1
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
2
|
Kumar R, Dohi T, Zhdankin VV. Organohypervalent heterocycles. Chem Soc Rev 2024; 53:4786-4827. [PMID: 38545658 DOI: 10.1039/d2cs01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This review summarizes the structural and synthetic aspects of heterocyclic molecules incorporating an atom of a hypervalent main-group element. The term "hypervalent" has been suggested for derivatives of main-group elements with more than eight valence electrons, and the concept of hypervalency is commonly used despite some criticism from theoretical chemists. The significantly higher thermal stability of hypervalent heterocycles compared to their acyclic analogs adds special features to their chemistry, particularly for bromine and iodine. Heterocyclic compounds of elements with double bonds are not categorized as hypervalent molecules owing to the zwitterionic nature of these bonds, resulting in the conventional 8-electron species. This review is focused on hypervalent heterocyclic derivatives of nonmetal main-group elements, such as boron, silicon, nitrogen, carbon, phosphorus, sulfur, selenium, bromine, chlorine, iodine(III) and iodine(V).
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, J C Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, 121006, Haryana, India.
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, 1038 University Drive, 126 HCAMS University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| |
Collapse
|
3
|
Clamor N, Damrath M, Kuczmera TJ, Duvinage D, Nachtsheim BJ. Synthesis of N-acyl carbazoles, phenoxazines and acridines from cyclic diaryliodonium salts. Beilstein J Org Chem 2024; 20:12-16. [PMID: 38213840 PMCID: PMC10777325 DOI: 10.3762/bjoc.20.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024] Open
Abstract
N-Acyl carbazoles can be efficiently produced through a single-step process using amides and cyclic diaryliodonium triflates. This convenient reaction is facilitated by copper iodide in p-xylene, using the commonly found activating ligand diglyme. We have tested this method with a wide range of amides and iodonium triflates, proving its versatility with numerous substrates. Beyond carbazoles, we also produced a variety of other N-heterocycles, such as acridines, phenoxazines, or phenazines, showcasing the robustness of our technique. In a broader sense, this new method creates two C-N bonds simultaneously based on a mono-halogenated starting material, thus allowing heterocycle formation with diminished halogen waste.
Collapse
Affiliation(s)
- Nils Clamor
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany
| | - Mattis Damrath
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany
| | - Thomas J Kuczmera
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany
| | - Daniel Duvinage
- Institute for Inorganic and Crystallographic Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, D-28359 Bremen, Germany
| |
Collapse
|
4
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
5
|
Clarkson GJ, Roesner S. Synthesis of Benzofuropyridines and Dibenzofurans by a Metalation/Negishi Cross-Coupling/S NAr Reaction Sequence. J Org Chem 2023; 88:684-689. [PMID: 36484714 PMCID: PMC9830636 DOI: 10.1021/acs.joc.2c02111] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An efficient methodology for the synthesis of benzofuropyridines and dibenzofurans from fluoropyridines or fluoroarenes and 2-bromophenyl acetates is reported. This streamlined one-pot procedure consists of a four-step directed ortho-lithiation, zincation, Negishi cross-coupling, and intramolecular nucleophilic aromatic substitution, allowing for the facile assembly of a diverse set of fused benzofuro heterocycles.
Collapse
|
6
|
Linde E, Knippenberg N, Olofsson B. Synthesis of Cyclic and Acyclic ortho-Aryloxy Diaryliodonium Salts for Chemoselective Functionalizations. Chemistry 2022; 28:e202202453. [PMID: 36083826 PMCID: PMC10092902 DOI: 10.1002/chem.202202453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 12/14/2022]
Abstract
Two regioselective, high-yielding one-pot routes to oxygen-bridged cyclic diaryliodonium salts and ortho-aryloxy-substituted acyclic diaryliodonium salts are presented. Starting from easily available ortho-iodo diaryl ethers, complete selectivity in formation of either the cyclic or acyclic product could be achieved by varying the reaction conditions. The complimentary reactivities of these novel ortho-oxygenated iodonium salts were demonstrated through a series of chemoselective arylations under metal-catalyzed and metal-free conditions, to deliver a range of novel, ortho-functionalized diaryl ether derivatives.
