1
|
Ba M, He F, Ren L, Whittingham WG, Yang P, Li A. Scalable Total Synthesis of Acremolactone B. Angew Chem Int Ed Engl 2024; 63:e202314800. [PMID: 37932901 DOI: 10.1002/anie.202314800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
Acremolactone B is a pyridine-containing azaphilone-type polyketide. The first total synthesis of this molecule was achieved on a gram scale, based on an aza-6π electrocyclization-aromatization strategy for construction of the tetra-substituted pyridine ring. A bicyclic intermediate was expeditiously prepared by using [2+2] photocycloaddition and chemoselective Baeyer-Villiger oxidation, which was further elaborated to a densely substituted aza-triene. An electrocyclization-aromatization cascade was utilized to forge the tetracyclic core of this natural product, and the side chain was introduced through diastereoselective acylation and reduction.
Collapse
Affiliation(s)
- Mengyu Ba
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Fengqi He
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lu Ren
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - William G Whittingham
- Jealott's Hill International Research Centre, Syngenta Limited, Bracknell, Berkshire, RG42 6EY, UK
| | - Peng Yang
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Ang Li
- College of Chemistry and Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
2
|
An H, Wei Y, Zhu Q, Fu J, Xu T. Polyoxovanadate-Based Metal-Organic Frameworks with Dual Active Sites for the Synthesis of p-Benzoquinones. Inorg Chem 2024; 63:11113-11124. [PMID: 38837698 DOI: 10.1021/acs.inorgchem.4c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
p-Benzoquinones are important organic intermediates in the synthesis of biopharmaceuticals and fine chemicals. In this study, two crystalline 3D polyoxovanadate-based metal-organic frameworks, H[Cu(tpi)2]{Cu2V7O21}·H2O (1, tpi = C18N5H13) and [Co(Htpi)2]{V4O12} (2, Htpi = C18N5H14), were synthesized, which as heterogeneous catalysts showed excellent catalytic activities for the synthesis of p-benzoquinones. Both compounds were characterized by IR, UV-vis diffuse reflectance spectroscopy, TG, XPS, X-ray diffraction, etc. In 1, {Cu2V7} clusters are connected together by copper cations and 1D Cu-organic coordination chains to yield a 3D polyoxometalate-based metal-organic framework (POMOF); in 2, adjacent 2D bimetallic oxide layers, constructed from 1D polyoxovanadate chains and cobalt ions, are further connected by 1D Co-organic coordination chains to form a 3D POMOF. Noteworthily, in the synthesis of trimethyl-p-benzoquinone, the key intermediate of vitamin E, using 2,3,6-trimethylphenol as the model substrate, the turnover frequency values for compounds 1 and 2 can, respectively, reach 607 and 380 h-1 in 8 min. Furthermore, both compounds demonstrated excellent recyclability and structural stability, characterized by PXRD and IR. The catalytic mechanism reveals that both the homolytic radical mechanism and heterolytic oxygen atom transfer mechanism are involved.
Collapse
Affiliation(s)
- Haiyan An
- School of Chemistry, Dalian University of Technology, Dalian 116023, Liaoning, China
| | - Yuting Wei
- School of Chemistry, Dalian University of Technology, Dalian 116023, Liaoning, China
| | - Qingshan Zhu
- School of Chemistry, Dalian University of Technology, Dalian 116023, Liaoning, China
| | - Jie Fu
- School of Chemistry, Dalian University of Technology, Dalian 116023, Liaoning, China
| | - Tieqi Xu
- School of Chemistry, Dalian University of Technology, Dalian 116023, Liaoning, China
| |
Collapse
|
3
|
Carson MC, Kozlowski MC. Recent advances in oxidative phenol coupling for the total synthesis of natural products. Nat Prod Rep 2024; 41:208-227. [PMID: 37294301 PMCID: PMC10709532 DOI: 10.1039/d3np00009e] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Covering: 2008 to 2023This review will describe oxidative phenol coupling as applied in the total synthesis of natural products. This review covers catalytic and electrochemical methods with a brief comparison to stoichiometric and enzymatic systems assessing their practicality, atom economy, and other measures. Natural products forged by C-C and C-O oxidative phenol couplings as well as from alkenyl phenol couplings will be addressed. Additionally, exploration into catalytic oxidative coupling of phenols and other related species (carbazoles, indoles, aryl ethers, etc.) will be surveyed. Future directions of this particular area of research will also be assessed.
