1
|
Meng QZ, Wang XZ, Dai HQ, Assani I, Zhang MT, Zhao PP, Li LF, Yin X, Qi J, Pan Y, Zhang LX, Xia XK. A gene cluster encoding a nonribosomal peptide synthetase-like enzyme catalyzes γ-aromatic butenolides. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:681-689. [PMID: 38329449 DOI: 10.1080/10286020.2024.2311150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Sea cucumber-derived fungi have attracted much attention due to their capacity to produce an incredible variety of secondary metabolites. Genome-wide information on Aspergillus micronesiensis H39 obtained using third-generation sequencing technology (PacBio-SMRT) showed that the strain contains nonribosomal peptide synthetase (NRPS)-like gene clusters, which aroused our interest in mining its secondary metabolites. 11 known compounds (1-11), including two γ-aromatic butenolides (γ-AB) and five cytochalasans, were isolated from A. micronesiensis H39. The structures of the compounds were determined by NMR and ESIMS, and comparison with those reported in the literature. From the perspective of biogenetic origins, the γ-butyrolactone core of compounds 1 and 2 was assembled by NRPS-like enzyme. All of the obtained compounds showed no inhibitory activity against drug-resistant bacteria and fungi, as well as compounds 1 and 2 had no anti-angiogenic activity against zebrafish.
Collapse
Affiliation(s)
- Qing-Zhou Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xin-Zhu Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Huan-Qin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Israa Assani
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Meng-Ting Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei-Pei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Long-Fen Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Xin Yin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Jun Qi
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Li-Xin Zhang
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Xue-Kui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| |
Collapse
|
2
|
Lebar MD, Mack BM, Carter-Wientjes CH, Wei Q, Mattison CP, Cary JW. Small NRPS-like enzymes in Aspergillus sections Flavi and Circumdati selectively form substituted pyrazinone metabolites. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1029195. [PMID: 37746228 PMCID: PMC10512218 DOI: 10.3389/ffunb.2022.1029195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/14/2022] [Indexed: 09/26/2023]
Abstract
Aspergillus fungi produce mycotoxins that are detrimental to human and animal health. Two sections of aspergilli are of particular importance to cereal food crops such as corn and barley. Aspergillus section Flavi species like A. flavus and A. parasiticus produce aflatoxins, while section Circumdati species like A. ochraceus and A. sclerotiorum produce ochratoxin A. Mitigating these toxins in food and feed is a critical and ongoing worldwide effort. We have previously investigated biosynthetic gene clusters in Aspergillus flavus that are linked to fungal virulence in corn. We found that one such cluster, asa, is responsible for the production of aspergillic acid, an iron-binding, hydroxamic acid-containing pyrazinone metabolite. Furthermore, we found that the asa gene cluster is present in many other aflatoxin- and ochratoxin-producing aspergilli. The core gene in the asa cluster encodes the small nonribosomal peptide synthetase-like (NRPS-like) protein AsaC. We have swapped the asaC ortholog from A. sclerotiorum into A. flavus, replacing its native copy, and have also cloned both asaC orthologs into Saccharomyces cerevisiae. We show that AsaC orthologs in section Flavi and section Circumdati, while only containing adenylation-thiolation-reductase (ATR) domains, can selectively biosynthesize distinct pyrazinone natural products: deoxyaspergillic acid and flavacol, respectively. Because pyrazinone natural products and the gene clusters responsible for their production are implicated in a variety of important microbe-host interactions, uncovering the function and selectivity of the enzymes involved could lead to strategies that ultimately benefit human health.
Collapse
Affiliation(s)
- Matthew D. Lebar
- Food and Feed Safety Research, Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), New Orleans, LA, United States
| | - Brian M. Mack
- Food and Feed Safety Research, Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), New Orleans, LA, United States
| | - Carol H. Carter-Wientjes
- Food and Feed Safety Research, Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), New Orleans, LA, United States
| | - Qijian Wei
- Food and Feed Safety Research, Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), New Orleans, LA, United States
| | - Christopher P. Mattison
- Food Processing and Sensory Quality Research, Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), New Orleans, LA, United States
| | - Jeffrey W. Cary
- Food and Feed Safety Research, Southern Regional Research Center, Agricultural Research Service, United States Department of Agriculture (USDA), New Orleans, LA, United States
| |
Collapse
|
3
|
Fan H, Wei X, Si-Tu MX, Lei YH, Zhou FG, Zhang CX. γ-Aromatic Butenolides of Microbial Source - A Review of Their Structures, Biological Activities and Biosynthesis. Chem Biodivers 2022; 19:e202200208. [PMID: 35567462 DOI: 10.1002/cbdv.202200208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/09/2022] [Indexed: 11/11/2022]
Abstract
γ-Aromatic butenolides (γ-AB) are an important type of structures found in many bioactive microbial secondary metabolites (SMs). γ-AB refer to a group of natural products (NPs) containing five-membered (unsaturated) lactones with 3-phenyl and 4-benzyl substituents. Their wide-range biological activities have inspired pharmaceutical chemists to explore its biosynthesis mechanisms and design strategies to construct the γ-AB skeleton. Recently, there are a great deal of interesting research progress on the structures, biological activities and biosynthesis of γ-AB. This review will focus on these aspects and summarize the important achievements of γ-AB from 1975 to 2021.