Collapse
Affiliation(s)
- Erika Linde
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Niels Knippenberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Berit Olofsson
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
7
|
Rao GA, Gurubrahamam R, Chen K. Base‐Catalysed [4+2]‐Annulation Between 2‐Nitrobenzofurans and N‐Alkoxyacrylamides: Synthesis of [3,2‐b]Benzofuropyridinones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gunda Ananda Rao
- National Taiwan Normal University - Gongguan Campus Department of Chemistry TAIWAN
| | - Ramani Gurubrahamam
- Indian Institute of Technology Jammu Department of Chemistry jagti, nagrota bypass road 181221 Jammu INDIA
| | - Kwunmin Chen
- National Taiwan Normal University - Gongguan Campus Department of Chemistry INDIA
| |
Collapse
|
8
|
Mathuri A, Pramanik M, Mal P. 3-Arylsulfonylquinolines from N-Propargylamines via Cascaded Oxidative Sulfonylation Using DABSO. J Org Chem 2022; 87:6812-6823. [PMID: 35509227 DOI: 10.1021/acs.joc.2c00499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We report a cascaded oxidative sulfonylation of N-propargylamine via a three-component coupling reaction using DABCO·(SO2)2 (DABSO). 3-Arylsulfonylquinolines were obtained by mixing diazonium tetrafluoroborate, N-propargylamine, and DABSO under argon atmosphere in dichloroethane (DCE) for 1 h. In a radical pathway, DABSO was utilized as the sulfone source and an oxidant in this radical-mediated cascaded reaction.
Collapse
Affiliation(s)
- Ashis Mathuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Jatni, District Khurda, Odisha 752050, India
| | - Milan Pramanik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
9
|
Zhu D, Sun Y, Peng H, Li H, Yan Y, Kuang H. Enantioselective Synthesis of Axially Chiral Oxazole Biaryls via Cu‐Catalyzed Oxidation of Cyclic Diaryliodoniums. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daqian Zhu
- Guangdong Pharmaceutical University School of Pharmacy 280 Waihuan East Road 510006 Guangzhou CHINA
| | - Yameng Sun
- Sun Yat-sen University Cancer Center collaborative innovation center for cancer medicine CHINA
| | - Hui Peng
- Sun Yat-sen University Cancer Center collaborative innovation center for cancer medicine CHINA
| | - Hangni Li
- Guangdong Pharmaceutical University school of pharmacy CHINA
| | - Yang Yan
- Guangdong Pharmaceutical University school of pharmacy CHINA
| | - Haolin Kuang
- Guangdong Pharmaceutical University school of pharmacy CHINA
| |
Collapse
|
10
|
Peng H, Liu Q, Sun Y, Luo B, Yu T, Huang P, Zhu D, Wen S. Tandem cyclization/arylation of diaryliodoniums via in situ constructed benzoxazole as a directing group for atom-economical transformation. Org Chem Front 2022. [DOI: 10.1039/d1qo01463c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linear diaryliodoniums often undergo only single arylation and leave equivalent aryl iodide as waste.
Collapse
Affiliation(s)
- Hui Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | - Qian Liu
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou 510006, People's Republic of China
| | - Yameng Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | - Tianyian Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| | - Daqian Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, 280 Waihuan East Road, Guangzhou 510006, People's Republic of China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, People's Republic of China
| |
Collapse
|
11
|
Li J, Liu S, Zhong R, Yang Y, Xu J, Yang J, Ding H, Wang Z. Cascade Cyclization of Azadienes with Difluoroenoxysilanes: A One-Pot Formal [4 + 2] Approach to Fluorinated Polyfused Heterocycles. Org Lett 2021; 23:9526-9532. [PMID: 34860022 DOI: 10.1021/acs.orglett.1c03745] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A TfOH-promoted synthesis of fluorinated polyfused heterocycles via the cascade cyclization of azadienes and difluoroenoxysilanes has been developed, leading to the facile construction of fluorinated benzofuro[3,2-b]pyridines, 5H-indeno[1,2-b]pyridines, and 5,6-dihydrobenzo[h]quinolines. This one-pot formal [4 + 2] approach involves 1,4-difluoroalkylation, desulfonylation, cyclization, and dehydrated and dehydrofluorinated aromatization and represents the first application of difluoroenoxysilane in cascade transformations. Furthermore, this methodology is highlighted by the synthesis of three fluoro analogues of bioactive molecules with potent topoisomerase inhibitory activities.