Collapse
Affiliation(s)
- Matthew C Carson
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| | - Marisa C Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| |
Collapse
|
4
|
Kang H, Torruellas C, Kozlowski MC. Asymmetric Total Synthesis of Chaetoglobin A. J Org Chem 2023; 88:6691-6703. [PMID: 37195069 PMCID: PMC10411588 DOI: 10.1021/acs.joc.3c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An asymmetric total synthesis of chaetoglobin A was achieved. Atroposelective oxidative coupling of a phenol incorporating all but one carbon of the final product was used as a key step to generate axial chirality. The stereochemical outcome of the catalytic oxidative phenolic with the highly substituted phenol used herein was found to be opposite that of the simpler congeners reported previously, providing a cautionary tale about extrapolating asymmetric processes from simple to more complex substrates. Optimization of the postphenolic coupling steps including formylation, oxidative dearomatization, and selective deprotection steps are outlined. The tertiary acetates of chaetoglobin A were exceptionally labile due to activation by the adjacent keto groups, which complicated each of these steps. In contrast, the final oxygen to nitrogen exchange proceeded readily and the spectroscopic data from the synthetic material matches that of the isolated natural product in all respects.
Collapse
Affiliation(s)
- Houng Kang
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Chemistry Education, Chungbuk National University, Cheongju, Chungbuk 28644, South Korea
| | - Carilyn Torruellas
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marisa C. Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Chiang CH, Wymore T, Rodríguez Benítez A, Hussain A, Smith JL, Brooks CL, Narayan ARH. Deciphering the evolution of flavin-dependent monooxygenase stereoselectivity using ancestral sequence reconstruction. Proc Natl Acad Sci U S A 2023; 120:e2218248120. [PMID: 37014851 PMCID: PMC10104550 DOI: 10.1073/pnas.2218248120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Controlling the selectivity of a reaction is critical for target-oriented synthesis. Accessing complementary selectivity profiles enables divergent synthetic strategies, but is challenging to achieve in biocatalytic reactions given enzymes' innate preferences of a single selectivity. Thus, it is critical to understand the structural features that control selectivity in biocatalytic reactions to achieve tunable selectivity. Here, we investigate the structural features that control the stereoselectivity in an oxidative dearomatization reaction that is key to making azaphilone natural products. Crystal structures of enantiocomplementary biocatalysts guided the development of multiple hypotheses centered on the structural features that control the stereochemical outcome of the reaction; however, in many cases, direct substitutions of active site residues in natural proteins led to inactive enzymes. Ancestral sequence reconstruction (ASR) and resurrection were employed as an alternative strategy to probe the impact of each residue on the stereochemical outcome of the dearomatization reaction. These studies suggest that two mechanisms are active in controlling the stereochemical outcome of the oxidative dearomatization reaction: one involving multiple active site residues in AzaH and the other dominated by a single Phe to Tyr switch in TropB and AfoD. Moreover, this study suggests that the flavin-dependent monooxygenases (FDMOs) adopt simple and flexible strategies to control stereoselectivity, which has led to stereocomplementary azaphilone natural products produced by fungi. This paradigm of combining ASR and resurrection with mutational and computational studies showcases sets of tools for understanding enzyme mechanisms and provides a solid foundation for future protein engineering efforts.
Collapse
Affiliation(s)
- Chang-Hwa Chiang
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
| | - Troy Wymore
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY11794
- Department of Chemistry, Stony Brook University, Stony Brook, NY11794
| | - Attabey Rodríguez Benítez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Azam Hussain
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, MI48109
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Charles L. Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
- Department of Biophysics, University of Michigan, Ann Arbor, MI48109
| | - Alison R. H. Narayan
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
- Life Sciences Institute, University of Michigan, Ann Arbor, MI48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
6
|
Gilmartin P, Vu C, Rotella M, Kaur J, Kozlowski M. Edge-Decorated Polycyclic Aromatic Hydrocarbons by an Oxidative Coupling Approach. Chemistry 2023; 29:e202203405. [PMID: 36332182 PMCID: PMC9957926 DOI: 10.1002/chem.202203405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2022]
Abstract
Oxidative phenol coupling reduces reliance on halo/metalated substrates used in conventional redox neutral couplings. A new strategy for constructing polycyclic aromatic hydrocarbons (PAHs) that incorporates oxidative phenol coupling is outlined in a three-stage approach: oxidative fragment coupling, linking of the two resultant units, and oxidative cyclization. The protocol allows rapid assembly of both planar and helical systems with a high degree of edge functionalization. The incorporation of 12 alkoxy groups on systems with 12 rings gave rise to lower optical gaps compared to systems with a lesser degree of edge functionalization.
