears a d-configured thiazoline, a thioether bridge, a fatty acid side chain, and a reduced C-terminus. Based on the biosynthetic insights, a concise total synthesis of thioamycolamide A was accomplished.
Collapse
Affiliation(s)
- Chengqian Pan
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
13
|
Mo X, Yang S. Complete Genome of Nocamycin-Producing Strain Saccharothrix syringae NRRL B-16468 Reveals the Biosynthetic Potential for Secondary Metabolites. Curr Microbiol 2020; 78:107-113. [PMID: 33136202 DOI: 10.1007/s00284-020-02272-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 10/22/2020] [Indexed: 11/29/2022]
Abstract
The bacterium Saccharothrix syringae NRRL B-16468 is the producer of nocamycin I and nocamycin II which feature tetramic acid and bicyclic ketal groups. In this study, we presented the complete genome of S. syringae NRRL B-16468 obtained from ARS Culture Collection. It contains a circular chromosome of 10,929,570 bp with an average GC content of 73.49%, 9316 genes, 12 rRNAs and 54 tRNAs. Bioinformatics analyses of the genome has demonstrated that it harbors 55 putative biosynthetic gene clusters (BGCs) involved in synthesizing diverse secondary metabolites. The backbones of the natural products synthesized by these BGCs encoding for type I polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS) and hybrid type I PKS-NRPS were analyzed, furthermore, the natural products synthesized by these BGCs with > 40% similarity to known BGCs were described in detail. The complete genome of S. syringae reveals its capacity in producing diverse bioactive natural products, and it will also shed lights on mining novel secondary metabolites from S. syringae through rational strategies.
Collapse
Affiliation(s)
- Xuhua Mo
- Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Song Yang
- Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
14
|
Pan C, Kuranaga T, Liu C, Lu S, Shinzato N, Kakeya H. Thioamycolamides A-E, Sulfur-Containing Cycliclipopeptides Produced by the Rare Actinomycete Amycolatopsis sp. Org Lett 2020; 22:3014-3017. [PMID: 32239955 DOI: 10.1021/acs.orglett.0c00776] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of novel sulfur-containing cycliclipopeptides named thioamycolamides A-E, with thiazoline, thioether rings, and fatty acid moieties, were identified from the culture broth of the rare actinomycete Amycolatopsis sp. 26-4. The planar structural elucidation was accomplished by HRMS and 1D/2D NMR spectroscopic data analyses. The absolute configurations were unambiguously determined by Marfey's method, CD spectroscopy, and synthesis of partial structures. Moreover, their growth inhibitory activities against human tumor cell lines were investigated.
Collapse
Affiliation(s)
- Chengqian Pan
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Takefumi Kuranaga
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Chao Liu
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Shan Lu
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Naoya Shinzato
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
15
|
Takahashi N, Kaneko K, Kakeya H. Total Synthesis and Antimicrobial Activity of Tumescenamide C and Its Derivatives. J Org Chem 2020; 85:4530-4535. [PMID: 32067449 DOI: 10.1021/acs.joc.9b03516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tumescenamide C (1) is an antimicrobial compound produced by Streptomyces sp. KUSC_F05 and consists of a cyclic depsipeptide core and a polyketide side chain with branched methyl groups. Here, we report the total synthesis of tumescenamide C and two derivatives, mainly using Fmoc solid-phase peptide synthesis (SPPS). In addition, a biological evaluation of these compounds revealed the critical partial structure in 1 for antimicrobial activity.
Collapse
Affiliation(s)
- Nobuaki Takahashi
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kensuke Kaneko
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Bioinformatics and Chemical Genomics, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
16
|
Liu C, Kakeya H. Cryptic Chemical Communication: Secondary Metabolic Responses Revealed by Microbial Co‐culture. Chem Asian J 2020; 15:327-337. [DOI: 10.1002/asia.201901505] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/15/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Chao Liu
- Department of System Chemotherapy and Molecular SciencesDivision of Bioinformatics and Chemical GenomicsGraduate School of Pharmaceutical SciencesKyoto University Sakyo-ku Kyoto 606-8501 Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular SciencesDivision of Bioinformatics and Chemical GenomicsGraduate School of Pharmaceutical SciencesKyoto University Sakyo-ku Kyoto 606-8501 Japan
| |
Collapse
|
17
|
Ding T, Yang LJ, Zhang WD, Shen YH. The secondary metabolites of rare actinomycetes: chemistry and bioactivity. RSC Adv 2019; 9:21964-21988. [PMID: 35518871 PMCID: PMC9067109 DOI: 10.1039/c9ra03579f] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/01/2019] [Indexed: 01/06/2023] Open
Abstract
Actinomycetes are outstanding and fascinating sources of potent bioactive compounds, particularly antibiotics. In recent years, rare actinomycetes have had an increasingly important position in the discovery of antibacterial compounds, especially Micromonospora, Actinomadura and Amycolatopsis. Focusing on the period from 2008 to 2018, we herein summarize the structures and bioactivities of secondary metabolites from rare actinomycetes, involving 21 genera.
Collapse
Affiliation(s)
- Ting Ding
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry Shanghai 201203 China
| | - Luo-Jie Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
| | - Wei-Dong Zhang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry Shanghai 201203 China
- School of Pharmacy, The Second Military Medical University Shanghai 200433 China
| | - Yun-Heng Shen
- School of Pharmacy, The Second Military Medical University Shanghai 200433 China
| |
Collapse
|
18
|
Enhancement of saccharothriolide production and discovery of a new metabolite, saccharothriolide C2, by combined-culture of Saccharothrix sp. and Tsukamurella pulmonis. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|