Collapse
Affiliation(s)
- Jinshan Li
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Saimei Liu
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Rong Zhong
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Yaqi Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Jinjing Xu
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| | - Hanfeng Ding
- Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, P. R. China
| |
Collapse
|
12
|
Wang X, Shao Y, Zhang S, Lu T, Du D. N-Heterocyclic Carbene-Catalyzed Formal [3+3] Annulation of Alkynyl Acylazoliums for the Synthesis of Benzofuro[3,2- b]pyridin-2-ones. J Org Chem 2021; 86:12336-12343. [PMID: 34328328 DOI: 10.1021/acs.joc.1c01230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Through β-activation of alkynoic acid esters with N-heterocyclic carbene catalysis, a formal [3+3] annulation of alkynyl acylazoliums with indolin-3-ones has been developed for the rapid construction of structurally interesting benzofuro[3,2-b]pyridin-2-ones with potential bioactivities. This protocol provides a highly efficient and simple method for the synthesis of the target molecules under mild reaction conditions with a wide substrate scope and excellent chemoselectivity. The synthetic utility of this protocol was also demonstrated by the versatile late-stage modifications.
Collapse
Affiliation(s)
- Xiaoxue Wang
- State Key Laboratory of Natural Medicines, Department of Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yuebo Shao
- State Key Laboratory of Natural Medicines, Department of Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Simiao Zhang
- State Key Laboratory of Natural Medicines, Department of Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, Department of Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Ding Du
- State Key Laboratory of Natural Medicines, Department of Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
13
|
Cheng B, Li H, Zhu X, Zhang X, He Y, Sun H, Wang T, Zhai H. Diversity-oriented synthesis of benzofuro[3,2- b]pyridine derivatives from aurone-derived α,β-unsaturated imines and activated terminal alkynes. Chem Commun (Camb) 2021; 57:7701-7704. [PMID: 34259255 DOI: 10.1039/d1cc02477a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient annulation reaction of aurone-derived α,β-unsaturated imines and activated terminal alkynes mediated by triethylamine is described, which enables the facile synthesis of 1,4-dihydrobenzofuro[3,2-b]pyridines in high yields. When the nucleophile of triethylamine was replaced with triphenylphosphine, another class of 1,4-dihydrobenzofuro[3,2-b]pyridines tethered with an additional acrylate motif were obtained instead. These two types of 1,4-dihydrobenzofuro[3,2-b]pyridines could be aromatized in the presence of DBU to afford benzofuro[3,2-b]pyridines, which could also be accessed via a one-pot procedure.
Collapse
Affiliation(s)
- Bin Cheng
- Institute of Marine Biomedicine/Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China. and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hui Li
- Institute of Marine Biomedicine/Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China. and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xuecheng Zhu
- Institute of Marine Biomedicine/Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China. and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xinping Zhang
- Institute of Marine Biomedicine/Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China. and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yixuan He
- Institute of Marine Biomedicine/Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China. and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haiyan Sun
- Institute of Marine Biomedicine/Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Taimin Wang
- Institute of Marine Biomedicine/Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China.
| | - Hongbin Zhai
- Institute of Marine Biomedicine/Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518055, China. and State Key Laboratory of Chemical Oncogenomics, Shenzhen Engineering Laboratory of Nano Drug Slow-Release, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
14
|
Antonkin NS, Vlasenko YA, Yoshimura A, Smirnov VI, Borodina TN, Zhdankin VV, Yusubov MS, Shafir A, Postnikov PS. Preparation and Synthetic Applicability of Imidazole-Containing Cyclic Iodonium Salts. J Org Chem 2021; 86:7163-7178. [PMID: 33944564 DOI: 10.1021/acs.joc.1c00483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel approach to the preparation of imidazole-substituted cyclic iodonium salts has been developed via the oxidative cyclization of 1-phenyl-5-iodoimidazole using a cheap and available Oxone/H2SO4 oxidative system. The structure of the new polycyclic heteroarenes has been confirmed by single-crystal X-ray diffractometry, revealing the characteristic structure features for cyclic iodonium salts. The newly produced imidazole-flanked cyclic iodonium compounds were found to readily engage in a heterocyclization reaction with elemental sulfur, affording benzo[5,1-b]imidazothiazoles in good yields.