Collapse
Affiliation(s)
- Philip Gilmartin
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cassandra Vu
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Madeline Rotella
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jasjit Kaur
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marisa Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
7
|
Li J, Li Z, Chen T, Ye G, Qiu L, Long Y. New azaphilones from mangrove endophytic fungus Penicillium sclerotiorin SCNU-F0040. Nat Prod Res 2023; 37:296-304. [PMID: 34498957 DOI: 10.1080/14786419.2021.1959580] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Two new sclerotioramines (1 and 2) and a new natural product of sclerotioramine analog (3), together with seven known compounds have been isolated from the mangrove endophytic fungus Penicillium sclerotiorin SCNU-F0040. Their structures were identified based on the 1 D, 2 D NMR and HRESIM spectra. The absolute configurations of new compounds were deduced by specific rotation data and electronic circular dichroism spectra. All the isolated new compounds were tested on anti-diabetes activity by using a-glucosidase inhibition assay and anti-inflammatory activity by using cyclooxygenase inhibition assay, respectively. Compounds 1 and 2 have a-glucosidase inhibition activity with IC50 values of 102.3 and 217.5 μM. Compound 2 shows a moderate cyclooxygenase-2 inhibitory activity with an IC50 value of 47.8 μM.
Collapse
Affiliation(s)
- Jialin Li
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou China
| | - Zixuan Li
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou China
| | - Tao Chen
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou China
| | - Geting Ye
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou China
| | - Liyu Qiu
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou China
| | - Yuhua Long
- School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou China
| |
Collapse
|
8
|
Abstract
Phenols and their derivatives are the elementary building blocks for several classes of complex molecules that play essential roles in biological systems. Nature has devised methods to selectively couple phenolic compounds, and many efforts have been undertaken by chemists to mimic such coupling processes. A range of mechanisms can be involved and with well-studied catalysts, reaction outcomes in phenol-phenol oxidative coupling reactions can be predicted with a good level of fidelity. However, reactions with catalysts that have not been studied or that do not behave similarly to known catalysts can be hard to predict and control. This Perspective provides an overview of catalytic methods for the oxidative coupling of phenols, focusing on the last 10 years, and summarizes current challenges.
Collapse
Affiliation(s)
- Jingze Wu
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marisa C Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Cytochalasans and azaphilones: suitable chemotaxonomic markers for the Chaetomium species. Appl Microbiol Biotechnol 2021; 105:8139-8155. [PMID: 34647136 DOI: 10.1007/s00253-021-11630-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
The accurate taxonomic concept of the fungal Chaetomium species has been a hard work due to morphological similarity. Chemotaxonomy based on secondary metabolites is a powerful tool for taxonomical purposes, which could be used as an auxiliary reference to solve the problems encountered in the classification of Chaetomium. Among secondary metabolites produced by Chaetomium, cytochalasans and azaphilones exhibited a pattern of distribution and frequency of occurrence that establish them as chemotaxonomic markers for the Chaetomium species. This review attempted to elucidate the composition of the Chaetomium species and its relationship with classical taxonomy by summarizing the pattern of cytochalasans and azaphilones distribution and biosynthesis in the Chaetomium species. KEY POINTS: • Secondary metabolites from the genus Chaetomium are summarized. • Cytochalasans and azaphilones could be characteristic metabolites of the Chaetomium species. • Cytochalasans and azaphilones could be used to analyze for taxonomical purposes.
Collapse
|
10
|
Cheng JK, Xiang SH, Li S, Ye L, Tan B. Recent Advances in Catalytic Asymmetric Construction of Atropisomers. Chem Rev 2021; 121:4805-4902. [PMID: 33775097 DOI: 10.1021/acs.chemrev.0c01306] [Citation(s) in RCA: 415] [Impact Index Per Article: 138.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atropisomerism is a stereochemical behavior portrayed by three-dimensional molecules that bear rotationally restricted σ bond. Akin to the well-represented point-chiral molecules, atropisomerically chiral compounds are finding increasing utilities in many disciplines where molecular asymmetry is influential. This provides steady demand on atroposelective synthesis, where numerous synthetic pursuits have been rewarded with conceptually novel and streamlined methods while expanding the structural diversity of atropisomers. This review summarizes key achievements in stereoselective preparation of biaryl, heterobiaryl, and nonbiaryl atropisomers documented between 2015 and 2020. Emphasis is placed on the synthetic strategies for each structural class, while examples are cited to illustrate the potential applications of the accessed atropochiral targets.