Collapse
Affiliation(s)
- Hao Fan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Xia Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Mei-Xia Si-Tu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Yan-Hu Lei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Feng-Guo Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| | - Cui-Xian Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P. R. China
| |
Collapse
|
4
|
Wieder C, Peres da Silva R, Witts J, Jäger CM, Geib E, Brock M. Characterisation of ascocorynin biosynthesis in the purple jellydisc fungus Ascocoryne sarcoides. Fungal Biol Biotechnol 2022; 9:8. [PMID: 35477441 PMCID: PMC9047271 DOI: 10.1186/s40694-022-00138-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/19/2022] [Indexed: 12/02/2022] Open
Abstract
Background Non-ribosomal peptide synthetase-like (NRPS-like) enzymes are highly enriched in fungal genomes and can be discriminated into reducing and non-reducing enzymes. Non-reducing NRPS-like enzymes possess a C-terminal thioesterase domain that catalyses the condensation of two identical aromatic α-keto acids under the formation of enzyme-specific substrate-interconnecting core structures such as terphenylquinones, furanones, butyrolactones or dioxolanones. Ascocoryne sarcoides produces large quantities of ascocorynin, which structurally resembles a terphenylquinone produced from the condensation of p-hydroxyphenylpyruvate and phenylpyruvate. Since the parallel use of two different substrates by a non-reducing NRPS-like enzyme appeared as highly unusual, we investigated the biosynthesis of ascocorynin in A. sarcoides. Results Here, we searched the genome of A. sarcoides for genes coding for non-reducing NRPS-like enzymes. A single candidate gene was identified that was termed acyN. Heterologous gene expression confirmed that AcyN is involved in ascocorynin production but only produces the non-hydroxylated precursor polyporic acid. Although acyN is embedded in an ascocorynin biosynthesis gene cluster, a gene encoding a monooxygenase required for the hydroxylation of polyporic acid was not present. Expression analyses of all monooxygenase-encoding genes from A. sarcoides identified a single candidate that showed the same expression pattern as acyN. Accordingly, heterologous co-expression of acyN and the monooxygenase gene resulted in the production of ascocorynin. Structural modelling of the monooxygenase suggests that the hydrophobic substrate polyporic acid enters the monooxygenase from a membrane facing entry site and is converted into the more hydrophilic product ascocorynin, which prevents its re-entry for a second round of hydroxylation. Conclusion This study characterises the first naturally occurring polyporic acid synthetase from an ascomycete. It confirms the high substrate and product specificity of this non-reducing NRPS-like enzyme and highlights the requirement of a monooxygenase to produce the terphenylquinone ascocorynin. Supplementary Information The online version contains supplementary material available at 10.1186/s40694-022-00138-7.
Collapse
Affiliation(s)
- Carsten Wieder
- Fungal Biology Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.,Institute of Molecular Physiology, Johannes-Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Roberta Peres da Silva
- Fungal Biology Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.,University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Jessica Witts
- Fungal Biology Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Christof Martin Jäger
- Sustainable Process Technologies Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Elena Geib
- Fungal Biology Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthias Brock
- Fungal Biology Group, School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
5
|
Martínez-Cárdenas A, Cruz-Zamora Y, Fajardo-Hernández CA, Villanueva-Silva R, Cruz-García F, Raja HA, Figueroa M. Genome Mining and Molecular Networking-Based Metabolomics of the Marine Facultative Aspergillus sp. MEXU 27854. Molecules 2021; 26:molecules26175362. [PMID: 34500798 PMCID: PMC8433890 DOI: 10.3390/molecules26175362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
The marine-facultative Aspergillus sp. MEXU 27854, isolated from the Caleta Bay in Acapulco, Guerrero, Mexico, has provided an interesting diversity of secondary metabolites, including a series of rare dioxomorpholines, peptides, and butyrolactones. Here, we report on the genomic data, which consists of 11 contigs (N50~3.95 Mb) with a ~30.75 Mb total length of assembly. Genome annotation resulted in the prediction of 10,822 putative genes. Functional annotation was accomplished by BLAST searching protein sequences with different public databases. Of the predicted genes, 75% were assigned gene ontology terms. From the 67 BGCs identified, ~60% belong to the NRPS and NRPS-like classes. Putative BGCs for the dioxomorpholines and other metabolites were predicted by extensive genome mining. In addition, metabolomic molecular networking analysis allowed the annotation of all isolated compounds and revealed the biosynthetic potential of this fungus. This work represents the first report of whole-genome sequencing and annotation from a marine-facultative fungal strain isolated from Mexico.