Collapse
Affiliation(s)
- Nikita S Antonkin
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Yulia A Vlasenko
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Akira Yoshimura
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Vladimir I Smirnov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky Str., 1, Irkutsk 664033, Russian Federation
| | - Tatyana N Borodina
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky Str., 1, Irkutsk 664033, Russian Federation
| | - Viktor V Zhdankin
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.,Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Mekhman S Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation
| | - Alexandr Shafir
- Department of Biological Chemistry, IQAC-CSIC, c/Jordi Girona 18-26, Barcelona 08034, Spain
| | - Pavel S Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian Federation.,Department of Solid-State Engineering, University of Chemistry and Technology, Prague 16628, Czech Republic
| |
Collapse
|
15
|
Ramakrishnan S, Paramewaran S, Nasir NM. Synthetic approaches to biologically active xanthones: an update. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Zhao K, Yang S, Gong Q, Duan L, Gu Z. Diols Activation by Cu/Borinic Acids Synergistic Catalysis in Atroposelective Ring‐Opening of Cyclic Diaryliodoniums. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kun Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Shan Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Qi Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Longhui Duan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Zhenhua Gu
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
- Ocean College Minjiang University Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
17
|
Zhao K, Yang S, Gong Q, Duan L, Gu Z. Diols Activation by Cu/Borinic Acids Synergistic Catalysis in Atroposelective Ring‐Opening of Cyclic Diaryliodoniums. Angew Chem Int Ed Engl 2021; 60:5788-5793. [DOI: 10.1002/anie.202014127] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Kun Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Shan Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Qi Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Longhui Duan
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
| | - Zhenhua Gu
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry Center for Excellence in Molecular Synthesis University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 P. R. China
- Ocean College Minjiang University Fuzhou Fujian 350108 P. R. China
| |
Collapse
|
18
|
Rong B, Xu G, Yan H, Zhang S, Wu Q, Zhu N, Fang Z, Duan J, Guo K. Synthesis of benzofuro- and benzothieno[2,3-c]pyridines via copper-catalyzed [4 + 2] annulation of ketoxime acetates with acetoacetanilide. Org Chem Front 2021. [DOI: 10.1039/d1qo00094b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient copper-catalyzed annulation of ketoxime acetates with acetoacetanilide has been developed for the facile synthesis of benzofuro- and benzothieno[2,3-c]pyridines.
Collapse
Affiliation(s)
- Binsen Rong
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Huan Yan
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Sai Zhang
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Qinghuan Wu
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing
- China
| |
Collapse
|
19
|
Zhu K, Song Z, Wang Y, Zhang F. Synthesis of 2,2′-Dihalobiaryls via Cu-Catalyzed Halogenation of Cyclic Diaryliodonium Salts. Org Lett 2020; 22:9356-9359. [DOI: 10.1021/acs.orglett.0c03614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kai Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zongqiang Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
20
|
Peng X, Yang Y, Luo B, Wen S, Huang P. Modular Tandem Mizoroki‐Heck/Reductive Heck Reactions to Construct Fluorenes from Cyclic Diaryliodoniums. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaopeng Peng
- School of Pharmaceutical Sciences Zhaoqing Medical College Zhaoqing 526000 People's Republic of China
- Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative innovation Center for Cancer Medicine Sun Yat-sen University Guangzhou 510060 People's Republic of China
| | - Yang Yang
- Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative innovation Center for Cancer Medicine Sun Yat-sen University Guangzhou 510060 People's Republic of China
- School of Pharmaceutical Science Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Bingling Luo
- Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative innovation Center for Cancer Medicine Sun Yat-sen University Guangzhou 510060 People's Republic of China
| | - Shijun Wen
- Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative innovation Center for Cancer Medicine Sun Yat-sen University Guangzhou 510060 People's Republic of China
| | - Peng Huang
- Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Collaborative innovation Center for Cancer Medicine Sun Yat-sen University Guangzhou 510060 People's Republic of China
| |
Collapse
|
21
|
Boelke A, Kuczmera TJ, Caspers LD, Lork E, Nachtsheim BJ. Iodolopyrazolium Salts: Synthesis, Derivatizations, and Applications. Org Lett 2020; 22:7261-7266. [PMID: 32880463 DOI: 10.1021/acs.orglett.0c02593] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of iodolopyrazolium triflates via an oxidative cyclization of 3-(2-iodophenyl)-1H-pyrazoles is described. The reaction is characterized by a broad substrate scope, and various applications of these novel cyclic iodolium salts acting as useful synthetic intermediates are demonstrated, in particular in site-selective ring openings. This was finally applied to generate derivatives of the anti-inflammatory drug celecoxib. Their application as highly active halogen-bond donors is shown as well.