Collapse
Affiliation(s)
- Jun Kee Cheng
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shao-Hua Xiang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shaoyu Li
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Ye
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
11
|
Bansal S, Shabade AB, Punji B. Advances in C(
sp
2
)−H/C(
sp
2
)−H Oxidative Coupling of (Hetero)arenes Using 3d Transition Metal Catalysts. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001498] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sadhna Bansal
- Organometallic Synthesis and Catalysis Lab Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Anand B. Shabade
- Organometallic Synthesis and Catalysis Lab Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201 002 India
| |
Collapse
|
12
|
Gu Y, Wang T, Gao M, Yao ZJ. Scalable Cu(II)-mediated intramolecular dehydrogenative phenol-phenol coupling: Concise synthesis of enantiopure axially chiral homo- and hetero-diphenols. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Sako M, Higashida K, Kamble GT, Kaut K, Kumar A, Hirose Y, Zhou DY, Suzuki T, Rueping M, Maegawa T, Takizawa S, Sasai H. Chemo- and enantioselective hetero-coupling of hydroxycarbazoles catalyzed by a chiral vanadium( v) complex. Org Chem Front 2021. [DOI: 10.1039/d1qo00783a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The catalytic enantioselective oxidative hetero-coupling of arenols using a chiral vanadium(v) complex has been developed.
Collapse
Affiliation(s)
- Makoto Sako
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Keigo Higashida
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Ganesh Tatya Kamble
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kevin Kaut
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Ankit Kumar
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Yuka Hirose
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- School of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Da-Yang Zhou
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takeyuki Suzuki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Magnus Rueping
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Tomohiro Maegawa
- School of Pharmaceutical Sciences, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Shinobu Takizawa
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hiroaki Sasai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
14
|
Sako M, Takizawa S, Sasai H. Chiral vanadium complex-catalyzed oxidative coupling of arenols. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131645] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
|
16
|
Neuhaus WC, Kozlowski MC. Total Synthesis of Pyrolaside B: Phenol Trimerization through Sequenced Oxidative C−C and C−O Coupling. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- William C. Neuhaus
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - Marisa C. Kozlowski
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|
17
|
Neuhaus WC, Kozlowski MC. Total Synthesis of Pyrolaside B: Phenol Trimerization through Sequenced Oxidative C-C and C-O Coupling. Angew Chem Int Ed Engl 2020; 59:7842-7847. [PMID: 32026544 PMCID: PMC7200290 DOI: 10.1002/anie.201915654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Indexed: 01/05/2023]
Abstract
A facile method to oxidatively trimerize phenols using a catalytic aerobic copper system is described. The mechanism of this transformation was probed, yielding insight that enabled cross-coupling trimerizations. With this method, the natural product pyrolaside B was synthesized for the first time. The key strategy used for this novel synthesis is the facile one-step construction of a spiroketal trimer intermediate, which can be selectively reduced to give the natural product framework without recourse to stepwise Ullmann- and Suzuki-type couplings. As a result, pyrolaside B can be obtained expeditiously in five steps and 16 % overall yield. Three other analogues were synthesized, thus highlighting the utility of the method, which provides new accessibility to this area of chemical space. A novel xanthene was also synthesized through controlled Lewis acid promoted rearrangement of a spiroketal trimer.
Collapse
Affiliation(s)
| | - Marisa C. Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
18
|
Neuhaus WC, Kozlowski MC. Diastereoselective Synthesis of Benzoxanthenones. Chem Asian J 2020; 15:1039-1043. [PMID: 32064747 DOI: 10.1002/asia.201901727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/11/2020] [Indexed: 11/08/2022]
Abstract
An oxidative catalytic vanadium(V) system was developed to access the naturally nonabundant diastereomers of carpanone from the corresponding alkenyl phenol monomer in one pot by tandem oxidation, oxidative coupling, and 4+2 cyclization. This system was applied to the synthesis of two other analogues of carpanone. Mild oxidizing silver salts were used as the terminal oxidant to minimize background oxidation which produces the natural diastereomer of carpanone. Further, the first examples of enantioselective oxidative benzoxanthenone formation are reported. Solvent polarity has a strong effect on enantioselectivity, consistent with a mechanism involving binding of vanadium Schiff base catalysts to the alcoholic moiety of the alkenyl phenols during the cyclization step.