Collapse
Affiliation(s)
- Anahí Martínez-Cárdenas
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.M.-C.); (Y.C.-Z.); (C.A.F.-H.); (R.V.-S.); (F.C.-G.)
| | - Yuridia Cruz-Zamora
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.M.-C.); (Y.C.-Z.); (C.A.F.-H.); (R.V.-S.); (F.C.-G.)
| | - Carlos A. Fajardo-Hernández
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.M.-C.); (Y.C.-Z.); (C.A.F.-H.); (R.V.-S.); (F.C.-G.)
| | - Rodrigo Villanueva-Silva
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.M.-C.); (Y.C.-Z.); (C.A.F.-H.); (R.V.-S.); (F.C.-G.)
| | - Felipe Cruz-García
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.M.-C.); (Y.C.-Z.); (C.A.F.-H.); (R.V.-S.); (F.C.-G.)
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA;
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.M.-C.); (Y.C.-Z.); (C.A.F.-H.); (R.V.-S.); (F.C.-G.)
- Correspondence: ; Tel.: +52-55-5622-5290
| |
Collapse
|
6
|
Hühner E, Öqvist K, Li SM. Design of α-Keto Carboxylic Acid Dimers by Domain Recombination of Nonribosomal Peptide Synthetase (NRPS)-Like Enzymes. Org Lett 2019; 21:498-502. [DOI: 10.1021/acs.orglett.8b03793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elisabeth Hühner
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch Straße 4, Marburg 35037, Germany
| | - Kristin Öqvist
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch Straße 4, Marburg 35037, Germany
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch Straße 4, Marburg 35037, Germany
| |
Collapse
|
7
|
Ariantari NP, Daletos G, Mándi A, Kurtán T, Müller WEG, Lin W, Ancheeva E, Proksch P. Expanding the chemical diversity of an endophytic fungus Bulgaria inquinans, an ascomycete associated with mistletoe, through an OSMAC approach. RSC Adv 2019; 9:25119-25132. [PMID: 35528664 PMCID: PMC9069884 DOI: 10.1039/c9ra03678d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/11/2019] [Indexed: 11/21/2022] Open
Abstract
An endophytic fungus Bulgaria inquinans (isolate MSp3-1), isolated from mistletoe (Viscum album), was subjected to fermentation on solid Czapek medium. Chromatographic workup of the crude EtOAc extract yielded five new natural products (1–5). Subsequent application of the “One Strain, MAny Compounds” (OSMAC) strategy on this strain by the addition of a mixture of salts (MgSO4, NaNO3 and NaCl) to solid Czapek medium induced the accumulation of nine additional new secondary metabolites (6–13, 16), with most of them (8, 10–12) not detectable in cultures lacking the salt mixture. The structures of the new compounds were established on the basis of the 1D/2D NMR and HRESIMS data. The TDDFT-ECD method was applied to determine the absolute configurations of the new compounds 1, 4 and 6 as well as of the previously reported bulgarialactone B (14), for which the absolute configuration was unknown so far. The modified Mosher's method was performed to assign the absolute configurations of 12 and 13. TDDFT-ECD analysis also allowed determining the absolute configuration of (+)-epicocconone, which had an enantiomeric absolute configuration in the tricyclic moiety compared to that of bulgarialactone B (14). All the isolated metabolites were evaluated for their cytotoxic activity. Compound 2 was found to possess strong cytotoxic activity against the murine lymphoma cell line L5178Y with an IC50 value of 1.8 μM, while the remaining metabolites were shown to be inactive. OSMAC approach on endophytic Bulgaria inquinans by addition of a mixture of salts (MgSO4, NaNO3 and NaCl) to solid Czapek medium induced the accumulation of new secondary metabolites.![]()
Collapse
Affiliation(s)
- Ni P. Ariantari
- Institute of Pharmaceutical Biology and Biotechnology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
- Department of Pharmacy
| | - Georgios Daletos
- Institute of Pharmaceutical Biology and Biotechnology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Attila Mándi
- Department of Organic Chemistry
- University of Debrecen
- 4002 Debrecen
- Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry
- University of Debrecen
- 4002 Debrecen
- Hungary
| | - Werner E. G. Müller
- Institute for Physiological Chemistry
- University Medical Center of the Johannes Gutenberg University Mainz
- 55128 Mainz
- Germany
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs
- Peking University
- 100191 Beijing
- China
| | - Elena Ancheeva
- Institute of Pharmaceutical Biology and Biotechnology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Peter Proksch
- Institute of Pharmaceutical Biology and Biotechnology
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| |
Collapse
|