Collapse
Affiliation(s)
- Andreas Boelke
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Thomas J Kuczmera
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Lucien D Caspers
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Enno Lork
- Institute for Inorganic Chemistry and Crystallography, University of Bremen, 28359 Bremen, Germany
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
22
|
Wang H, Liang L, Guo Z, Peng H, Qiao S, Saha N, Zhu D, Zeng W, Chen Y, Huang P, Wen S. Highly Reactive Cyclic Monoaryl Iodoniums Tuned as Carbene Generators Couple with Nucleophiles under Metal-Free Conditions. iScience 2020; 23:101307. [PMID: 32634743 PMCID: PMC7338778 DOI: 10.1016/j.isci.2020.101307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/05/2020] [Accepted: 06/18/2020] [Indexed: 12/29/2022] Open
Abstract
Cross-coupling reactions between aryl iodide and nucleophiles have been well developed. Iodoniums equipped with a reactive C-I(III) bond accelerate cross-coupling reactions of aryl iodide. Among them, cyclic diaryliodoniums are more atom economical; however; they are often in the trap of metal reliance and encounter regioselectivity issues. Now, we have developed a series of highly reactive cyclic monoaryl-vinyl iodoniums that can be tuned to construct C-N, C-O, and C-C bonds without metal catalysis. Under promotion of triethylamine, coupling reactions with aniline, phenol, aromatic acid, and indole proceed rapidly and regioselectively at room temperature. The carbene species is conceptualized as a key intermediate in our mechanism model. Furthermore, the coupling products enable diversity-oriented synthesis strategy to further build up a chemical library of diverse heterocyclic fragments that are in demand in the drug discovery field. Our current work provides a deep insight into the synthetic application of these highly reactive cyclic iodoniums.
Collapse
Affiliation(s)
- Haiwen Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Liyun Liang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Zhirong Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Hui Peng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Shuang Qiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Nemai Saha
- Berhampore Girl's College, Berhampore, Murshidabad, West Bengal 742101, India
| | - Daqian Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Yunyun Chen
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China.
| | - Shijun Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China.
| |
Collapse
|
23
|
Ma Y, Yin D, Ye J, Wei X, Pei Y, Li X, Si G, Chen XY, Chen ZS, Dong Y, Zou F, Shi W, Qiu Q, Qian H, Liu G. Discovery of Potent Inhibitors against P-Glycoprotein-Mediated Multidrug Resistance Aided by Late-Stage Functionalization of a 2-(4-(Pyridin-2-yl)phenoxy)pyridine Analogue. J Med Chem 2020; 63:5458-5476. [PMID: 32329342 DOI: 10.1021/acs.jmedchem.0c00337] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SIS3 is a specific inhibitor of Smad3 that inhibits the TGFβ1-induced phosphorylation of Smad3. In this article, a variety of SIS3 derivatives were designed and synthesized to discover potential inhibitors against P-glycoprotein-mediated multidrug resistance aided by late-stage functionalization of a 2-(4-(pyridin-2-yl)phenoxy)pyridine analogue. A novel class of potent P-gp reversal agents were investigated, and a lead compound 37 was identified as a potent P-gp reversal agent with strong bioactivity and outstanding affinity for P-gp.