Collapse
Affiliation(s)
- William C Neuhaus
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA 19104, United States
| | - Marisa C Kozlowski
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA 19104, United States
| |
Collapse
|
19
|
Grzybowski M, Sadowski B, Butenschön H, Gryko DT. Synthetic Applications of Oxidative Aromatic Coupling-From Biphenols to Nanographenes. Angew Chem Int Ed Engl 2020; 59:2998-3027. [PMID: 31342599 PMCID: PMC7027897 DOI: 10.1002/anie.201904934] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/28/2019] [Indexed: 12/31/2022]
Abstract
Oxidative aromatic coupling occupies a fundamental place in the modern chemistry of aromatic compounds. It is a method of choice for the assembly of large and bewildering architectures. Considerable effort was also devoted to applications of the Scholl reaction for the synthesis of chiral biphenols and natural products. The ability to form biaryl linkages without any prefunctionalization provides an efficient pathway to many complex structures. Although the chemistry of this process is only now becoming fully understood, this reaction continues to both fascinate and challenge researchers. This is especially true for heterocoupling, that is, oxidative aromatic coupling with the chemoselective formation of a C-C bond between two different arenes. Analysis of the progress achieved in this field since 2013 reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted (cyclo)dehydrogenation, and developing new reagents.
Collapse
Affiliation(s)
- Marek Grzybowski
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| | - Bartłomiej Sadowski
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| | - Holger Butenschön
- Institut für Organische ChemieLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| | - Daniel T. Gryko
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| |
Collapse
|
20
|
Kasama K, Aoyama H, Akai S. Enantiodivergent Synthesis of Axially Chiral Biphenyls from σ-Symmetric 1,1'-Biphenyl-2,6-diol Derivatives by Single Lipase-Catalyzed Acylative and Hydrolytic Desymmetrization. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901583] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kengo Kasama
- Graduate School of Pharmaceutical Sciences; Osaka University; 1-6, Yamadaoka, Suita 565-0871 Osaka Japan
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences; Osaka University; 1-6, Yamadaoka, Suita 565-0871 Osaka Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences; Osaka University; 1-6, Yamadaoka, Suita 565-0871 Osaka Japan
| |
Collapse
|
21
|
Danilkina NA, Vasileva AA, Balova IA. A.E.Favorskii’s scientific legacy in modern organic chemistry: prototropic acetylene – allene isomerization and the acetylene zipper reaction. RUSSIAN CHEMICAL REVIEWS 2020. [DOI: 10.1070/rcr4902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alexei Evgrafovich Favorskii was an outstanding organic chemist who left a great scientific legacy as a result of long time and fruitful work. Most of the theoretically and practically important discoveries of A.E.Favorskii were made in the chemistry of acetylene and its derivatives. Nowadays, the reactions discovered by him, which include acetylene – allene isomerization, the Favorskii and retro-Favorskii reactions, the Favorskii rearrangement and the vinylation reaction, are widely used in industry and in laboratory synthesis. This review summarizes the main scientific achievements of A.E.Favorskii, as well as their development in modern organic chemistry. Much consideration is given to acetylene – allene isomerization as a convenient method for the synthesis of methyl-substituted acetylenes and to the acetylene zipper reaction as a synthetic tool for obtaining terminal acetylenes. The review presents examples of the application of these reactions in modern organic synthesis of complex molecules, including natural compounds and their analogues.
The bibliography includes 266 references.
Collapse
|
22
|
Chen C, Tao H, Chen W, Yang B, Zhou X, Luo X, Liu Y. Recent advances in the chemistry and biology of azaphilones. RSC Adv 2020; 10:10197-10220. [PMID: 35498578 PMCID: PMC9050426 DOI: 10.1039/d0ra00894j] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/03/2020] [Indexed: 01/02/2023] Open
Abstract
Recent advances in the chemistry and biology of structurally diverse azaphilones from 2012 to 2019.