Collapse
Affiliation(s)
- Yao Ma
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, P. R. China
| | - Dawei Yin
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Jingjia Ye
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Xiduan Wei
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Yameng Pei
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Xueyuan Li
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Guangxu Si
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Xuan-Yu Chen
- College of Pharmacy and Health Science, St. John's University, Queens, New York, New York 11439, United States.,College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Science, St. John's University, Queens, New York, New York 11439, United States
| | - Yi Dong
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, P. R. China
| | - Feng Zou
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Qianqian Qiu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| |
Collapse
|
24
|
Shi Z, Wang L, Yang Z, Jie L, Liu X, Cui X. Tandem Construction of Indole-Fused Phthalazines from (2-Alkynylbenzylidene)hydrazines under Metal-Free Conditions. J Org Chem 2020; 85:3029-3040. [PMID: 32031804 DOI: 10.1021/acs.joc.9b02937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An efficient approach to invent diversely substituted indole-fused phthalazines from in situ formed (2-alkynylbenzylidene)hydrazines under metal-free conditions via selective radical cyclization has been developed. Notably, this 6-exo-dig addition-cyclization tandem procedure proceeds under air atmosphere and shows a broad substrate suitability, as well as avoids harmful byproducts, which complies with the concept of green synthesis.
Collapse
Affiliation(s)
- Zhaojiang Shi
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Lianhui Wang
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Zi Yang
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Lianghua Jie
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Xiao Liu
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine, Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
25
|
Xiong W, Hu K, Lei Y, Zhen Q, Zhao Z, Shao Y, Li R, Zhang Y, Chen J. Palladium-Catalyzed Cascade Reactions of 2-(Cyanomethoxy)chalcones with Arylboronic Acids: Selective Synthesis of Emissive Benzofuro[2,3-c]pyridines. Org Lett 2019; 22:1239-1243. [DOI: 10.1021/acs.orglett.9b04185] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Wenzhang Xiong
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Kun Hu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yunxiang Lei
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Qianqian Zhen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Zhiwei Zhao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yinlin Shao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Renhao Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Yetong Zhang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
26
|
Jiang M, Guo J, Liu B, Tan Q, Xu B. Synthesis of Tellurium-Containing π-Extended Aromatics with Room-Temperature Phosphorescence. Org Lett 2019; 21:8328-8333. [PMID: 31560555 DOI: 10.1021/acs.orglett.9b03106] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A synthesis of tellurium-embedded π-extended aromatics from tellurium powder and readily available cyclic diaryliodonium salts has been developed. The versatility of this method has been demonstrated by the synthesis of various functionalized dibenzotellurophenes (DBTe's), a ladder-type π-system, and a heterosumanene. These compounds demonstrated good air/moisture stability and high thermal stability. Remarkably, many DBTe's exhibited interesting tunable room-temperature phosphorescence (RTP) in the solid state.
Collapse
Affiliation(s)
- Mengjing Jiang
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Jimin Guo
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Bingxin Liu
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Qitao Tan
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Bin Xu
- Department of Chemistry, Innovative Drug Research Center , Shanghai University , 99 Shangda Road , Shanghai 200444 , China.,State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| |
Collapse
|
27
|
Ye L, Han C, Shi P, Gao W, Mei W. Copper-catalyzed synthesis of phenol and diaryl ether derivatives via hydroxylation of diaryliodoniums. RSC Adv 2019; 9:21525-21529. [PMID: 35521308 PMCID: PMC9066359 DOI: 10.1039/c9ra04282b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/05/2019] [Indexed: 11/21/2022] Open
Abstract
A copper-catalysed hydroxylation of diaryliodoniums to generate phenols and diaryl ethers is reported. This method allows the synthesis of diversely functionalized phenols under mild reaction conditions without the need for a strong inorganic base or an expensive noble-metal catalyst. Significantly, convenient application of diaryliodoniums is demonstrated in the preparation of diaryl ethers in a one-pot operation.
Collapse
Affiliation(s)
- Lianbao Ye
- School of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510006 Guangdong China +86-20-39352139
| | - Chao Han
- School of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510006 Guangdong China +86-20-39352139
| | - Peiqi Shi
- School of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510006 Guangdong China +86-20-39352139
| | - Wei Gao
- School of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510006 Guangdong China +86-20-39352139
| | - Wenjie Mei
- Guangdong Province Engineering Technology Center for Molecular Probes & Biomedical Imaging, Guangdong Pharmaceutical University Guangzhou 510006 Guangdong China
| |
Collapse
|
28
|
Zhu D, Li M, Wu Z, Du Y, Luo B, Huang P, Wen S. Copper-Catalyzed One-Pot Synthesis of Dibenzofurans, Xanthenes, and Xanthones from Cyclic Diphenyl Iodoniums. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900745] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Daqian Zhu
- School of pharmacy; Guangdong Pharmaceutical University; 280 Waihuan East Road 510006 Guangzhou China
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University, Cancer Center; 651 Dongfeng East Road 510060 Guangzhou China
| | - Min Li
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University, Cancer Center; 651 Dongfeng East Road 510060 Guangzhou China
- Collaborative Innovation Center for Cancer Medicine; Changsha Medical University; 1501 Leifeng Road 410219 Changsha China
| | - Zhouming Wu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University, Cancer Center; 651 Dongfeng East Road 510060 Guangzhou China
| | - Yongliang Du
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University, Cancer Center; 651 Dongfeng East Road 510060 Guangzhou China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University, Cancer Center; 651 Dongfeng East Road 510060 Guangzhou China
| | - Peng Huang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University, Cancer Center; 651 Dongfeng East Road 510060 Guangzhou China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University, Cancer Center; 651 Dongfeng East Road 510060 Guangzhou China
| |
Collapse
|
29
|
Zhu K, Xu K, Fang Q, Wang Y, Tang B, Zhang F. Enantioselective Synthesis of Axially Chiral Biaryls via Cu-Catalyzed Acyloxylation of Cyclic Diaryliodonium Salts. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00695] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kai Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Kai Xu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qi Fang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bencan Tang
- Department of Chemical and Environment Engineering, The University of Nottingham Ningbo China, Ningbo 315100, P. R. China
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
30
|
Zeng R, Shan C, Liu M, Jiang K, Ye Y, Liu TY, Chen YC. [4 + 1 + 1] Annulations of α-Bromo Carbonyls and 1-Azadienes toward Fused Benzoazaheterocycles. Org Lett 2019; 21:2312-2316. [PMID: 30900459 DOI: 10.1021/acs.orglett.9b00598] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An unexpected [4 + 1 + 1] annulation between α-bromo carbonyls and 1-azadienes, derived from 2-methylenebenzofuran-3(2 H)-ones or 2-methylenebenzo[ b]thiophene-3(2 H)-ones, has been observed in the presence of DABCO and Cs2CO3. These reactions stand in contrast to the common [4 + 1] cyclization reactions of azadienes with the related sulfonium ylides. A range of fused benzofuro[3,2- b]pyridines and benzo[4,5]thieno[3,2- b]pyridines have been efficiently constructed in fair to excellent yields.