Collapse
Affiliation(s)
- Chunmei Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou 510301
| | - Huaming Tao
- School of Traditional Chinese Medicine
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Weihao Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou 510301
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou 510301
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou 510301
| | - Xiaowei Luo
- Institute of Marine Drugs
- Guangxi University of Chinese Medicine
- Nanning 530200
- P. R. China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology
- Guangdong Key Laboratory of Marine Materia Medica
- South China Sea Institute of Oceanology
- Chinese Academy of Sciences
- Guangzhou 510301
| |
Collapse
|
23
|
Grzybowski M, Sadowski B, Butenschön H, Gryko DT. Syntheseanwendungen der oxidativen aromatischen Kupplung – von Biphenolen zu Nanographenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904934] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marek Grzybowski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warschau Polen
| | - Bartłomiej Sadowski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warschau Polen
| | - Holger Butenschön
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Deutschland
| | - Daniel T. Gryko
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warschau Polen
| |
Collapse
|
24
|
Pyser JB, Baker Dockrey SA, Benítez AR, Joyce LA, Wiscons RA, Smith JL, Narayan ARH. Stereodivergent, Chemoenzymatic Synthesis of Azaphilone Natural Products. J Am Chem Soc 2019; 141:18551-18559. [PMID: 31692339 PMCID: PMC7029798 DOI: 10.1021/jacs.9b09385] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selective access to a targeted isomer is often critical in the synthesis of biologically active molecules. Whereas small-molecule reagents and catalysts often act with anticipated site- and stereoselectivity, this predictability does not extend to enzymes. Further, the lack of access to catalysts that provide complementary selectivity creates a challenge in the application of biocatalysis in synthesis. Here, we report an approach for accessing biocatalysts with complementary selectivity that is orthogonal to protein engineering. Through the use of a sequence similarity network (SSN), a number of sequences were selected, and the corresponding biocatalysts were evaluated for reactivity and selectivity. With a number of biocatalysts identified that operate with complementary site- and stereoselectivity, these catalysts were employed in the stereodivergent, chemoenzymatic synthesis of azaphilone natural products. Specifically, the first syntheses of trichoflectin, deflectin-1a, and lunatoic acid A were achieved. In addition, chemoenzymatic syntheses of these azaphilones supplied enantioenriched material for reassignment of the absolute configuration of trichoflectin and deflectin-1a based on optical rotation, CD spectra, and X-ray crystallography.
Collapse
Affiliation(s)
- Joshua B. Pyser
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Summer A. Baker Dockrey
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Attabey Rodríguez Benítez
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Leo A. Joyce
- Department of Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065
| | - Ren A. Wiscons
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Janet L. Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Alison R. H. Narayan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
25
|
Sako M, Aoki T, Zumbrägel N, Schober L, Gröger H, Takizawa S, Sasai H. Chiral Dinuclear Vanadium Complex-Mediated Oxidative Coupling of Resorcinols. J Org Chem 2018; 84:1580-1587. [PMID: 30501179 DOI: 10.1021/acs.joc.8b02494] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A method for the highly regio- and enantioselective oxidative coupling of resorcinols has been established by using dibrominated dinuclear vanadium(V) catalyst 1c under air. When resorcinols bearing an aryl substituent were applied as substrates to the coupling, axially chiral biresorcinols were obtained as single regioisomers in high yield with up to 98% ee.
Collapse
Affiliation(s)
- Makoto Sako
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka, Ibaraki-shi , Osaka 567-0047 , Japan
| | - Takanori Aoki
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka, Ibaraki-shi , Osaka 567-0047 , Japan
| | - Nadine Zumbrägel
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka, Ibaraki-shi , Osaka 567-0047 , Japan.,Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Lukas Schober
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka, Ibaraki-shi , Osaka 567-0047 , Japan.,Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Harald Gröger
- Chair of Organic Chemistry I, Faculty of Chemistry , Bielefeld University , Universitätsstraße 25 , 33615 Bielefeld , Germany
| | - Shinobu Takizawa
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka, Ibaraki-shi , Osaka 567-0047 , Japan
| | - Hiroaki Sasai
- The Institute of Scientific and Industrial Research (ISIR) , Osaka University , Mihogaoka, Ibaraki-shi , Osaka 567-0047 , Japan
| |
Collapse
|
26
|
Affiliation(s)
- Zheng Huang
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|