Collapse
Affiliation(s)
- Rong Zeng
- College of Pharmacy , Third Military Medical University , Shapingba, Chongqing 400038 , China
| | - Changyu Shan
- College of Pharmacy , Third Military Medical University , Shapingba, Chongqing 400038 , China
| | - Ming Liu
- College of Pharmacy , Third Military Medical University , Shapingba, Chongqing 400038 , China
| | - Kun Jiang
- College of Pharmacy , Third Military Medical University , Shapingba, Chongqing 400038 , China
| | - Ying Ye
- College of Pharmacy , Third Military Medical University , Shapingba, Chongqing 400038 , China
| | - Tian-Yu Liu
- College of Pharmacy , Third Military Medical University , Shapingba, Chongqing 400038 , China
| | - Ying-Chun Chen
- College of Pharmacy , Third Military Medical University , Shapingba, Chongqing 400038 , China.,Department of Medicinal Chemistry, West China School of Pharmacy , Sichuan University , Chengdu 610041 , China
| |
Collapse
|
31
|
Zhu D, Wu Z, Liang L, Sun Y, Luo B, Huang P, Wen S. Heterocyclic iodoniums as versatile synthons to approach diversified polycyclic heteroarenes. RSC Adv 2019; 9:33170-33179. [PMID: 35529157 PMCID: PMC9073335 DOI: 10.1039/c9ra07288h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
Polycyclic heteroarenes are important scaffolds in the construction of pharmaceuticals. We have previously developed a series of novel heterocyclic iodoniums. In our current work, these unique iodoniums were employed to construct various complex polycyclic heteroarenes with structural diversity via tandem dual arylations. As a result, indole, thiophene and triphenylene motifs were fused into these heterocycles with high molecular quality, which might provide promising fragments in drug discovery. Moreover, these heterocycles could be diversified at a late stage. The transformation of heterocyclic iodoniums led to the construction of heterocycles with a high structural diversity.![]()
Collapse
Affiliation(s)
- Daqian Zhu
- State Key Laboratory of Oncology in South China
- Collaborative Innovation Center for Cancer Medicine
- Sun Yat-sen University Cancer Center
- Guangzhou 510060
- China
| | - Zhouming Wu
- State Key Laboratory of Oncology in South China
- Collaborative Innovation Center for Cancer Medicine
- Sun Yat-sen University Cancer Center
- Guangzhou 510060
- China
| | - Liyun Liang
- State Key Laboratory of Oncology in South China
- Collaborative Innovation Center for Cancer Medicine
- Sun Yat-sen University Cancer Center
- Guangzhou 510060
- China
| | - Yameng Sun
- State Key Laboratory of Oncology in South China
- Collaborative Innovation Center for Cancer Medicine
- Sun Yat-sen University Cancer Center
- Guangzhou 510060
- China
| | - Bingling Luo
- State Key Laboratory of Oncology in South China
- Collaborative Innovation Center for Cancer Medicine
- Sun Yat-sen University Cancer Center
- Guangzhou 510060
- China
| | - Peng Huang
- State Key Laboratory of Oncology in South China
- Collaborative Innovation Center for Cancer Medicine
- Sun Yat-sen University Cancer Center
- Guangzhou 510060
- China
| | - Shijun Wen
- State Key Laboratory of Oncology in South China
- Collaborative Innovation Center for Cancer Medicine
- Sun Yat-sen University Cancer Center
- Guangzhou 510060
- China
| |
Collapse
|
32
|
Umeda R, Shimizu Y, Ida Y, Ikeshita M, Suzuki S, Naota T, Nishiyama Y. Facile and practical synthesis of π-extended oxepins by benzannulation and intramolecular cyclization. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Li J, Xu QN, Wang ZB, Li Y, Liu L. Synthesis of Dibenzofurans from Cyclic Diaryliodonium Triflates and Water via Oxygen-Iodine Exchange Approach. ACS OMEGA 2018; 3:12923-12929. [PMID: 31458015 PMCID: PMC6644658 DOI: 10.1021/acsomega.8b02345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 09/25/2018] [Indexed: 05/13/2023]
Abstract
An efficient synthesis of a variety of dibenzofuran derivatives via Cu-catalyzed cyclization diaryliodonium salts in water is achieved. Various dibenzofuran derivatives could be obtained in good to excellent yields via this oxygen-iodine exchange approach. A concise synthesis of organic semiconducting material molecule has been achieved using this method.
Collapse
Affiliation(s)
- Jian Li
- School
of Pharmaceutical Engineering & Life Sciences and School of Petrochemical
Engineering, Changzhou University, Changzhou 213164, China
- E-mail:
| | - Qiu-Neng Xu
- School
of Pharmaceutical Engineering & Life Sciences and School of Petrochemical
Engineering, Changzhou University, Changzhou 213164, China
| | - Zheng-Bing Wang
- School
of Pharmaceutical Engineering & Life Sciences and School of Petrochemical
Engineering, Changzhou University, Changzhou 213164, China
| | - Yang Li
- School
of Pharmaceutical Engineering & Life Sciences and School of Petrochemical
Engineering, Changzhou University, Changzhou 213164, China
| | - Li Liu
- School
of Pharmaceutical Engineering & Life Sciences and School of Petrochemical
Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|